FREOCRAMMER TO PROCRAMMER

VISUAL C++
WINDOWS SHELL
PROGRAMMING

Visual C++
Windows Shell Programming

Dino Esposito

Wrox Press Ltd. O

Visual C++ Windows Shell Programming

© 1998 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Wrox Press nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

WFroxX

PROGRAMMER TO PROGRAMMER'

Published by Wrox Press Ltd. 30 Lincoln Road, Olton, Birmingham, B27 6PA
Printed in USA
ISBN 1-861001-8-43

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee
the accuracy of this information.

Credits
Author Cover
Dino Esposito Andrew Guillaume
Concept by Third Wave
Development Editor
John Franklin Design/Layout
Noel Donnelly
Editors
Jon Hill Index
Chris Hindley Andrew Criddle

Technical Reviewers
Davide Marcato
Tommy Riddle

Kenn Scribner

Marc Simkin

Mark Stiver

Julian Templeman

Keep it simple: as simple as possible, but no simpler.
Albert Einstein

Photo of the ammonite courtesy of Claren Kidd at the
Laurence S Youngblood Energy Library, University of Oklahoma.
http://www-lib.ou.edu/depts/geol/lammonite.html

http://www-lib.ou.edu/depts/geol/lammonite.html

About the Author

Dino Esposito is a senior consultant who specializes in Windows and COM development. At
present, his work for Andersen Consulting focuses on the development of Web-based
applications. He's a frequent speaker at industry conferences such as Microsoft Developer Days
and occasionally holds seminars for Mondadori Informatica Education.

He also has extensive experience developing commercial Windows-based software, especially
for the photography world, and was part of the team who designed and realized one of the first
European image databanks.

Dino loves writing, and is a contributing editor to Microsoft Internet Developer for which he runs
the Cutting Edge column. He contributes to a number of magazines including Microsoft Systems
Journal, MSDN News, Windows Developer's Journal, Dr. Dobb's Journal and a number of Italian
magazines. He co-authored Professional IE4 Programming and authored Instant DHTML Scriptlets,
both published by Wrox Press.

Dino lives in Rome (Italy) with his wife Silvia and a six-month-old son, Francesco. Feel free to
contact him at desposito@infomedia.it.

Acknowlegements

Even though I appear smiling and relaxed on the cover, believe me, doing this book was no
picnic. It's been a pleasure, though. I've really enjoyed presenting my development experience
and telling you about all the pitfalls I've found along the way. My hope is that, with this book,
your coding will progress more quickly.

I said it wasn't easy, and didn't just mean for myself. Silvia, my wife, was incredibly patient
with me and many nights, at the end of a chapter, I found her solicitously awake. This book
considerably increased her capacity to sleep in spite of the typical but annoying noise of a
programmer: the unremitting clicking, plop and plonk, dialing and so on. There's nothing to
do, I really love you - and it's rhymed too!

No, Francesco, don't cry! Daddy loves you too. Francesco is now six months old and shows a
great interest for everything with buttons, from keyboards to remote controls and from
telephones to cameras. He's a very lively and precocious baby. Although his name doesn't
appear among the technical reviewers, he really gave a considerable contribution to the last
two chapters. (Jon, now you know the real reason why you got them so late...)

Jon Hill was the lead technical editor of this book and, let me say, did an excellent job testing
and re-testing the source code, providing countless pieces of good advice and, above all,
addressing the weak points in the original text. You'll never know about them, but believe me,
the book is now far more readable, rich and enjoyable. Thank you, Jon!

And thanks also to all the guys that reviewed the various chapters. In particular, I'd like to
mention Kenn Scribner who led me to discover and consider a number of neglected topics.
Thank you, Kenn; I appreciated your ideas very much.

Other people contributed to this book with their suggestions and technical tips. I want to say
thanks to Marco Losavio, Graziano Lorusso, Giuseppe Dimauro, Francesco Balena, Carlo
Pescio and Antonio Derossi.

Writing a book related to Windows necessarily involves pinging people at Microsoft, searching
for help, tips, references and so forth. Among others, I'd like to mention Scott Roberts, Andrew
Clinick and Michael Edwards who clarified a number of obscure points and helped me to find
up-to-date information. Scott was incredibly kind and patient and even answered my questions
over some weekends. I'm really grateful. I'll write it in Italian too: Te ne sono veramente molto
grato.

Other people at Microsoft provided assistance, directly or indirectly. In no particular order:
Josh Trupin and Joe Flanigen, for their appreciation and continued encouragement, and with
them all the staff at MIND and MS§J. Paula Ladenburg, for giving me the opportunity to appear
on MSDN and astound friends and colleagues with public full-text search engines. Joanne
Steinhart, for providing me with the colorful MIND mousepad that many times has captured
Francesco's attention and allowed me to work a bit more quietly.

Writing a book is just one aspect of my daily activity. Thus, I want to reserve a special mention
for the people at Andersen Consulting. In particular, I want to thank Bruno Ronchetti and
Giorgio Di Paolo for the opportunities they offered me and the patience they always
demonstrated.

Thanks also to Natale Fino and Roberto Palumbo at Infomedia. Their magazines are probably
the only chance I have not to forget how to write in Italian!

I love writing, but speaking is another thing that lets you touch what's going on in development
today. For this, I wish to mention Stefano Maruzzi and Alessandro Pedone at Mondadori
Informatica Education.

A word written a few lines above now is striking me: weekend. What's that? I think I'll have to
do some research to figure it out. When you work so hard month after month, sooner or later
you end up neglecting friends. To try to partially remedy this, I want to embrace in a common
thought Marco Lucani, Raffaele D'Orsogna, Roberto Raschetti and my brother Telly.

Last but not least, I would like to thank the person who is somewhat responsible for this book:
John Franklin. I enjoyed writing this book, despite the hard work. You and your team made it
really pleasant.

Thanks to you all

Dino

Table of Contents

Introduction

Everything Changes

What Does this Book Cover?
What You Need to Use this Book
Conventions Used

Tell Us What You Think

Source Code

Support

Chapter 1: What is the Windows Shell?

The Components of the Shell
The Program Manager
The Taskbar
The Desktop

The Structure of Explorer
Injection Points for Extensions

Extensions to Explorer
Why Program the Shell?

Where This Book Will Take You

The Plethora of Shell Versions
Where is the Official Documentation?
Summary

Chapter 2: The Structure of the Shell

The Pieces of the Shell
The Shell's Namespace
Folders
File Objects
PIDLs
The Shell's View

B O GO DO DD e

._.
S © ©©w o

10
10

11
12
13
13

15

16
16
17
18
19
21

Table of Contents

Hooking the Shell
The Shell's Address Space
The Shell's Memory Allocator
The Shell's Taskbar

The Shell API Functions
General Windows Functions
Shell Internals
Taskbar Functions
File Functions
Folder Functions
Icon Functions

The COM Interfaces
Shell Interfaces
Namespace Interfaces
Hook Interfaces
Miscellaneous Interfaces

Why the API? Why COM?

What Changed with Active Desktop
The New Shell View Object

Customizing a Folder

The New Taskbar Layout
Summary

Chapter 3: Working with Files
What Can SHFileOperation() do for You?

How SHFileOperation() Works
Available Operations
Pay Attention to the Double-NULL
Moving and Copying Files
Deleting Files
Renaming Files
SHFileOperation() Return Values
Two Poor Man's Utilities for Surviving Error Messages
Did Everything Really Work Properly?
Long File Names

File Name Mapping Objects
Demonstrating File Mapping
Using the Object

An Undocumented Structure
Towards a Solution

Summary
Further Reading

21
22
22
22
23
24
25
25
25
26
27
27
27
28
29
29
30

30
31
33
34

35

37
38

39
39
40
41
50
52
53
54
56

56

57
58
60
60
61

64
64

Chapter 4: Investigating the Nature of Files
What SHGetFileInfo() Can Do for You

How SHGetFileInfo() Works
Specifying the Input File
Using Wildcards with SHGetFileInfo()
The Display Name
The Sample Program

The Flags of the Function
Getting Information for a Given File Type
Shell Icon Size
Using a PIDL
Getting Attributes for a File
Creating the 'Hand-held' Folder Icon
Binary Format of Executables
SHGetFileInfo() Return Values

Summary
Further Reading

Chapter 5: Browsing for Folders
Choosing a Folder

A More Modern Approach
The Prototype of SHBrowseForFolder()

Using SHBrowseForFolder()
What the Function Returns
Getting the Folder Icon
Using a Callback Function
Events You Can Detect
Messages You Can Send
Customizing the User Interface
Removing the Context Help Button
Adding a 3D Border to the Status Text
Changing the Dialog Caption
Moving the Dialog Window
Animating the Status Label
Validating Manual Editing
Specifying the Initial Folder
Specifying the Root Node
Using a Directory as the Root
Putting it all Together
That Crazy Little Thing Called PIDL
Freeing PIDLs
How to Use PIDLs
Searching by Display Name
Building an Enumerator Function

Table of Contents

67
68

68
69
70
72

72
76
77
78
79
80
81
85
87

88
89

91

91
92

93

94
95
95
96
97
98
98
98
99

100

101

101

101

103
103
104
106
110
110
111

112
116

Table of Contents

The Callback Functions
The Sample Program
Searching by PIDL
Special Folders
System Support for Special Folders
Getting the Path to a Folder
Functions
Folder Settings
SHGetSettings()
Watch the File Extension
Make the Desktop More Active
How to Click a List View
Delete Confirmation
The Sample Program
Setting Preferences
Where are Preferences Stored?
Adding Custom Options to the Standard Dialog
When Custom Options Are Helpful
Summary

Further Reading

Chapter 6: The Shortest Path to Shortcuts

What are Shortcuts?
The Shortcut File Type

Creating Shortcuts
Using the IShellLink Interface
A Global Function for Shortcuts
Shell Scriptable Objects
Giving Shortcuts the Right Name
Deleting Shortcuts
Resolving Shortcuts
How Explorer Resolves Shortcuts
A Function for Resolving Shortcuts
Shortcuts and Special Folders
The Sample Program: Shortcut Manager
Selecting a Shortcut
Shell Drag-and-Drop
Displaying the Results
The Hotkey Common Control
Collecting Arguments for Creation
Giving Rules to the Hotkey
The Source Code
DoCreateShortcut()
DoResolveShortcut()
HandleFileDrop()
APP_DIgProc()

122
123
124
125
125
127
127
128
128
129
130
130
131
131
132
132
133
135
135
136
139

140
140

140
140
142
143
144
144

145
145
145
147

148
148
149
149
151
152
152
153
153
154
155
156

Table of Contents

OnlnitDialog() 157
Creating Shortcuts in System Folders 158
The SendTo Folder 159

The Recent Folder 160
Summary 160
Further Reading 160
Chapter 7: Shell Invaders 163
Notifying the Shell of Events 164
Notification Objects 164
Using Notification Objects 164
Putting it all Together 167
Explorer and Notification Objects 170
Towards a File System Monitoring Utility 171
SHChangeNotify() 171
Calling SHChangeNotify() 171

The Role of SHChangeNotify() 172

Using SHChangeNotify() 174
Invading the Shell's Memory Space 175
The Brute Force Approach 175
Why Hooks? 176
Invited into the Shell's Memory Space 182
SHLoadInProc() 183

A Minimal COM Object 183
How a COM Object is Made 184

The Role of DIlGetClassObject() 184

The Role of DlIICanUnloadNow() 185
Source Code for the COM Object 185
Registering the COM Object 186
Deregistering the Object 188

A Brand New Start Button 189
Getting the Button Handle 190
Replacing the Bitmap 191
Subclassing the Window 194

A New Menu 197
Creating Owner-Drawn Menus 198
Determining the Menu's Screen Position 199
Loading a New Menu 200
Collecting Menu Items Dynamically 201
Setting the Measurements 203
Drawing the Items 204
Executing Commands 208
Browser Helper Objects 209
Backward Compatibility 209
Activation Mechanism 210
Registration 210

Table of Contents

Structure of the COM Object
Communication with the Host
Usage
Registering Helper Objects
The IObjectWithSite Interface
Writing a Helper Object

An ATL COM Object

Helper Objects under Windows NT

Glossary of Techniques for Entering the Shell

Summary
Further Reading

Chapter 8: Program Executors

From WinExec() to CreateProcess|)
A Comparison of WinExec() with CreateProcess()
Is CreateProcess() Manna from Heaven?

ShellExecute()

The Open Operation
The Explore Operation
The Print Operation
Printing to Ports
The Find Operation
A TFrustrating Documentation Error
More Details of the Verbs
Verbs and File Handlers
Getting the Executable Name for a File
Flaws in FindExecutable()
Using Long File Names without Rules
ShellExecute() Tips and Tricks
Detecting the Default Browser
Connecting to a URL
Sending e-mail Messages
Printing Documents
Finding Files and Folders
ShellExecute() vs. CreateProcess()
Why You Should Use ShellExecute() to Run Programs
Extending ShellExecute()
ShellExecuteEx()
The Optional Members
Displaying a File's Properties Dialog
ShellExecuteEx() Return Values
Example: Program Executors

Multi-Monitor Support
Hooking on ShellExecute()

vi

210
210
210
211
211
211
213
217
217
218

218

221

222
222
223

224
225
226
227
228
228
229
229
229
232
233
234
236
236
237
237
237
238
238
238

239
240
241
242
243
243

245
246

Registering an IShellExecuteHook Handler
The IShellExecuteHook Interface
Returning from the Hook
Writing an IShellExecuteHook Handler
Editing the Registry Script
How the Hook Works
Summary

Further Reading

Chapter 9: Icons and the Windows Taskbar

What You Should Know About Icons

Creating Icons
Creating and Modifying Icons Programmatically
Drawing Icons
Animated Icons
Extracting Icons from Files
What About LoadImage() and LoadIcon()?
Which is the Best Way?
Assigning Icons to Dialog Boxes
Browsing for Icons
A SHBrowseForIcon() Function
How to Call SHBrowseForlcon()
The Tray Notification Area
Putting Icons in the Tray Notification Area
Notifying Mouse Events
Writing Tray Applications
Pay Attention to the Context Menu
How Many Icons are in the Tray Notification Area?
Detecting When the Shell Restarts
Restarting the Windows Shell

The Layout of the Taskbar
When a Window Goes in the Taskbar
Toggling the Visibility of the Taskbar
Flashing a Window
The Windows Taskbar
Getting the Taskbar's State Programmatically
Hiding the Taskbar
The ITaskbarList Interface
What ITaskbarList Promises to Do
An IDL Definition for the Interface
ITaskbarList Sample Program
Taskbar-Window Communication

Setting up a Menu
Determining the Menu Position

Summary

Table of Contents

246
247
248
248
250
251
252

252

255

256
256
257
258
258
258
260
261
261
262
262
266

267
267
269
269
271
273
273
274

275
275
276
276

277
277
282

282
283
283
284
286

287
289

291

vii

Table of Contents

Further Reading
Chapter 10: Windows Helper Libraries
The Versioning Epidemic
DLL Version Information
Version Number of a System DLL
Exposing the Version Number in your Own Functions
A More General Function

The Recycle Bin API

Structure of the Recycle Bin
Renaming Convention
The Recycle Bin View
Functions for Interacting with the Recycle Bin
Helper Libraries
The Registry Shell API
Table of Functions in the Registry Shell API
Manipulating Strings
Table of Functions for Manipulating Strings
Manipulating Path Strings
Table of Functions for Manipulating Path Strings

The Case for SHFormatDrive()

What the Function Does
SHFormatDrive() and Windows NT

A General Approach to Improving System Dialogs

Extending the Syntax of SHFormatDrive()
The Windows NT Dialog Box

An Automatic Function for Formatting Drives
Setting Volume Labels

Silent Formatting
Further NT Problems

The Sample Program
Summary
Further Reading

Chapter 11: Exploring the Shell
Explorer's Command Line

The /root Switch

Using Special Folders as the Root
What is rundll32.exe?

Functions Callable By rundll32.exe

What you can do with rundll32.exe

A RunDII() Function
Commonly Used Commands

The Explorer's Objects

viii

291
293

294

294
295
296
298
302
302
303
304
304

305
306
306
307
307
308
308

310
310
311
311
312
313
314
315
315
316
318

319
319

323

324
325
325

326
326
327

328
330

331

Table of Contents

The Control Panel 332
Developing Control Panel Applets 332
Running Control Panel Applets 335
RunDII32.exe and RunDII() Trade-offs 336

The Printers Folder 337
Invoking Printer Commands 337
What the Function Returns 338

Dial-Up Networking 338
Offline Browsing 339

Scheduled Tasks 339
Windows NT Support for Scheduling 339
The Scheduling Agent 339
Tasks and Triggers 339

My Briefcase 340

Scrap Objects 341
A New Shortcut Handler 341

The User Interface 342
The Old Functions 342
The New Functions 345

How to Replace the Windows Wizard 347
Editing the Registry 348

Summary 349
Further Reading 349
Chapter 12: Scriptable Shell Objects 353
The Best Language to Program the Shell 354

Undocumented Shell Features 354
The Shell Object Model 355

Methods of the Shell Object 357
BrowseForFolder() 358
ControlPanelltem() 359
Explore() 359
NameSpace() 359
Open|() 359
Windows() 360

Attributes of the Shell Object 360

Invoking the Shell Object 360
Using Visual Basic 360
Using C++ 364

The Folder Object 366

More on Folder Object Methods 367
CopyHere() 367
GetDetailsOf() 367
Items() 368
MoveHere() 368

ix

Table of Contents

NewFolder()
ParseName()

The FolderItem Object

Invoking an Item's Verbs
The FolderItemVerbs Collection
The FolderItemVerb Object

Accessory Objects

The ShellUIHelper Object
Adding to Favorites

Putting it all Together
Summary
Further Reading

Chapter 13: The Windows Scripting Host
Windows Batch Files — At Last

What Can the WSH do for You?
Running Scripts at Startup

Structure of the WSH Environment
How to Get the Windows Scripting Host

What is the Host?
The Host Command Line

Shell Support for Script Files

The Scripting Engine
Registering New Scripting Engines
Command Line Arguments

The WSH Object Model
The WScript Object
The WshShell Object
Shortcuts and URL Shortcuts
The WshNetwork Object
Helper Objects
The WshArguments Object
The WshCollection Object
The WshEnvironment Object
The WshShortcut Object
The WshUrlShortcut Object
The WshSpecialFolders Object
Accessing the Registry
Supported Types
Deleting a Registry Entry
Reading from the Registry
Writing to the Registry
Doing More with the Registry
Scripting the Local File System
Accessing Existing Objects

368
368
369
369
370
370
371
371
372
373
379

379

381

382
382
382

383
383
383
383
384
386
386
387

387
387
389
390
390
391
392
392
392
392
393
393
394
394
394
395
397
398
398
400

Table of Contents

Handling Events with the WSH 400
Defining an Event Handler 400

Steps to Creating an Event Handler 401
Adding New Objects to the WSH 401
Arranging an ATL Automation Server 402
Defining the Programming Interface 402
Clipboard Support 403
Copying Text 403
Reading Text 403

Drive Formatting 404
Browsing for Icons 405
Registry Key Enumeration 407
Enumerating Keys 407
Enumerating Values 408

Using Enumerators 409
Hooking a Program's Execution 411
Hints for Improving the WSH 412
Adding User Interface Support 413
Creating dialogs 413

The alert() Dialog Box 414
Drag-and-Drop on WSH Files 414
Reusability within the WSH 414
Summary 415
Further Reading 416
Chapter 14: Designing a Shell-Integrated Application 419
Shell-Integrated Applications 420
Documents and the Shell 421
Basic Document Functions 421
The 'Send To' Command 422
Registered Document Types 423
Shell User Interface for Documents 424
Document-Specific Commands on the Context Menu 424

Shell Extensions for Documents 425

How Programs are Affected 425
MDI versus SDI 426
Creating New Documents 426
The New Menu 427
Creating New HTML Files 428
Other Features 429
Application Paths 429
Automatic Startup of Applications 430
Another RunOnce Key 431

The Run Key 432

The RunServices Keys 432

xi

Table of Contents

The Winlogon Key
Services in Windows 9x

Designing a Shell-Integrated Application

A Metafile Viewer
Windows Metafiles and Enhanced Metafiles
Displaying a Metafile
Printing and Converting a Metafile
Assembling the Viewer
Adapting the Application
The Importance of the Command Line
Why a Single Instance Application?
Dialog-Based Single-Instance Application
Adding Shell Support
Changing the Default Menu Item
Adding Context Menu Items for any File
Give a Folder a Custom Icon
Adding Recent Documents is Free

Drag-and-Drop Support

Customized Open Dialogs

Defining a New Template

New Dialog Features
Bookmarks to Frequently Used Paths
Icon and Tooltips for the Buttons
Tying the Code Together
Prevent the Renaming of Items
Tips for Preventing File Deletion

What is a Shell-integrated Application?
Summary
Further Reading

Chapter 15: Shell Extensions

Shell Extensions: Types and Tips
What are Shell Extensions?
Calling Shell Extensions
File Manager Add-ons
From File Manager Add-ons to Shell Extensions
How Explorer Calls Into Shell Extensions
Displaying a Context Menu
Types of Shell Extensions
Writing Shell Extensions
Using ATL
Our First Shell Extension
Adding Property Pages
Which Interfaces to Implement
Initialization of Shell Extensions

xii

433
433
434
435
435
436
438
441
443
443
445
446
447
450
450
451
452
452

453
453
455
455
456
457
458
459

460
460
461

463

464
464
465
465
465
466
466
467

467
468
468

468
468
468

The IShellExtInit Interface
The IShellPropSheetExt Interface
Adding a New Property Page
Code for Initialize()
Code for AddPages()
Registering Shell Extensions
Testing Shell Extensions
Debugging under Windows NT
Unloading a Shell Extension
More on Property Page Shell Extensions
Modifying the Code to Support Multiple Selection
Context Menu
Implementing IContextMenu
Help Text for the New Item
A Behavior for the New Item
Adding a New Item
A Dependency List for Executables
Creating a Context Menu Extension
Getting an Executable's Dependency List
Registering the Extension
Adding a New Find Menu
Configuring the Registry
Finding the Running Processes
IContextMenu2 and IContextMenu3
Right-hand Drag & Drop
Registering Drag & Drop Handlers
Assigning Dynamic Icons
Different Icons for Different Color Depths
Initializing the IconHandler Extension
Retrieving the Icon
Details of the Example
Registering the Icon Handler
Monitoring Folders through ICopyHook
Implementing ICopyHook
What's ICopyHook's IID?
Logging the Operations
Registering a CopyHook Extension
Monitorable Objects
More on Copy Hooking
Dropping Data over a File
The DropHandler Extension
The IDropTarget Interface
Handling the Drop Event on TXT files
Adding Shell Support to Script Files
The Project and the Registration Script
Dropping Parameters over Script Files

Table of Contents

469
472
473
474
475
476
478
480
480
481
482
485
485
485
486
487
489
489
492
497
498
499
500
500

501
502

503
504
504
504
506
509

510
511
513
513
514
515
515

516
516
516
519

522
523
523

xiii

Table of Contents

DataHandler Shell Extensions
The COM Interfaces Involved
A Shell Extension Developer's Handbook
File Viewers
Starting a Quick View
How a Quick Viewer Gets Called
Writing a Quick Viewer
Showing the File
Pinning
Writing and Registering a File Viewer
Summary

Further Reading

Chapter 16: Namespace Extensions

An Overview of Namespace Extensions
What Does Writing a Namespace Extension Mean?
The Inner Structure of Explorer

Namespace Extensions vs. Shell Extensions
Primary Interfaces

An Activation Timeline

The Folder Manager

Enumeration of Items

The Shell View
Additional Interfaces

Getting Pointers to Additional Interfaces
The Concept of Folders

Folder Attributes

Flavors of Namespace Extensions
Rooted Extensions
Non-rooted Extensions
Rooted vs. Non-rooted

When to use Which
Junction Points

Using a File Type

Using a Directory

What you can do with a Namespace Extension

Designing Our Namespace Extension
What's a Folder Here?
Designing a Custom PIDL
How to Build a Window Enumerator
Designing the View
Implementing Our Namespace Extension

Common Features of Registry View and Windows View

The Windows View Project

xiv

525
526

526

527
528
529
529
529
531
532

532

533

537

538
539
541
541
541
542
542
545
548
556
556
558
559

560
561
561
561
562
563
563
564

566

566
567
567
567
567

568
568
569

The PIDL Manager Class
Creating a PIDL
Extracting Information from a PIDL
The Windows Enumerator
Getting the Next Items
The Folder Manager
Comparing Items
Folder Attributes
The Window View
Style of the List View
Sorting by Columns
Browsing for Windows
Giving it a User Interface
Menu Modifications
Displaying Help Text
Associating a Context Menu with Items
Code for a Better Context Menu
Associating an Icon with Items
Installing a Namespace Extension
A Node on the Desktop
Adding an InfoTip
Adding a Removal Message
Making a Folder Deletable
Additional Attributes for a Folder
Browsing a Custom Folder
Putting this Example to Work
Uninstalling the Sample
Summarizing Namespace Extensions

What's a Web View?
The Shell View ID
The Default View
New Functions in IShellView2
What's New in IPersistFolder2
How a Web View is Structured
Getting in Touch with the Classic View Object
The Template of a Web View
Firing Events
From Custom to Customized Folders
Folder Customization
The Default Template
The Desktop.ini File
Creating a New Template
Hosting Applications through Namespace Extensions
The URL Folder Example

Summary

Table of Contents

570
571
572
574
577
578
579
581
583
585
588
590
591
592
594
595
597
598
599
601
602
603
603
604
604
605
605
605
606
607
607
608
609
609
610
611
611
611
612
613
613
616
619
620
620

XV

Table of Contents

Further Reading
Final Thoughts

Appendix A: A Programmer's Toolkit

The Custom AppWizard

Why Can't an AppWizard Stand Alone?

A Quick Tour of a Custom AppWizard
The Wrox AppWizard

System Macros

Finalizing the Process

A Minimal Dialog-based Application

A Generic DLL

The Rest of the Code

Further Reading

Xvi

621
622

625

625
626
626

628
635
636
639
643
644

649

Introduction

Welcome to Visual C++ Windows Shell Programming! With this book, you'll learn how to program the
Windows Shell, customize its behavior and integrate your applications with it. You'll discover how to
use and modify its features to best effect, and the way to call shell API functions whose
documentation is scant. Programming the shell isn't difficult, but few books explain the subject in its
entirety.

Everything Changes

In Windows 95 and Windows NT 4.0, Microsoft made the operating system's shell programmable and
highly customizable through a variety of different extensions, of which shell and namespace
extensions are just the tip of the iceberg. What's commonly understood by the expression 'shell
programming' also includes a bunch of API functions and registry keys that can transform your Win32
application.

The integrated web browser has blurred the distinction between local and remote objects — it presents
everything on your desktop using the same metaphor, which can be extended to encompass user
applications and documents. Integration with the new parts of the Windows shell is a key part of that
process.

So, the shell today doesn't just mean COM, extensions, and a user interface, but also a window on the
Internet, Dynamic HTML and scripting. The shell has become the meeting-point of a large number of
client-side technologies. Every programmer who is developing Windows-based code sooner or later
needs concrete and insightful samples of how to exploit the built-in features of the Windows shell.

This book covers the whole range of API functions in detail, often revealing bugs and undocumented
features. It delves deep into the world of Explorer, bringing to light things like hooks, the registry,
browser helper objects, shell extensions, namespace extensions and web views. It also looks at
Windows Scripting Host extensions and Shell Scriptable Objects.

Introduction

This book is for professional and home developers alike, and has three main goals:

Q Providing a better understanding of the existing and often poorly documented shell API
Q Giving ideas for new applications

O Showing what's new in Internet Explorer 4.x, the Active Desktop and Windows 98, and how these
fit with the existing shell

What Does this Book Cover?

In this book, I shall attempt to answer the following common questions:

What is the shell API and how do I use it?

How do I customize the Windows shell using the registry?

How can I create special directories like the Recycl e Bi n or My Bri ef case?
What are the different ways to insert code into Explorer's address space?

How do I handle icons, the taskbar and the Recycl e Bi n?

What is the Windows Scripting Host and how can I use it?

What are Shell Scripting Objects and Browser Helper Objects?

How can I implement shell support for the documents my application handles?
How can I customize the context menu of my documents?

How do I use COM and ATL to alter shell behavior with shell and namespace extensions?
How do I debug shell extensions?

[y [y Ry Iy Iy Iy

Can you explain the principles and techniques necessary for creating successful shell-integrated
applications?
Q How do I customize a folder with Dynamic HTML?

Each aspect of shell programming will be clearly explained with the help of concrete examples
written using Visual C++ 6.0 and ATL 3.0. Some of the most interesting examples in this book are:

Subclassing the Start button

Creating and installing a new and enhanced shortcut handler

New objects to work with the Windows Scripting Host

A shell extension for assigning different icons to bitmap files according to the palette size
Press a key and create a new folder in Explorer

[Sy iy W W =

Showing open windows as a node in Explorer

What You Need to Use this Book

It goes almost without saying that in order to run the code in this book, you need a computer running
Windows 98, Windows 95 or Windows NT 4.0 (with Service Pack 4.0). With regard to the last two of
these, some of the examples require you to have installed the Active Desktop update that first
shipped with version 4.0 of Internet Explorer.

The code was developed and tested using Visual C++ 6.0 and ATL 3.0, although you should find few

problems using Visual C++ 5 if that's what is on your machine. The book also makes use of the
Windows Scripting Host and Internet Explorer 4.01 as hosts for some of the applications developed.

2

Introduction

Conventions Used

We use a number of different styles of text and layout in the book to help differentiate between
different kinds of information. Here are some examples of the styles we use and an explanation of
what they mean:

These boxes hold important, not-to-be forgotten, mission critical details that
are directly relevant to the surrounding text.

Background information, asides and references to information located elsewhere appear in text
like this.

Q Important Wordsare in a bold font

Q Words that appear on the screen, such as menu options, are in a similar font to the one used on
the screen — the File menu, for example

O Keys that you press on the keyboard, like Cirl and Deletg, are in italics
Q All filenames are in this style: Pi dI . cpp
Q Function names look like this: SHBr owseFor Fol der ()

Code that's new, important or relevant to the current discussion will be presented like this:

voi d CALLBACK Ti nmer Proc(HWND hwnd, Ul NT uMsg, U NT i dEvent, DWORD dwTi ne)
HWAD hwndOK = Get Dl gltem(g_hwndDl g, | DCK);
/'l Sinulate the O ose button being pressed

i f (I sWndowEnabl ed(hwndCK))
Post Message(g_hwndDl g, WM COMVAND, | DCANCEL, O0);

However, code that you've seen before, or which has little to do with the matter at hand, looks like
this:
voi d CALLBACK Ti mer Proc(HWND hwnd, Ul NT uMsg, U NT idEvent, DWORD dwTi ne)
HWAD hwndOK = Get Dl gltem(g_hwndDl g, | DXK);
/1 Simulate the C ose button being pressed

i f (I sWndowEnabl ed(hwndCK))
Post Message(g_hwndDl g, W COMVAND, | DCANCEL, O0);

Tell Us What You Think

We've tried to make this book as accurate and enjoyable as possible, but what really matters is what
the book actually does for you. Please let us know your views, either by returning the reply card in
the back of the book, or by contacting us via e-mail at feedback@wrox.com

Introduction

Source Code

All the source code from the examples in this book is available for download from the Wrox Press
web site:

http://www.wrox.com
ftp://ftp.wrox.com/
You can also find others to discuss any issues with on P2P at p2p.wrox.com.

Support

We've made every effort to make sure there are no errors in the text or the code. However, to err is
human and as such we recognize the need to keep you, the reader, informed of any mistakes as
they're spotted and corrected. The web site acts as a focus for providing the following information
and support:

Errata sheets

Information about current and forthcoming titles
Sample chapters

Source code downloads

An e-mail newsletter

Developer's Journal subscription

Articles and opinion on related topics

[Iy oy A [y Sy

Subscription to the COMDeveloper newsletter

Please note that due to the age of this book, support from Wrox is no longer available.

http://www.wrox.com
ftp://ftp.wrox.com/

What is the Windows Shell?

A good definition of an operating system's shell is that it's the user interface provided by the system
to allow the user to carry out common tasks, such as accessing the file system, launching programs,
changing system-wide settings, and so on. MS-DOS had the ubiquitous command. comprompt to
play this role, but Windows has always been a graphical environment, and therefore its shell is, of
necessity, graphical too. Before the advent of Windows 95, the default Windows shell was the
Program Manager.

Program Manager was a kind of central console from which you could start applications, reorder and
regroup icons, and perform a few other duties. In other words, Program Manager was exactly what its
name suggests — a manager for all the programs gathered under the Windows umbrella. Existing side
by side with Program Manager was the File Manager, a system tool designed specifically for the
purpose of maintaining the file system.

With the advent of Windows 95, Explorer superseded these two old tools and encompassed the
functionality of both. If you want to, you can still find the File Manager buried deep in the folds of
Windows' system directory, but it's seldom used these days because it is considerably less user-
friendly than its successor.

A common misconception is that Explorer is just the program that starts up when you attempt to
browse the file system by clicking on My Computer or right-clicking the Start button. In fact,
Explorer is always up and running, from boot time until you switch off your machine. The thing
commonly perceived as being 'Explorer’ is actually just a window created in a new thread that is
added to the Explorer process. Explorer is the executable module (called expl or er . exe) that
implements the Windows shell.

Chapter 1

In this chapter, my aim is to briefly introduce the shell and Explorer. More precisely, I'll cover:

Q The components of the shell
Q The structure of Explorer

The Components of the Shell

There are many distinct components that contribute to the shell, but let's begin with the most obvious
ones: the desktop and the taskbar. From a conceptual point of view, the desktop is intended to be the
parent of all the objects that populate the Windows shell. In terms of implementation, the desktop is a
window of a particular system-defined window class (whose name is "#32769") and is the ancestor of
all windows that are created. The 'top-level' windows in which running applications are rendered are
(in most cases) children of the desktop window. Among the desktop's children, there is also an
interesting little sub-tree of windows, the root of which is called "Program Manager" — the name is no
accident.

You can examine the stack of existing windows, including those of the Windows shell and any
other application, at any time by using a tool such as Microsoft Spy++, which comes bundled
with Microsoft Visual C++.

The Program Manager window has % Microsoft Spy++ - [Windows 1] Mi[=] k3 I
been retained for compatibility [5py Tree Seach View Messages Window Help =& %]
\ .
purposes only, as you'll see in a Al o
i - == |
moment. It envelops a structure like the —Iﬁl—l EI il d |.| | Mlﬁ' | ?hl
one shown in the figure: = 00000160 "Program Manager Pragman ﬂ

E||:| 00000764 ™ SHELLDLL_Defyisw
=[] 00000168 " SysListview32

------ [00000170 "™ SpsHeader32
4| | Llj

For Help, press F1 [s

Immediately below the Program Manager, there's a window whose class name is

SHELLDLL_Def Vi ew. This window encompasses the default view object in Windows 95 and
Windows NT 4.0. In practice, this window is responsible for enumerating the content of a standard
folder, which is always rendered through a ListView control — one of the Windows 95 and NT 3.51+
common controls. In fact, the SHELLDLL_Def Vi ew window includes a ListView (whose class name
is SysLi st Vi ew32) and a Header control (whose class name is SysHeader 32) that is used only for
the ListView's report view.

With the introduction of the Active Desktop in Internet Explorer 4.0 and Windows 98, the default
view object has changed, gaining some Internet-based browsing capability. We'll be looking more
closely at view objects and the changes they have undergone in the next chapter.

The Program Manager

As I mentioned earlier, the Program Manager window is still present for reasons of compatibility. It's
just possible that an application inadvertently ported from 16-bit to 32-bit could be broken in the
absence of such a window (of class Pr ogman). In the Win16 (that is, the Windows 3.1x) world, the
only way to communicate with the shell was through Dynamic Data Exchange (DDE). This layer of
code has been maintained in Windows 95 and even Windows 98. Why? Once again, it's for
compatibility purposes.

8

What is the Windows Shell?

For more details about DDE interface programming and the shell, I recommend that you have a look
at the documentation available with the Internet Client SDK, which contains the most up-to-date
information. DDE is an old technology, and Microsoft has supplied plenty of documentation for it,
which is the reason why I won't be covering it here.

The Taskbar

A primary component of the Windows shell is the taskbar, but this is really just a window owned by
the Explorer process. Each time you need to kill the Explorer process (I'll say more about this in
Chapter 9), you'll cause the taskbar to disappear and reappear. Each time it reappears it is a brand
new window, with a different HAWND handle. Thus, it is advisable that you never store its HAND for
future reference. The taskbar is also the window that owns the Start menu, the tray area with the
clock, and even those button-like controls that represent running applications.

The taskbar really is nothing more than a window, so you can perform upon it any action you might
carry out on any other window — moving, hiding, subclassing, etc. In Chapter 7, I'll show how to
subclass the taskbar and the Start button, while in Chapter 9, I'll address how to hide the taskbar and
programmatically restart the shell. This latter feature turns out to be really useful when you're
developing shell and namespace extensions, which we'll look at briefly in the next chapter and
thoroughly in Chapters 15 and 16.

The Desktop

Have you ever wondered where the shortcuts on the desktop come from, and who owns them? I must
confess that I was initially quite convinced that an Explorer module took care of regularly drawing
the icons, taking account of user settings for their placement, color, status, and so on. This module
would have drawn on top of the desktop background, over any wallpaper that the user might have
set.

That's not the way it works. Instead, the shortcuts are just icons displayed by an ordinary ListView.
Of course, this ListView has a variety of rather unusual styles, but it's definitely just a ListView. A
consequence of this is that it's not hard to grab a handle to it and send some messages, as I'll prove in
an example in Chapter 9.

The Structure of Explorer

Explorer is the application that plays the role of the system's shell. When we talk about shell
extensions, we're talking about blocks of code that are detected, loaded and ultimately executed by
Explorer.

Explorer can be considered as a sort of development environment — a kind of microcosm of the
Windows environment. Think about it for a moment: it has its own set of functions and dialogs; it lets
you write specific applications that integrate with the existing infrastructure; it can host applications
and documents. It can even be scripted with any of the Active Scripting-compatible languages
(VBScript, JScript, Perl, and so on). I'll be covering all of these features in this book.

Chapter 1

Injection Points for Extensions

The File Manager that shipped with Windows 3.1 had a very nice but underused feature: it was
capable of loading a DLL at runtime, and executing a registered function with a specific prototype.
This means that there were well-defined points in the source where the code itself was 'aware' of some
possible actions that could be carried out by the user. Put another way, it means that the File
Manager had support for extensions — when executing certain actions, it looked for registered
extensions, and loaded and ran them.

We find exactly the same principle behind Explorer's shell and namespace extensions — the
difference is purely one of detail. File Manager used to load global functions from traditional DLLs
with predefined prototypes, but Explorer makes this process more elegant. Specifically, it employs
COM interfaces (which can be thought of as a collection of predefined and fixed function prototypes)
and in-process servers (essentially DLLs).

Of course, COM interfaces and in-process servers are more than just a collection of functions and
DLLs but their use makes Explorer's process more elegant and powerful than the old, DLL-based
process.

Extensions to Explorer

Basically, there are two types of extensions in Explorer's world: shell and namespace extensions.
Their names are a little confusing. Explorer is the Windows shell, so both types could be considered
shell extensions. On the other hand, while shell and namespace extensions both contribute to
'extending' the capabilities of Explorer, there are some differences between them.

A shell extension is a custom behavior that applies to all files of a given type when they are displayed
in Explorer's view. Given this, we could call them, "shell view extensions". The custom behavior is
triggered by a number of specific events such as dragging-and-dropping, right clicking to bring up a
context-menu, drawing an icon, or displaying the Properties dialog. You can define your own
handler for any of these events. For example, you can decide the icon to be displayed for a given

. bnp file, add a preview page to the Properties dialog for all Windows metafiles, or even add a new
function to an executable's context menu. I'll cover all these examples in Chapter 15.

A namespace extension can be one of two types, depending upon what you link it to. If you associate
a namespace extension with a type of file, then it is functionally equivalent to a context menu
extension, albeit with significantly more complicated code. However, if you associate a namespace
extension with a folder, then that folder will become a custom folder. Your code will decide the
content, the icon for Explorer to display, subfolders, sorting, context menus, and so on.

Why Program the Shell?

This is a very reasonable question. The simple answer is, "To make our applications better and
richer," but that's a bit glib. We do it to integrate our modules with the system, or to automate some
tasks for which there's no key combination, interface, or menu command. We do it to administer the
system in a more flexible and powerful way. We do it to deliver more user-friendly applications. At
least, these are the reasons why /program the Windows shell; I'm sure that, in time, you'll find there
are many other reasons to do it.

10

What is the Windows Shell?

Where This Book Will Take You

There are two ways to program the shell: using API functions and using COM interfaces. The two
methods are not mutually exclusive, nor do they overlap. They are two different approaches and
address two different areas of functionality. I'll say more about this in the next chapter, but in the
meantime let's take a look at the direction the book will be taking in later chapters.

You know that shell programming requires the use of both API functions and COM interfaces. The
API functions let you access the basic functionality of the shell, such as working with files, browsing
folders, executing programs, and handling icons and shortcuts. The COM approach springs into life
when you want to enhance and refine the basic shell's behavior with custom extensions.

This book will cover the API functionality first, digging deep into function prototypes, possible gaps
in the documentation, and uncovering bugs. In general, my goal is to shed light on all the obscurities
that you might have found. Chapters 3 to 9 are devoted to specific groups of APIs that span across
the range of typical shell operations. In particular, Chapter 3 will tell you about

SHFi | eOper ati on() — a function for copying, moving, deleting, or renaming files. Chapter 4
unveils the secrets of SHGet Fi | el nf o(), the system-provided means to get both system and shell
information about files (attributes, icons, type, display name). Chapter 5 in turn provides you with a
crash-course on the internal organization of folders, covering settings, browsing, and special folders
like Favorit es and SendTo.

Shortcuts are featured in Chapter 6, where you will learn about creating and resolving shortcuts, and
infrequently used fields. In Chapter 7 we enter Explorer's address space and discuss the other side of
customization: what you can do safely without Explorer being aware of it. In particular, I'll show you
how to replace the Start button with a new button and a different menu! Once you have done this,
you have full control over the Windows system. The remaining chapters, 8 and 9, will tell you about
program spawning, icons and the taskbar. I'll demonstrate how to add new buttons with their own
menu to the taskbar, programmatically.

The second part of the book is based on those Explorer features that require COM interfaces, but this
doesn't begin until Chapter 12. In the middle there are two chapters that bridge the gap between the
shell functions and Explorer's interfaces. Chapter 10 covers the new SDKs that have been added with
the most recent shell updates and requires Windows 98, or Windows 95/Windows NT 4.0 with Active
Desktop installed. Chapter 11 provides an overview of shell objects such as My Bri ef case,
Control Panel and Printers and prepares you for the concept of custom folders. Scrap objects
and the RunDLL32 utility are also covered in this chapter, and there is a full description of Explorer's
command line.

In Chapter 12 I'll introduce the shell's object model — the first attempt to move a small subset of API
functions into (dual) COM interfaces. This is a feature that, as a minimum, requires Active Desktop to
be installed. What's interesting is that this object model allows you to access some functions (mostly
system dialogs) that are otherwise unavailable.

Chapter 13 introduces the Windows Scripting Host. In a nutshell, this is the runtime engine that (at
last!) lets you write Windows batch files. Technically speaking, it is a separate entity from the shell
but there's a strict logical relationship between them. The Windows Scripting Host exposes an object
model that you can program using VBScript, JScript or any other scripting language. I shall extend
this model by adding useful new objects.

11

Chapter 1

In Chapter 14 I shall begin to focus on the application and the reasons that might lead you to adopt
shell or namespace extensions. I shall explain what a shell-integrated application actually is, and why
shell extensions represent the best way to fuse your modules to the system's shell. In Chapter 15 I'll
show how to write shell extensions to customize context menus, icons and properties, and how to
debug them. Chapter 16 covers namespace extensions and includes an example that adds a new
expandable node to Explorer's tree view, rendering the entire stack of currently extant windows in
terms of folders.

Our trip around the Windows shell ends with a look at folder customization with Dynamic HTML
and scripting. This is not purely for fun — it appears to be the easiest way to create namespace
extensions!

The Plethora of Shell Versions

These days, you can't write a book about shell programming without first explaining the range of
shell versions covered. In this case, it's easy — I'll cover every version that has appeared on Earth,
from August 25, 1995 (the date that Windows 95 shipped) onwards. My approach will generally be
task-based so I'll concentrate on functionality and warn you when a given feature requires a specific
shell version. If you're running Windows 98, or IE 4.0x and the Active Desktop shell update on either
Windows 95 or Windows NT 4.0, you won't have problems with any of the examples. Some of them
may not work properly, however, if you haven't installed the Active Desktop updates, whether or not
you have IE 4.0x installed.

The following table summarizes the shell version numbers for each platform. The version numbers
refer to the shel | 32. dl | file. You can check the version yourself by looking at the Version page of
the DLL's Properties dialog, or dropping shel | 32. dl | into the version testing utility that I'll build
in Chapter 10!

System Internet Explorer Active Desktop Version
Windows 95, NT 4 - - 4.00
Windows 95, NT 4 1E 4.0 - 4.00
Windows 95, NT 4 IE 4.0x - 4.00
Windows 95, NT 4 1E 4.0 Yes 4.71
Windows 95, NT 4 1IE 4.01 Yes 4.72
Windows 95, NT 4 IE 4 SP1 Yes 4.72
Windows 98 - - 4.72

The greater part of the functions and COM interfaces are already available with version 4.00 of the
shell. More interesting is to see what changes with the newer versions. Version 4.71, which
corresponds to the first release of the Active Desktop, bundled with IE 4.0, added functions such as:

SHGet Set ti ngs()

SHGet Speci al Fol der Pat h()
SHI nvokePr i nt er Command()
SHEnpt yRecycl eBi n()

ODOo0o

12

What is the Windows Shell?

Q SHCet FreeDi skSpace()
Q SHQueryRecycl eBin()
Q SHGet NewLi nkl nfo()

And some new COM interfaces, including:

| URLSear chHook
I Querylnfo

| Per si st Fol der 2
| Cont ext Menu3

I I nput Obj ect

| Taskbar Li st

| DeskBand

[Sy Sy Wy Wy

Version 4.72 seems not to have changed anything in the programming interface.

There are some strange anomalies, however. For example, | Shel | Vi ew2 is commonly associated
with Web View and the Active Desktop, but it's defined in the shl obj . h file that came with Visual
Studio 97 in early March 1997. (IE 4.0 and Active Desktop shipped in fall '97.) Is | Shel | Vi ew2
supported by version 4.00, then? The answer is probably yes, but I really don't know for certain.

SHGet Set ti ngs(), SHEnpt yRecycl eBi n(), and SHQuer yRecycl eBi n() aren't marked as
version 4.71 functions, even in the Visual Studio 6 documentation. Nevertheless, they aren’t version
4.00 functions — just try to use them on the retail version of Windows 95, and see what happens!

A complete list of the currently supported interfaces and functions can be found in the Visual C++
online documentation and the Internet Client SDK. See the next section for more information on
documentation.

Where is the Official Documentation?

To conclude, I'll point out where you can find the relevant official Microsoft documentation.
Function prototypes, a syntax overview, and a few samples can be found in the MSDN library (under
Platform SDK\User Interface Services\Shell and Common Controls\Windows Shell API). Also, the
Internet Client SDK (which is, at the time of writing, available from
http://www.microsoft.com/workshop/essentials) is a good source of information on all the most
recent changes and version differences. Finally, the MSDN library also includes a few examples taken
from MSJ and MIND articles and reprinted from books. (See the Further Reading sections at the end of
each chapter.)

Summary

In this chapter I've outlined what we're going to be doing in the forthcoming chapters, and why. In
particular, I've tried to explain:

O The nature and the structure of the shell
O Differences between the various shell versions

Q Where to find the documentation that I'm aiming to extend

13

http://www.microsoft.com/workshop/essentials

1
The Structure of the Shell

Under the umbrella of 'shell programming' are a number of API functions and COM interfaces. This
heterogeneous collection of 'commands' allows you to program the Windows shell in different ways.
Functions and interfaces are not two equivalent approaches that provide the same functionality.
Instead, they provide different functionality at different logical levels.

API functions cover the basic operations a user might want to perform on the objects that populate
the shell: files and folders. The COM interfaces give you the chance to extend, enhance and even
customize the standard behavior of the various constituent objects, including that of the shell itself.

Grouping the functions and interfaces in a task-oriented manner will give us the chance to look at the
shell as a whole. We can consider it rather as we would an object, with properties and methods. In
this chapter, I'll attempt to identify what functional group each function or interface falls into. As a
result, you should gain a better grasp of the shell's programming interface that will help when you're
looking for that 'missing' piece of functionality.

In this chapter, we'll be covering:

Q Definitions that we'll be using throughout the rest of the book

Q Functional groups of shell API functions

Q Functional groups of COM interfaces implemented by the shell and its inhabitants
Q How the structure of the shell has evolved with the introduction of Active Desktop

By the end, you should have a better understanding of where the book is taking you, and a clear
picture of how the kind of functionality that is available to you as a shell programmer.

Chapter 2

The Pieces of the Shell

While we can't say that the Windows shell is object-oriented in practice, there are certainly some
'objects' that we can identify when looking at its structure. These 'objects' have attributes that sound
like 'properties', and can they perform actions that sound like 'methods'. It's just that they rely on API
functions to let you get and set them. A typical object is the folder.

If the shell isn't object-oriented, then neither is there an all-encompassing object model, although
once again we can draw analogies. We can imagine a certain infrastructure that looks like a hierarchy
of objects. Put another way, we have a collection of objects that work together in a manner
represented by the following diagram:

s - File Contains:
JF 4| | Folder < files
- 12}
c
T o ke
= B f 7}
i A || o Special Contains: c
+* I g Folder € file objects %
—_—]. files u=J
Q
<
%)
; . Custom Contains:
J‘» e F < file objects
Wi older "
b files

Y

Namespace
extensions

Basically, the shell is composed of folders. A folder is a container of child elements, including sub-
folders — these elements are usually called folder items. The root folder is called Desktop, and its
children include things like My Computer, Network Neighborhood, Recycle Bin, and possibly others
depending on your PC's settings. The collection of all folders is called the shell's namespace.

The Shell's Namespace

Conceptually, a folder is something fairly similar to a directory in a file system, but it may or may not
be bound to a real, physical directory. If it isn't bound in this fashion, it's called a virtual folder. We
can distinguish two main categories of folders: ordinary folders (also named "file folders" or
"directories"), and custom folders. Naturally enough, the items contained in a file folder are files, and
their attributes are name, type, size, date last modified, and so forth. The items contained in any other
type of folder may be files — usually with another, extended set of attributes — but could also be
something completely different, like printers or network nodes.

16

The Structure of the Shell

Folders

How is a folder implemented? A folder is actually a shell 'object' whose behavior is coded into a
COM module that exposes a common interface to the Windows shell. By means of this connection, a
folder can tell the shell how to design its content, what icon to use to identify it, and what text to
employ to describe it. This is what, for example, My Computer does to look like a folder. It has a
layer of code that detects all the drives available on the PC, and adds a sub-tree to the Explorer's
view for each one.

Each different type of folder has a different layer of code to provide its behavior. For file folders, this
means scanning the file system, retrieving files and sub-folders, and displaying them through a list
view control. The Printers folder, on the other hand, counts the connected and installed printers and
displays an icon for each of them. You can have folders of virtually any type and with any behavior.
File folders (that is, directories) are just one of all the possible types.

From all the folders that aren't file folders, the shell documentation picks up on a relatively small
subset that it calls special folders. In fact, these are custom folders that the Windows shell provides by
default, and they differ from file folders in the following ways:

They can contain files and other 'objects'
They can provide a different view of their content
They can choose not to be bound to a physical directory

000 Oo

They are part of a system-defined group for which the SDK offers a specific set of functions

A list of the special folders can be found in the Win32 SDK documentation, and later on in Chapter 5
of this book. Just as I said earlier, a special folder is a folder of a particular type with its own COM
module to provide its behavior. Because this COM module is the reason for a new node being added
to the shell's namespace, it is termed a namespace extension.

A special folder is intended to make system information available via a suitable user interface. In
most cases, this means that the folder provides a view of its content that's more or less consistent with
the typical view offered by a file folder. The precise kind of information, of course, depends upon the
type of the folder.

Like ordinary file folders, special folders can contain files. However, they usually represent them in a
slightly different way, showing different attributes. This occurs because a special folder assigns a
special meaning to a file, and isn't treating it as a normal entry in the file system. (If this wasn't true,
they wouldn't be that special...) The Recycle Bin, for example, holds ordinary but hidden files.
Because the folder is intended to show the current list of files marked for deletion, it brings attributes
like the original location, and the date of deletion to the fore.

17

Chapter 2

Edit Wiew [Go Favoites Toole Help

, % @ | % [3
Bac:k ':orward Up Cut Copy Paste | Unda | Delete Properties

| Address f@r CARECYLLED

Al Folders x I ame | Original Location | Date Deleted | Type
- :‘_] Program Files ;I @1843ch02dtf.zip E:\Bookhshell\Revie.. 12/10/9810.23 “WinZip File
Ji |
D VCBDemo
{27 W95sps
[Webshare
1 Windows
] aim35
2 AllUsers -
A~ n;l_l . | 5
1 objects) [13.0kE | #

Most (but not all) of the special folders are tied to a physical directory on one of your disks. Normally
this is a read-only directory whose content is all that is needed to display the intended information in
the most suitable way.

Another way to look at it is this: most of the special folders need a directory in which to store their
data. This directory may be located anywhere in the disk, and represents the junction between the
folder and the rest of the shell — the location in the namespace where the special folder is placed. The
content of this directory is not necessarily shown as a list of files. Instead, the code associated with the
folder takes care of interpreting and displaying it in a way that best suits its intended role.

The ability to have a folder that can contain absolutely anything leads us to another couple of
important concepts that we'll be dealing with extensively in the chapters to come: file objects and
PIDLs.

File Objects

A 'file object' is an item contained in a generic folder — a file, a record, a block of memory, a
connected device, and so on. 'Folder items', 'elements of a folder', and 'file objects' are all equivalent
expressions to refer to the individual items within a folder. If the folder is a file folder, then a file
object is nothing more than a file. The word 'file' is therefore a bit more specific than 'file object’,
because it refers to a precise entry in the file system. A file is a file object, but a file object is not
always a file.

There's a subtle problem hidden behind these generalized concepts of folders and folder items. How
can we safely and uniquely identify each item in the shell's namespace? If the shell coincides with the
file system (as it does in Windows 3.x) then the fully qualified name of the file is an excellent
guarantee of uniqueness. You can't possibly have two files with the same name and path. However,
when a folder becomes something more general than a directory of files, a more general way of
identifying its items is needed.

18

The Structure of the Shell

PIDLs

A PIDL is a data structure that's meant to identify an item contained in a folder uniquely. A PIDL —
the acronym stands for pointer to an identifier list — is more versatile than a fully qualified file name.
It has to guarantee the uniqueness of the item not just within the folder, but also throughout the
shell's namespace. More importantly, it must be able to handle files and file objects transparently. To
understand the structure and the role of PIDLs, let's analyze the binary structure and compare it with
the path names that they replace.

A fully qualified file name is just a string, but it's a string with a very particular format. It's a
concatenation of substrings, each of which identifies a level in the file system's hierarchy. You have
the drive name, then the directory name(s), the filename, and finally the extension, all separated by
backslashes. What you perceive to be a fully qualified file name is no more than a pointer to these
concatenated elements — a pointer to a string in this case. Conceptually, you could see it as a pointer
to an array of structures, each of which identifies an element of the path name.

ITEMIDLIST

4 /_1
Size{? /_1 Size Data

Size Data ch ablD
ID ;
cb ab Size Data cb ablD x
cbh ablD
SHITEMID
data
structure
Iltem Item Item Item
ID ID ID ID
S S
‘ Drive ‘ Directory File ‘ Ext ‘

Path Name

The figure illustrates the relationship between a path name and a PIDL. At the same time, it gives an
idea of how an identifier list is organized in memory. From the programmer's point of view, a PIDL is
implemented using an LPI TEM DLI ST type, which is just a pointer to an | TEM DLI ST structure.

typedef struct _ITEM DLI ST
{

SHI TEM D nki d;
} I TEM DLI ST, *LPI TEM DLI ST;

The intermediate objects that make up the various parts of a path name map to the item identifiers of
a PIDL. They're rendered through a SHI TEM D structure:

typedef struct _SH TEM D
USHORT cb;

BYTE abl D[1];
} SH TEM D, *LPSH TEM D,

19

Chapter 2

The first two bytes of this structure denote the size of the item identifier — that is, the number of bytes
taken up by the data associated with the element and used to identify it. The cb value must include
also its own size. Mapping to path names, cb would be the length of the string representing the drive
or the directory, plus the length of an unsi gned short variable. Following that in the structure is
the first byte of the data.

A fundamental point to bear in mind is that a PIDL must be a 'flat' structure, and can't include
pointers. All the data that comes together to form a PIDL must be explicitly embedded, rather than
linked through a pointer. This means that we can't use the typical schema of a list composed of
structures whose final member points to the next element in the chain. There's another point,
however. As you can see, the address of the next element in the list can be calculated by adding cb
bytes to the address of the current SHI TEM D object. This is by design, but it still requires that
consecutive SHI TEM Ds be contiguously allocated.

Defining the rules for constructing PIDLs is up to the code that implements the behavior of the folder
whose items they represent. This code should also decide what data must be used to identify each
item identifier. For example, suppose that you wanted to implement a folder that renders the
Windows registry as if it were a file system. Your 'subfolders' will be the registry keys, and your 'file
objects' will be the registry values. A possible way of identifying each element in this folder would be
to use the names of keys involved. Here's how that PIDL may look using the same diagrammatic
format as we had in the previous figure. Notice that HKEY_CLASSES_ROOQT is a | ong value, so it
takes four bytes plus the two bytes of an unsi gned short.

ITEMIDLIST

6 HKEY_CLASSES_ROOT ch ablD
cb ablD 13 \Defaultlcon
cb ablD
SHITEMID
data
structure

The chain of item identifiers traces the path from the root of the namespace to a specific item in a
specific folder. The identifier list gathers all the elements of the chain and represents a way of
distinguishing an element that's unique throughout the shell. Making sure that two item identifiers are
contiguously allocated in memory is the responsibility of the code that wraps the folder object.

While path names and PIDLs are similar, they certainly aren't equivalent, and they can't be used
interchangeably. They are different data structures.

There are a actually a few other issues to take into account when it comes to defining the rules for
a PIDL, and we'll be examining them in detail when we look at namespace extensions at greater
length in Chapter 16.

20

The Structure of the Shell

The Shell's View

The content of any folder is displayed inside Windows Explorer through an object called a shell view.
Each folder defines its own shell view object, and delegates to it all the tasks that relate to its user
interface. The shell view object for a file folder is implemented using a list view control whose items
are the names of the files and the subfolders. The default shell view object assigns an icon, a display
name and a type name to each file it is called upon to treat.

The icon may be determined in several ways, depending on the nature of the file in question. Usually,
icon files (. i co) are rendered using the icon they define, while programs (. exe) display the first icon
defined in their resources. If no icon is present, a default one is used. For all other files, the shell
usually employs the icon defined for the class that the file belongs to. However, this behavior can be
customized, as I'll explain in a while.

Throughout the shell, files are grouped together by types that are specified using file extensions. The
set of files of a certain type is often referred as a file class, which is associated with an icon and a
descriptive string that's shown under the Type column in the Details view of Windows Explorer. For
this to take place, however, the file class needs to be registered in the system registry, from where the
shell will read the information about the type, and its icon.

Once you've defined a file class (as described in Chapter 14), you can write code that affects and
modifies the default behavior of the shell in response to some events that take place on files of a
certain class. These include drawing the icon for a file, popping up the context menu, and displaying
the Properties dialog. By defining a shell extension, you can decide dynamically what to do when
those events take place. It's possible, for example, to add new items to a context menu and handle the
user clicking on them, and to determine dynamically, on a per-file basis, what icon to display.

Hooking the Shell

In general, shell extensions can be seen as hooks that are set throughout the shell. In Win32, a 'hook'
is a piece of code defined by an application that the system calls back when a certain event is about
to occur. There are about a dozen different types of hook, and they can vary widely in their scope:
some affect only the application that installed them, while others impact upon all the applications
running in the system.

A typical example of this kind of thing is the keyboard hook that allows your code to be informed of
a keypress before the corresponding message is sent to the interested window. Other activities
subject to hooking are mouse actions (movements, clicking), window management (creation,
destruction, activation), and message handling. See the Win32 SDK documentation for a complete
list.

From the programmer's perspective, a hook is a callback function with a fixed and predefined syntax.
As a callback function, the system calls it on the basis of a well-known prototype. A shell extension is
a COM interface rather than a callback function, but the principle behind it is the same: both allow
you to specify some code the system will execute while in the process of some predefined action.

21

Chapter 2

The subject of scope is particularly interesting for Windows hooks. By setting a local hook, you catch
only the events that occur within the context of the application, but the result of setting a global hook
is that you'll get informed when the hooked event occurs in any running application. Setting a global
hook means that your application is defining a piece of code that other applications, running in the
context of other processes, will execute. In fact, this is the easiest way under Win32 of breaking
process boundaries and injecting your own code into the address space of another process. It is also
the only approach that works on all platforms, from Windows 95 to Windows 98 and NT 4.

Process memory separation is a huge topic that's not among the goals of this book. Excellent
coverage, however, may be found in the 3rd edition of Jeffrey Richter's Advanced Windows
(Microsoft Press).

The Shell's Address Space

Injecting code into the context of another process is important because it allows you to gain access to
the unexposed objects of the other process, and this is particularly important and interesting for shell
programmers. When you successfully insert your code into the shell's address space, you can query
for the shell's interfaces, change the user interface, and even replace the ubiquitous Start button (as
I'll show you in Chapter 7).

Global hooks are one way of letting your code run in the shell's address space, but a more powerful
and flexible mechanism is provided by browser helper objects — COM objects that Explorer and
Internet Explorer both load automatically each time their main window starts up.

The Shell's Memory Allocator

Sooner or later, working with the shell is going to require you to allocate memory within its address
space for your own purposes, and to this end the shell provides you with the memory allocator. This
service, which is a wrapper built around the | Mal | oc interface, can be used as a replacement for
newor 3 obal Al | oc().

To get a reference to this object, you should call SHGet Mal | oc() . What you're returned is not a
new pointer to the | Mal | oc interface — you can get one of those using CoGet Mal | oc() —buta
reference to the | Mal | oc object held by the system's shell. With this pointer you can safely free
memory that has been allocated by the shell, and have the shell free your memory. It might sound a
little strange, but these practices are not so uncommon in shell programming.

The Shell's Taskbar

The taskbar window is a well-known part of the Windows user interface, if for no other reason then
because it contains the Start button. What we call the "Windows taskbar", however, is actually a
special case of a family of windows called 'application desktop toolbars', the best-known example of
which is probably the Office 97 shortcut bar. There's a specific set of functions and messages that
address desktop toolbars, but interestingly only a very few of them affect the Windows taskbar. As a
result, even if it is not clearly pointed out by the documentation, the system taskbar and desktop
toolbar may be considered different objects.

22

The Structure of the Shell

Another common misconception about the taskbar is that it contains as many buttons as there are
running applications, but this is untrue for two reasons:

Q Not all the running applications show up in the taskbar
Q The only child of the taskbar that's a button is the Start button

Believe it or not, what appears to be a collection of buttons is actually a tab control with a special,
button-like style.

The role of the taskbar is that of a system console, giving you access to all the running programs. In
many cases, it would be desirable to be able to limit the functionality of the taskbar — this is a typical
requirement of applications intended to run on publicly available PCs, where you don't want users to
be able to run other programs or browse the file system. The Win32 API doesn't provide a rich set of
functions to work on the taskbar, but I'll try to remedy this in Chapter 9.

The Shell APl Functions

The version of the MSDN library that ships with Visual C++ 6.0 lists over 100 functions in its shell
reference section. However, a good number of these deal with very specific areas that sometimes are
at the margin of what is commonly perceived as being the Windows shell — I'm referring in particular
to the routines that deal with parsing files, and with the screen saver.

You won't find an exhaustive guide to every single one of those functions in this book. Instead, we'll
concentrate on the core functions that work on files and folders, and try to shed light on their often

obscure and poor documentation. To help in categorizing them further, I've identified five different
functional groups.

Group Functions

General Windows Functions Functions to deal with screen savers, Control Panel applets,
context-sensitive help, and shell drag-and-drop. (Not OLE
drag-and-drop.)

Shell Internals Functions to access Explorer's address space, get the shell's
memory allocator, launch executables, and detect changes in
the user interface.

Taskbar Functions that deal with the tray area and communicate with
the Windows taskbar.

Files Functions that operate on files. They execute system actions
like 'copy', 'move', 'delete’ and 'get information', and add files
to special system folders like Recent Docunments.

Folders Functions that work on folders. By the means of these
functions, you can browse for folders, get the path of a system
folder, or discover the settings of a folder.

Along with these groups, there are a few others whose functions are not explicitly referred to as being
part of the shell's programming interface, but in my opinion they definitely deserve to appear in the
list.

23

Chapter 2

Group Functions
Icons Functions to extract icons from executable files.
Environment Functions to manipulate environment variables.

Shell Lightweight API Functions to access the registry easily, for reading and writing, to

handle path names, and to manipulate strings.

In particular, there are functions for working with icons and environment strings in the shel | api . h
header file, which is the main reason that led me to include them here. As for the Shell Lightweight
API (which is examined in detail in Chapter 10), let's say the functions it provides could be placed in
any number of categories, but that they apply particularly well to programming the shell.

The tables that follow this section list and describe some of the functions in the categories I've
defined here. I do this so that you get a better idea of the kinds of operations we'll be looking at over
the course of the book, and to provide you with a place that you can come to look up quickly any
function I use later on whose purpose temporarily slips your mind.

General Windows Functions

As the name suggests, these functions affect the Windows shell only marginally. In most cases, the
functions come directly from the Windows 3.1x API — they handle things like help files and drag-and-
drop. All of them are well supported in any 32-bit version of the shell.

Function Description

Dr agAccept Fi |l es() Toggles the style that enables a window to accept drag-

and-drop.

Dr agFi ni sh()

DragQueryFil e()

Dr agQuer yPoi nt ()

CPI Appl et ()

Get MenuCont ext Hel pl d()
Get W ndowCont ext Hel pl d()
Set MenuCont ext Hel pl d()
Set W ndowCont ext Hel pl d()
W nHel p()

Shel | About ()

Frees the memory allocated to move a list of file
names from the shell.

Extracts file names from the memory block the shell
allocated to hold dragged files.

Obtains the point where the drop occurred.

Main procedure for a Control Panel applet.

Returns the ID of the help context for a given menu.
Returns the ID of the help context for a given window.
Sets the ID of the help context for a given menu.

Sets the ID of the help context for a given window.
Opens a help file.

Displays a default and partially customizable About
box.

24

The Structure of the Shell

Shell Internals

This category contains functions that work with the shell at the lowest level. Also, they let you enter
the address space of the shell in order that you may do work alongside it, and gain access to its

memory.

Function Description

Shel | Execut e() Executes the specified operation on the specified file.

Shel | Execut eEx() The same as above, but with more options.

SHChangeNot i fy() Through this function, a program can let the shell know
about changes that require it to refresh the information
it holds.

SHGet | nst anceExpl orer () Returns Explorer's | Unknown interface pointer.

SHGet Mal | oc() Returns a pointer to the shell memory allocator.

SHLoadl nProc() Loads the specified COM object into Explorer's address
space.

Taskbar Functions

The Windows shell doesn't define many functions to work with the taskbar, so you often end up
having to do most of the work yourself. (I'll show you how in Chapter 9.) However, there are a
couple of functions related to the taskbar:

Function Description
Shel I _Noti fylcon() Displays and manages icons in the tray area, near the clock.
SHAppBar Message() Sends messages to the system's taskbar.

File Functions

The file is one of the most important elements in the Windows shell. A graphical environment
requires a file to have many different attributes, which in turn means specific functions to deal with
them. Note the appearance in this table of the Version column; some of the functions in this and
later categories were introduced in recent versions of the shell, and this column reflects that fact.

Function Description Version

Fi ndExecut abl e() Returns the path of the executable file Any
registered to handle a file of given name.

SHAddToRecent Docs() Adds a link to a given file to the system's Any
Recent Docunent s folder.

Table Continued on Following Page

25

Chapter 2

Function Description Version

SHFi | eOperati on() Used to copy, move, delete or rename one or Any
more files at a time.

SHFr eeNameMappi ngs() Frees a memory structure returned by Any
SHFi | eOper ati on() under certain
circumstances.

SHGet Fi | el nfo() Returns various pieces of information about a Any
given file.

SHGet NewLi nkl nfo() Creates the proper name for a new shortcut file. 4.71

Folder Functions

As we've discussed, a folder is a little more general than a directory: it can contain more than just
files. Furthermore, the software behind a folder is directly involved in returning a unique identifier
for each of its items. Under the Active Desktop, a folder can also have its own set of graphical

attributes.

Function Description Version

SHBr owseFor Fol der () Displays a dialog that lets you choose a Any
folder.

SHENpt yRecycl eBi n() Destroys the content of the Recycl e 4.71
Bi n folder.

SHGet Dat aFr onl DLi st () Retrieves data from an identifier list. Any

SHGet Deskt opFol der () Returns the | Shel | Fol der pointer Any
for the Deskt op folder.

SHGet Di skFreeSpace() Returns the amount of free disk space 4.71
for a specified drive.

SHGet Pat hFr om DLi st () Returns the path name (if any) for the Any
specified identifier list.

SHGet Speci al Fol der Returns the identifier list for the 4.71

Locati on() specified system folder.

SHGet Speci al Fol der Pat h() Returns the path name (if any) for the Any
specified system folder.

SHGet Set ti ngs() Returns a value denoting the current 4.71
settings for that folder.

SHI nvokePri nt er Conmand() Allows you to send commands to the 4.71
printer.

SHQuer yRecycl eBi n() Returns the amount of space the 4.71
Recycle Bin is currently taking up.

26

The Structure of the Shell

Icon Functions

Icons are central to a graphical environment like Windows, and the shell is the most visible part of
the operating system. Consequently, in my opinion, icons are central to the Windows shell
programming interface.

Function Description

Extractlcon() Returns an icon handle from an executable file.

Extract !l conEx() The same as above, but with more options.

Extract Associ at edl con() Returns the icon handle for the specified file, based on the
file class.

The COM Interfaces

We can perform a similar trick with the COM interfaces involved with the shell as we did with the
API functions. Once again, using the version of the MSDN library that ships with Visual C++ 6.0 as a
reference, we can count up to four different categories of shell-related COM interfaces.

Group Interfaces

Shell extensions The COM interfaces that get involved in all the shell's activities,
from icons to context menus, and from Ul activation to file viewers.

Namespace extensions The COM interfaces usually involved with namespace extensions.

Hook The interfaces that let you 'hook' onto something. Specifically,
program execution, URL translation and the creation of Internet
shortcuts.

Miscellaneous Interfaces to customize the taskbar, to communicate with the Open

common dialog, and to program the My Bri ef case object.

Not all of these interfaces always have to be implemented by developers — in some cases, you only
need to know enough about them to be able to invoke their methods properly. Let's see them in a bit
more detail.

Shell Interfaces

Under this heading, I've put all the COM interfaces that eventually have something to do with the
shell and its extensions.

Interface Description Version
| FileViewer, Let you define modules to provide Quick View Any
I FileViewerSite handlers for a given type of file.
I I nput Obj ect, These interfaces are used to handle UI activation and 4.71
I'l nput Obj ectSite process accelerators for objects contained in the shell
that can accept input from the user.

Table Continued on Following Page

27

Chapter 2

a given file class.

Interface Description Version
I Shel I I conOverl ay, Used to manage the icon overlay for files, letting 4.71
| Shel I I conOverl ay you know which overlay is used for a given file. An
Identifier icon overlay is a bitmap the shell draws over an
icon better to qualify it, like the hand that indicates
a shared folder.
I Cont ext Menu, Allows you to add new items to the context menu Any
| Cont ext Menu2 for a particular type of file. | Cont ext Menu2
handles owner-drawn menus.
I Cont ext Menu3 The same as | Cont ext Menu2, but allowing better 4.71
keyboard control.
| Shel | Ext I nit Takes care of initializing a shell extension. Any
I Shel | ChangeNoti fy The shell extension counterpart of the 4.71
SHChangeNoti fy() API function. Basically, it
allows you to write a module that hooks on the
changes at the shell level notified through
SHChangeNot i fy().
| Extract!lcon Enables you to obtain icon information for any Any
folder item.
I Shel I I con Provides an alternative way of getting icons for any Any
folder item that is superior to | Extract | con
under certain circumstances.
I Shel I Li nk Allows you to create and resolve shortcuts to files Any
and folders.
I Shel | PropSheet Ext Used to add new pages to the Properties dialog for Any

Namespace Interfaces

To write namespace extensions (as we will in Chapter 16), you will need to acquaint yourself with a
considerable number of COM interfaces. Here are the most important and necessary ones.

of a folder.

Interface Description Version
I Shel | Vi ew, Used to define a view object for a namespace extension. Any
| Shel | Vi ew2 I Shel | Vi ew?2 is still not documented, but it's used in
Web-based views.
| Shel | Br owser Represents the browser, be it Explorer or Internet Any
Explorer.
| Enum DLi st Provides methods to let the shell enumerate the content Any

28

The Structure of the Shell

Interface Description Version

| Shel | Fol der Provides methods to let the shell handle a custom Any
folder in a standard way. | Shel | Fol der hides
custom code from Explorer.

| Per si st Fol der Lets you initialize some shell extensions and any Any
namespace extension.

| Per si st Fol der 2 The same as above, plus some enhancements to 4.71
support Web-based views.

I Querylnfo Retrieves flags and infotip text for items in a folder. 4.71

Hook Interfaces

The Windows shell gives our modules the opportunity to detect a certain number of events, and to
add our own custom code in the middle.

Interface Description Version

| CopyHook Lets you hook onto any file operation (copy, move, Any
delete, rename) in the shell.

I URLSear chHook Lets you hook while Explorer is trying to translate 4.71
an unknown URL protocol.

| NewShor t cut Hook Lets you hook while Explorer is trying to create a 4.71
new Internet shortcut.

| Shel | Execut eHook Lets you hook up to the startup of any new process Any
instigated through Shel | Execut e() or
Shel | Execut eEx().

Miscellaneous Interfaces

The remaining interfaces cover specific areas of shell programming: My Bri ef case, common
dialogs, and the taskbar.

Interface Description Version
I NotifyReplica, All these interfaces are involved in the file Any
I Reconci | abl eObj ect, reconciliation process that ends up with a new
I Reconcil elnitiator and unique updated version of the same
document.
I ConmDI gBr owser Provides special behavior when a custom folder Any
is hosted inside the common dialog boxes.
| Taskbar Li st Enables you to add new buttons to the system's 4.71
taskbar.

29

Chapter 2

Why the API? Why COM?

Now that we've looked at the functionality provided by the Windows shell, it's time to give a little
thought to the roles played by API functions and COM interfaces. Essentially, the whole set of shell
functionality can be divided up into two areas: basic functions and extensions. From this point of
view, it's easy to see which approach addresses which area.

At present, much of the functionality offered through API calls can be seen as the 'methods’ of a
pseudo-object called "the shell". This pseudo-object enables you to move or copy files, or to browse
for folders. You can also retrieve information about a given document, and so on. The first signs of an
object model begin to delineate themselves.

On the other hand, Windows was originally designed in pure C, and it has never really been re-
thought in terms of an object-oriented design. From that perspective, it's not surprising at all that we
have basic functionality exposed through straight API calls.

COM allows components to be written and then used through interfaces they choose to expose, and
by no other means. Using interfaces, it's easy to gather related functions and provide access to a given
object. From the shell's point of view, COM interfaces are an evolution of the API calls — you can see
this in the | Taskbar Li st interface, which is one of the first examples of a system component whose
programming interface is exposed through COM, and not through API calls.

Other examples of this pattern are the hook interfaces we met above. The Win32 SDK is full of
hooks, but they are programmed through callback functions, not COM interfaces. The shell
programming interface, on the other hand, contains hooks that require you to write, and properly
register, a COM server. In practice, the difference is not that great, but architecturally speaking
they're a world apart.

In summary, there's a wind of change blowing through the Windows shell, and COM is its source.
Aside from the examples already mentioned, all the remaining COM interfaces are used to extend
Explorer's behavior. Because Explorer requires in-process servers by design, they all fall into a kind
of parallel container that is just as important as the one that contains API calls and a few COM
interfaces here and there. They can be seen as the two sides of the same coin (the coin being the
shell), but they are definitely distinct.

What Changed with Active Desktop

The Active Desktop shell update brought with it some new features and changed several aspects of
the Windows shell. It encourages the use of HTML wherever possible, and introduces the concept of
a Web view, folder customization, scripting capabilities, a simplified but effective object model, and a
handful of new functions and COM interfaces.

The last item in the above list is particularly interesting: we now have the very first shell object
model, exposing some of the shell's functionality through COM objects. This has been done primarily
with the benefit of Visual Basic programmers in mind, and so far the model is incomplete and not as
flexible as you might expect, but it's an important first step.

30

The Structure of the Shell

Apart from the changes in the shell API, Active Desktop represents a noteworthy evolution of the
structure of the desktop and the folders. In particular, it has changed:

Q The shell view object
QO The structure of the taskbar

In addition, and as a consequence of the enhanced shell view object, we now have the possibility of
executing script code at the folder level, even exploiting the facilities of Dynamic HTML and
Scriptlets.

The New Shell View Object

Originally, the shell view object was rendered and implemented through a stack of windows at the
top of which was one of class SHELLDLL_Def Vi ew. You have already seen this in Chapter 1:

*% Microsoft Spy++ - [Windows 1] (O] x| I
E Spy Tree Seach ‘iew Messages ‘Window Help =1
Cl®|e| = B =] alE]w]
=] 000000F2 "Program Manager” Progman j

=+ D00000FC ™ SHELLDLL_Defyiew
- 00000100 ™ SysListview32

[00000108 " SysHeadera2
v|
4 | k

For Help, press F1 MU i

The screenshot shows the view object of the desktop, but it is exactly the same for any other folder.
The picture below, for example, shows the stack of windows for the My Conput er folder:

"+ Microsoft Spy++ - [Windows 1] - [O] x] I
E Spy Tree Seach “iew Messages “Window Help -|ﬁ'|5|
O|®|e| @ B B2 ala] 5
EII:I 000002804 "My Computer” CabinetWClass ;l

=0 000008DC " Worker
. B0 D0000SEND ™ ReBarwindow32
- 00000904 " SysPager
[000008F4 ™ ComboBoxEx32 J
[000002F0 " ToolbarWindow 32
[00000sEC " Worker

#-[000008E4 " SysPager
- 0000090C " Wwarker
-~ 00000910 "™ msctls_statushar3z
E||:| 00000918 " SHELLDLL_Defview

ED 0000091C "™ SysListview32

[00000924 ™ SysHeader32 -
| | 3
Faor Help, press F1 MUK A

Most of the windows you see here collaborate to form the overall framework of the folder window
(rebar windows, combo box, toolbars, etc.). What provides the actual content of the folder (namely,
the shell view object) is always a window of class SHELLDLL_Def Vi ew, with its child list view.

With Active Desktop, however, there's the possibility of another kind of view object that includes
support for HTML and scripting too. This is called the Web view, and it can be turned on and off
from the folder's View | as Web Page menu. Here's how the My Computer window looks when the
Web view is active:

31

Chapter 2

5 My Computer =1 3
J File Edit “iew Go Favorites Help
| e-2-B BB 9 XE
JAddress by Computer j
My Computer
Mame | Type | TotaISizel Free Spacel
535 Floppy [#: 3% Inch Floppy Disk
B [C:) Local Disk 1.02GB 439MB
[L‘C;‘f%sis—kﬁ (€ = D] Local Disk oM 123ME
= [E) Local Disk 9E4MEB 85.3MB
. (581 Printers System Folder
Capaaity: 1,02 GB (3] Cantial Panel System Folder
O used: 610 MB == Dial-Up Metworking Systern Folder
[Free: 440 MB
i‘l object(s] selected |Free Space: 43 by Computer 4

The content of the folder appears to be merged into an HTML-based template, of which the list view
containing details of the file objects is just a component. The corresponding stack of windows is:

. Microsoft Spy++ - [windows 1]
ESpy Tree Seach Wiew Messages “Window Help

O|®|e| =] B B]=]x] &

B- 03 00000804 "My Computer” CabinetWClass ;l
= 0000020C "™ Worker

=3 000008ED " ReBarwindow3z

=3 00000904 ™ SysPager

+- 000002F4 " ComboBorEx32 J

[00000SFO "™ ToolbarwWindow32

=[] 000008EC " Warker

- 000DOgES ™ SysPager

- 0000090C "™ Worker

- 00000910 " msctls_statusharaz

EII:I 00000918 " SHELLDLL_Defview

=3 00000C0C " Internet Explorer_Server
=3 00000cos " shell Embedding
EII:I 0000091C " SysListview32
-1 00000924 " SysHeader32
4| |

Far Help, prezz F1

o

| [nuM[

The big difference you'll notice almost immediately is the window of class | nt er net
Expl or er _Server that has a child window of class Shel | Enbeddi ng. The former of these is the

window through which the WebBrowser control displays its output, while Shel | Enbeddi ng is a
window that wraps the list view that contains the file list.

WebBrowser is the ActiveX component used by Internet Explorer 3.0 and higher to display their
content: HTML files, GIF and JPEG images, and even Active documents.

32

The Structure of the Shell

To summarize, when a Web view is enabled on a file folder, then

Q A folder is seen through an HTML page rendered by a WebBrowser control

Q The HTML page is generated starting with an HTML template that you can customize if
necessary

Q The list view containing the files is embedded into an ActiveX control hosted in the HTML page

A Web view could also be enabled on a custom folder, but in this case the namespace extension that
wraps the folder would be required to implement specific and additional interfaces.

On the desktop, things go in much the same way. You can turn on and off the Web view by using the
context menu:

LCustamize my Desktop..

3
Anange |cons Update Now

Line Up lcons

Eazte Shortout
Undo Delete

Fropertiez

When this view is active, the desktop's view object also makes use of a WebBrowser control to show
the desktop content. The desktop icons are drawn in a different, 'higher' layer than the background,
and although this 'icon layer' existed before Active Desktop, the Web view adds some underlying
HTML 'wallpaper' whose content is always drawn underneath the icons.

Customizing a Folder

When the Web view mode is turned on, the folders you visit are displayed using an HTML template.
There's a standard folder template called f ol der. htt stored in the Web subdirectory of Windows,
and unless you specify another one, it is used by default. If you want to study its source code, note
that it is a hidden file, so you won't see it until you turn on your Show all files setting.

By right clicking on any folder, you get a menu like the one shown in the screenshot:

Wiew 3 I

Afrange |cons 4
LLime g [zans

Riefresh

Paste
Baste Sharteut
Undo Delete

MNew 3

Properties

33

Chapter 2

Choosing Customize this Folder... allows you to run a fairly straightforward Wizard that ends up
editing the content of the f ol der. htt file that I've already mentioned. More precisely, what you
actually edit is a copy of the original template created by the Wizard in the folder in question. If you
need to, you can alter the look of the folder completely simply by editing the HTML file — despite the
. ht t, extension it is a perfectly normal HTML file. If you want to, you can also remove or replace
the file list component, showing only what you want the user to see.

Since the folder template is an HTML file viewed through the Internet Explorer's WebBrowser, you
can exploit all the features that XML, data binding, Dynamic HTML, and Scriptlets bring to you, and
transform a simple folder into something that looks like an application. (I presented an example of
this in the March 1998 issue of MIND.) After a fashion, this kind of customization is rather like a
rough and ready namespace extension.

The New Taskbar Layout

As well as the changes in the view object, Active Desktop also introduced a number of changes to the
layout of the taskbar. We will examine it in more detail in Chapter 9, but the following diagram
should give you an idea of what to expect, and a comparison of the new structure with the old one:

‘ Taskbar Main Window ‘ ‘ Before ‘

‘ Active Desktop ‘
4{ Start Button ‘

4{ RebarWindow ‘

4{ Quick Launch Toolbar ‘

: Other custom toolbars

4{ Active Task Tabs ‘
4{ SystemTray Area ‘

34

The Structure of the Shell

Summary

In this chapter, we addressed:

Q Task-based groups of API functions and COM interfaces in the Windows shell
Q How this maps to the book's layout
Q An overview of the shell structure and its objects

As we progress through this book, I'll always try to make sure the structure of the shell programming
interface stays clear in your mind. Thus, in the next few chapters, you'll find details about the most
tricky-to-use and poorly documented API functions. The code presented will mostly involve calls to
SDK functions using 'vanilla' C++.

After that, we'll start moving towards shell and namespace extensions, looking at some useful COM
interfaces for hooking and programming along the way, and examining the primitive shell object
model. There's a long way to go, and we haven't even looked at any code yet. It's about time we put
that right.

35

)

Working with Files

I still remember when the first betas of Windows 95 were on the way, and rumors were spreading
amongst my friends and colleagues. How cool was the new File Manager? It was full of icons, it was
colorful, it was customizable, and it had little animations that could make your life easier and happier
when it came to copying or deleting files!

As real software maniacs, we started a competition (with a pizza as the prize) to be the first person
able to figure out how to reproduce that behavior programmatically — that is, how to copy files with
animation. It took a few hours to extricate SHFi | eOper ati on() from the heap of new functions.
SHFi | eOper ati on() is the API function responsible for animated copying, and more generally, for
all the file operations performed by Explorer.

One of the criteria for the competition was to create a demonstration program with the sole goal of
impressing colleagues, which was simple enough; the real problems with this function appeared later
on. In fact, they cropped up exactly when I decided to adopt it as the standard function for any file
operation in my programs! To do this, I needed a thorough knowledge of the function's prototype
and its capabilities, and it is at this point that the really interesting part of the story begins.

In this chapter, I'm going to show you the inner secrets of SHFi | eOper ation():

How to use the flags and commands that it supports correctly
How to use the source and target buffers correctly
What its 'most probable' return codes are

The problems you may encounter with long file names (yes, really!)

000 0D

The (previously) unrevealed story of file name mappings

Chapter 3

Also included in this chapter — as in any other of this book — you'll find helper functions to facilitate
your work with Windows common controls, dialogs, and the like.

What Can SHFileOperation() do for You?

To get an answer to this question, let's have a look at the declaration of SHFi | eOper ati on(), taken
from shel | api . h:

int WNAPI SHFi | eQper ati on(LPSHFI LEOPSTRUCT | pFi | eOp) ;

This tells us little more than we knew already. To find out more, let's snoop inside
SHFI LEOPSTRUCT, which is a data structure also defined in shel | api . h:

typedef struct _SHFI LEOPSTRUCT

HWAD hwnd;

Ul NT wkFunc;

LPCSTR pFrom

LPCSTR pTo;

FI LEOP_FLAGS f Fl ags;

BOCL f AnyQper at i onsAbort ed;
LPVA D hNamreMappi ngs;

LPCSTR | pszProgressTitle;

} SHFI LEOPSTRUCT, FAR* LPSHFI LEOPSTRUCT;

Through this structure, SHFi | eOper ati on() can be instructed to do everything we want. In brief,
the function can:

Copy one or more files from a source to a target path
Delete one or more files, sending them to the Recycle Bin
Rename files

000D

Move one or more files from a source to a target path

So far, then, we've seen nothing new — or at least, nothing particularly exciting. In fact, the Win32
API (and the C runtime library) already provide the means to do the same thing. Specifically, the
Win32 API provides CopyFi | e(), Del et eFi | e(), and MoveFi | e() to perform these tasks.

The strength of SHFi | eOper ati on(), however, comes in all its accessory parameters which let you
arrange for multiple copies and the creation of missing directories with a single command. It also
supports 'undo', and automatic renaming in the case of target name collisions. Last (but probably not
least), it provides, for free, an animation that shows blank sheets of paper, fluttering from one folder

to another.
Undoubtedly, you could obtain the same
functionality from the low-level Win32 APIs
@@ G mentioned above, but you would have a large
Holowldh amount of work to do.

From “web' to "wieb'

ANNNNNNENNNENNNENNNNNNENENR Cancel

3 minutes remaining

38

Working with Files

How SHFileOperation() Works

Like all functions that take only a data structure as an input parameter, SHFi | eOper ati on() is
quite a flexible routine. It can perform many different actions by combining various flags in the
appropriate manner, and by using (or not using) the various members of SHFI LEOPSTRUCT. Let's see
what role each member of this structure plays.

Name Description

hwnd The handle of the parent window for any dialog generated
by this function.

wFunc Indicates the operation to perform. (See later.)

pFrom The buffer containing the source file names.

pTo The buffer containing the target file names. (Ignored in
case of deletion.)

f Fl ags Flags that can affect the operation. (See later.)

f AnyOper at i onsAbort ed A return value that will contain TRUE or FALSE depending

on whether the user aborted any file operations before
completion. By testing this member you can determine
whether the operation completed normally, or if it was
manually interrupted.

hNameMappi ngs The documentation describes it as a "Handle to a file name
mapping object that contains an array of SHNAMEMAPPI NG
structures." (See later for a better explanation.)

| pszProgressTitle A string that is used, under certain conditions, as the title of
the dialog box being displayed.

In short, there are four members that definitely require some investigation. They are:

O wrunc (and indirectly, pFr omand pTo)
a fFlags

Q hNaneMappi ngs

Q |IpszProgressTitle

Available Operations

The wFunc member specifies the operation to be performed on the files specified in pFr omand pTo.
The possible values of wFunc (defined in shel | api . h) are:

39

Chapter 3

Code Value Description

FO_MOVE 0x0001 All the files specified in pFr omare moved to the location stored
in pTo, which must be a directory name.

FO_CoPY 0x0002 All the files specified in pFr omare copied to the location stored
in pTo. The latter can be a directory name or even a collection
of files with a 1:1 correspondence to the ones in pFrom

FO_DELETE 0x0003 All the files specified in pFr omare sent to the Recycle Bin. pTo
is ignored.
FO_RENAME 0x0004 All the files specified in pFr omare renamed as the file names

specified in pTo. A 1:1 correspondence must exist between the
names in pFr omand pTo.

Both pFromand pTo are buffers that contain one or more file names. If they include more than one
file name, then the various names must be separated with NULL characters (\ 0) and the whole string
must be terminated with a double NULL character (\ O\ 0), regardless of how many file names it
contains.

If pFromand pTo don't include directory information (that is, they are unqualified names) then the
function assumes that it should use the drive and the directory returned by
Get Current Di rectory(). pFromecan also contain wildcard characters, and can be a string such

as ll*.*n.

Any of these operations can be affected by the flags that you set in the f Fl ags member of the

SHFI LEOPSTRUCT structure. The online documentation lists all these flags in alphabetical order,
which is not always a good thing. When I discuss them shortly, I'll try to follow a slightly different
approach in which the flags are grouped together according to the actual operations they can affect. If
you just want a crude list, refer to the online documentation.

Pay Attention to the Double-NULL

In my opinion, the documentation doesn't place sufficient emphasis on the fact that pFr omand pTo
are actually pointers to lists of strings, rather than generic buffers. This means that

SHFi | eOper ati on() always expects a double NULL character at the end of the string passed, and
this is true even when you're passing a single file name, or a single string with wildcards.

If you don't use a double NULL character to terminate the strings in both pFr omand pTo, the
chances are that the function will fail when parsing their contents. In this case, it returns a 'Cannot
Copy/Move File' error (error code 1026). Without a double NULL, the function may consider the
bytes that it finds at the end of the string, after the single NULL character, as a file name to be copied
or moved. These bytes could be anything and are unlikely to be a valid file name, so an error arises.

This error is more frequent with pFr om simply because pFr omis always interpreted as a list of file
names, whereas pTo is parsed as a list of file names only if the FOF_MULTI DESTFI LES flag is
specified (we'll be discussing this and other similar flags shortly). In all other cases,

SHFi | eOper ati on() assumes that pTo refers to a single file name. In this case, a single NULL
terminator suffices — the double NULL is required only for terminating a list containing more than one
file name. Unless you explicitly say that there are multiple target files, the parsing of the content of
pTo stops at the first NULL terminator.

40

Working with Files

The way the content is parsed depends upon whether the pointer is the reference to a list of strings or
a simple buffer. Consequently, for safety's sake, you should always remember to add an additional
terminator at the end of the strings you're going to assign to pFr om Do the same to pTo if you have
multiple destination files. If you're using literals, then you can add an explicit \ O at the end (the
string is, of course, automatically terminated with a single NULL character):

shfo. pFrom = "c:\\deno\\ one. t xt\ Oc:\\ demo\\two. t xt\ 0";

If you're using variables, then you can adopt the following approach:

pszFronil strlen(pszFrom + 1] = O;

Moving and Copying Files

To move or copy files from one location to another, we need to specify:

O A buffer containing the source file names. This can be a sequence of names (separated and
qualified as shown above), a single name, a string that includes wildcards, or even a sequence of
strings that include wildcards.

Q A target directory. If we're moving a well-defined list of files, then we could also prepare a target
list of names, taking care to preserve a 1:1 correspondence with the source names. In other words,
each source file name must have a target file name in order for the move or copy to take place. If
there are multiple target files, then we must specify the FOF_MJLTI DESTFI LES flag in the

f FI ags member.

The flags (defined in shel | api

. h) that can affect these operations are:

Flag

Value

Description

FOF_MULTI DESTFI LES

FOF_SI LENT

FOF_RENAMEONCOLLI SI ON

FOF_NOCONFI RMATI ON

0x0001

0x0004

0x0008

0x0010

The pTo member contains multiple target
files, one for each source file.

The operation occurs without feedback to
the user, which means that the progress
dialog isn't displayed. Any relevant
message boxes will still appear, however.

If the target location already contains a file
with the same name as one being moved
or copied, this flag instructs the function to
change the target name automatically and
silently.

This flag causes the function to assume
that the answer to any message box it may
encounter is always "Yes". An exception is
the dialog that asks you to create a missing
directory. To deal with it you need to
resort to the flag called

FOF_NOCONFI RMWKDI R. (See later in
table.)

Table Continued on Following Page

41

Chapter 3

Flag Value Description

FOF_FI LESONLY 0x0080 This flag applies only when you specify
wildcards (say, *. *) that can contain sub-
directories. With this flag set, the function
deals only with files and never goes down
to directories.

FOF_SI MPLEPROGRESS 0x0100 This results in a simplified user interface:
there's animation, but the names of the
files involved are not displayed. Instead of
the names, it will display the text you
specified through the
| pszProgressTitl e member.

FOF_NOCONFI RMWKDI R 0x0200 If the target directory doesn't exist, this
flag causes the function to create what's
missing silently. Without this flag, you'll
be prompted to authorize the creation of
the full destination path. This flag has a
subtle relationship with the next one that I
shall explain later.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will
not result in a message box being
displayed. All you'll get is a return code
describing the error. This flag has a subtle
relationship with the previous one.

FOF_NOCOPYSECURI TYATTRI BS 0x0800 Applies to Windows NT, shell version 4.71
(Windows NT 4.0 with IE 4.0 and Active
Desktop) and higher. This flag prevents
copying of the security attributes that a
given file may have.

Let's take a look at these options in more detail. When moving or copying files, you have two main
concerns: correctly identifying the files to be transferred, and making sure that the flags you set
produce the behavior you're expecting.

Avoiding Unwanted Dialog Boxes

If you want the operation to occur as silently as possible, without dialogs or even any system error
messages, then you may think that FOF_NOERRORUI | FOF_SI LENT is a good choice. This is not
true, as I'll show in a moment. Using FOF_NOERRORUI only hides the message boxes that originate
from errors. On the other hand, using FOF_SI LENT alone doesn't prevent all the possible message
boxes that the function can display from appearing. In fact, FOF_SI LENT only affects the progress
dialog — that is, the one that shows the names of the files being copied or moved, along with the usual
animation. If the function finds that a given file or directory already exists in the target location, it
will prompt you anyway. To avoid this behavior, you need to add FOF_NOCONFI RMATI ON to the
flags. This will cause SHFi | eOper ati on() to behave as though an invisible user clicks Yes at each
step. However, this is far from the end of the story.

42

Working with Files

All of these flags are useless if the target path includes a missing directory. Before continuing with
copying or moving a file, the function tries to make sure that the given target path exists. You could
legitimately have specified a directory that doesn't exist, and the function will take care of creating it,
but first it requires an explicit authorization from you.

To skip this dialog, you need to set Copy
FOF_NOCONFI RMWKDI R. If this bit is set, then the function

automatically creates any missing directories without & The c:\MewDir falder does nat exist.
prompting you.

Do pou want to create it?

In summary, if you want the copy (or the move) to be completed without the user's intervention, then
you can set the f Fl ags member of SHFI LEOPSTRUCT with the following combination of flags:

FOF_SI LENT
FOF_NOCONFI RVATI ON
FOF_NOERRORUI
FOF_NOCONFI RMVKDI R

000D

However, there's one point regarding the use of the FOF_NOERRORUI and FOF_NOCONFI RMVKDI R
flags at the same time that still needs clarifying.

Missing Directories
Interestingly, a missing directory is considered as a system error for which a system dialog should be
shown. Although you can skip over the dialog by setting the FOF_NOCONFI RMVKDI R flag, the
FOF_NOERRORUI flag takes precedence over FOF_NOCONFI MVKDI R, effectively suppressing the
dialog before the latter flag gets a chance to deal with it. If both flags are specified, therefore, you
won't be prompted to authorize the creation of a directory that doesn't exist, and a directory won 't be
created on your behalf. Instead, the function will continue as if you refused to create it, and you'll get:

O An error code of 117 (I'll say more about error codes later)
O The abort flag f AnyOper at i onsAbort ed set to TRUE

Q No files moved, or copies made

Does this mean that you should avoid using FOF_NOERRORUI ? It depends. If you want an absolutely
silent operation, you can't avoid using it — it prevents all error message boxes from being displayed.
The problem is that it also prevents a new directory from being silently created, causing an
unnecessary and bothersome error. Fortunately, there's a way to work around this by making sure
that the full directory path stored in pTo exists before calling SHFi | eOper ati on() with the flags
that make it silent. The Win32 SDK provides a function for exactly this purpose:

BOOL MakeSur eDi rect or yPat hExi st s(LPCSTR Di r Pat h) ;

To use it, you need to #i ncl ude the i magehl p. h file, and link to the i magehl p. | i b library.

43

Chapter 3

Renaming Files

One of the questions that SHFi | eOper ati on() could pose concerns replacing an existing file:

Or, similarly, it could

By setting FOF_NOCONFI RMATI ON, you implicitly enable the function to replace the old object, but
there is a second possibility. You know that if you select a file in Windows Explorer and hit Ctrl-C
followed by Ctrl-V, then a new file appears in the same folder with a name like Copy of Xxxx, where
Xxxx is the file you selected. Explorer automatically renamed the new file to avoid collisions.

SHFi | eOper ati on() provides this feature too, as long as you set the FOF_RENAMEONCOLLI SI ON
flag. Both FOF_RENAMEONCOLLI SI ON and FOF_NOCONFI RMATI ON suppress the confirmation
dialog for replacing things, but in the latter case your file or directory will be unavoidably
overwritten. In the pathological case that you specify both, FOF_RENAMEONCOLLI SI ON takes

precedence.

Confirm File Replace I

!!:-j This folder already containg a file named "SHMove. pch’,
B

Wiould pou like to replace the existing file

j 1.41MB
maodified on 07 September 1998, 15:49:10

with thiz one?

j 1.41MB
maodified on 07 September 1998, 15:49:10

pose a question about an existing directory:

Confirm Folder Replace [x| I

@a This folder already containg a folder named 'ty Documents'.
L

If the files in the existing folder have the zame name as files in the
falder pou are moving, they will be replaced. Do pou still want ta move
the folder?

ez to gl Ho Cancel

Relationships Between Flags

What I've said so far should have raised a couple of questions in your mind. Firstly, what are the
relationships between the various flags? Secondly, which flag affects which class of dialogs?

44

Working with Files

The following table explains which flag overrides which others, and which dialog each flag

suppresses.
Flag Dialog Dependency and Precedence
Suppressed
FOF_MULTI DESTFI LES None. None.
FOF_FI LESONLY None. None.

FOF_SI LENT

FOF_SI MPLEPROGRESS
FOF_RENAMEONCOLLI SI ON

FOF_NOCONFI RVATI ON

FOF_NOCONFI RMWKDI R

FOF_NOERRORUI

If set, the progress
dialog won't
appear.

None.

If set, the replace
dialog never
appears when a
file with the same
name as one being
copied or moved
already exists.

If set, no
confirmation
dialog will appear
in any case.

Suppresses the
dialog that asks for
your permission to
create a new
folder.

Suppresses all the
error message
boxes.

Takes precedence over the
FOF_SI MPLEPROGRESS flag.

Suppressed by FOF_SI LENT.

In the case of name collisions (and
only then) it works as if
FOF_NOCONFI RMATI ON was set. It
takes precedence over
FOF_NOCONFI RMATI ON if both are
set. This means that the files are
duplicated, given new names and are
not overwritten.

In case of name collisions, it causes
the files to be overwritten unless
FOF_RENAMEONCOLLI SI ONis
specified.

A missing directory is considered a
fatal error requiring an error message
box. The directory creation
confirmation dialog is considered to
be an error message box. For this
reason the flag depends upon
FOF_NOERRORUI .

Takes precedence over the previous
flag. If set then a missing directory
raises an unhandled exception and
the function returns an error code.

An Example Program

To help you get to grips with the features of SHFi | eOper ati on(), I've put together a simple
example program called SHVbve. Like many of the other examples that we'll create over the course
of this book, it will start its life as a skeleton generated by the Wrox AppWizard, a custom Wizard

that is developed and documented in Appendix A. You should go and take a look at that now, if you

haven't done so already!

Chapter 3

Once you have the AppWizard safely installed on your machine, either by typing in all the code or
(preferably) by downloading the source from the Wrox web site (http://www.wrox.com), you should
use it (on this occasion) to generate a dialog-based application. Here's the user interface you then
need to create:

Move/Copy Files
— IDOK
- Operafion - Flag
IDC_COPY ————— &' Copy I~ FOF_SILENT IDC_FOFSILENT
IDC_MOVE ————— " Mavs I™ FOF_FILESOMLY IDC_FOFFILESONLY
™ FOF_MOCOMFIRMATION IDC_FOFNOCONFIRMATION
Saurce filefs) I FOF_MOCONFIRMMKDIR IDC_FOFNOCONFIRMMKDIR
IDC_FROM [oot I~ FOF_NOERRORUI IDC_FOFNOERRORUI
Destination foide I™ FOF_SIMPLEPROGRESS IDC_FOFSIMPLEPROGRESS
IDC_TO [sMenDi ™ FOF_RENAMEONCOLLISION IDC_FOFMULTIDESTFILES
Pragress litle sting:
[feiasing IDC_PROGRESSTITLE

The default settings you can see are put in place in the Onl ni t Di al og() function that you'll find in
SHMove. cpp. The new lines just set the radio buttons and place strings in the edit boxes:

voi d OnlnitD al og(HWAD hDl g)

{
/1 Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hlconSmall));
SendMessage(hD g, WM SETI CON, TRUE, reinterpret_cast <LPARAM>(g_hl conLarge));

// Initialize the "to' and 'from edit fields
Set Dl gl t enText (hDi g, IDC_TO "c:\\NewDir");
Set Dl gl t enilfext (hDl g, |IDC_FROM "c:\\dem*.*");

/| Take care of the 'progress' title
Set DI gl t enText (hDI g, | DC_PROGRESSTI TLE, "This is a string");

/] Select the default operation
CheckRadi oButt on(hDl g, | DC_COPY, |DC _MOVE, |DC_COPY);

In order to make this dialog issue calls to SHFi | eOper ati on(), we simply need to implement the
skeleton ONOK() function that executes when someone clicks the SHFileOperation button. The
contents of the pTo and pFr ommembers and the relevant FOF_ flags are set in this function.

void OnOK(HWND hDl g)
{
SHFI LEOPSTRUCT shf o;
WORD wFunc;
TCHAR pszTo[1024] = {0};
TCHAR pszFroni 1024] = {0};
TCHAR pszTitl e[MAX_PATH = {0};

// Set the operation to perform

i f(IsD gButtonChecked(hDl g, | DC_COPY))
wFunc = FO_COPRY;

el se
wFunc = FO_MOVE;

46

http://www.wrox.com

Working with Files

/] Cet the 'progress' string

Get Dl gl t enText (hDl g, | DC_PROGRESSTI TLE, pszTitle, MAX_PATH);
/'l Get the 'from buffer

Get Dl gl tenifext (hDl g, | DC_FROM pszFrom MAX PATH);
pszFronflstrlen(pszFrom) + 1] = 0;

/Il Get the '"to' buffer
Get Dl gl tenfext (hDl g, | DC_TO, pszTo, MAX_ PATH);

/'l Get the flags
WORD wHl ags = O;

i f(IsD gButtonChecked(hDi g, | DC_FOFSILENT))
WFl ags | = FOF_SI LENT;

i f(IsD gButtonChecked(hDl g, | DC_FOFNOERRORUI))
wWFl ags | = FOF_NOERRORUI ;

i f(I1sD gButtonChecked(hDi g, | DC_FOFNOCONFI RVATI ON))
wWFl ags | = FOF_NOCONFI RVATI ON;

i f(IsD gButtonChecked(hDl g, | DC_FOFNOCONFI RMWKDI R))
wHl ags | = FOF_NOCONFI RMVKDI R;

i f(IsD gButtonChecked(hDi g, |DC_FOFSI MPLEPROGRESS))
wFl ags | = FOF_SI MPLEPROGRESS;

i f(IsD gButtonChecked(hDl g, | DC_FOFRENAMEONCOLLI SI ON))
wHl ags | = FOF_RENAMEONCOLLI SI ON,;

i f(IsD gButtonChecked(hDi g, | DC_FOFFI LESONLY))
wWFl ags | = FOF_FI LESONLY;

/1 Call SHFil eOperation()

Zer oMenor y(&shf o, si zeof (SHFI LEOPSTRUCT)) ;

shfo. hwnd = hDl g;

shf o. wrunc = wkunc;

shfo. | pszProgressTitle = pszTitle;

shfo.fFlags = static_cast <FI LEOP_FLAGS>(wFl ags) ;
shfo. pTo = pszTo;

shf o. pFrom = pszFrom

int i RC = SHFi | eOperation(&shfo);
i f (shfo.fAnyOperationsAborted)

Msg(" Aborted! ");
return;

}

/1 Display the result of the operation
SPB_Syst emvessage(i RO ;

The function gathers all the data it needs from the dialog's controls, and then fills in the

SHFI LEOPSTRUCT structure. If any operation was aborted, the f AnyOper ati onsAbort ed member
is filled with the Boolean value TRUE. In the code above, you may have noticed two strange names:
Msg() and SPB_Syst emVessage() . These functions are just wrappers for MessageBox() that
were added by the Wrox AppWizard, and I'll discuss them in the Two Poor Man's Utilities for Surviving
Error Messages section, when delving into what SHFi | eOper ati on() actually returns. For now, I'll
concentrate on the source and target buffers, so add a #i ncl ude for r esour ce. h to SHVbve. cpp,
and build the project.

47

Chapter 3

Source and Target

When moving or copying files from a source to a target, you have the following possibilities:

A group of files to a single folder
Many single files to a single folder
A single file to a single file

000D

Many single files to many single files

By the expression 'single file' I mean a fully qualified file — that is, a file for which you know the

complete name. By contrast, a 'group of files' means all the files you indicate through wildcards,

which you do not know the names of. Only in the last of the four cases above you do need to use
FOF_MULTI DESTFI LES.

A possible way to copy or move files is by assigning a string such as c: \ denp\ *. * to pFrom as is
done by default in the code. In this situation, you must indicate a specific folder as the destination.
Everything you pass through the pTo buffer is considered to be a folder name, unless it contains an
invalid character. In that case you'll get an error, as shown below (cover sheet is the first file in the
directory being copied):

Move/Copy Files

SHFile0peration |

Operation Flags
& Copy [~ FOF_SILENT
" Move [~ FOF_FILESOMLY

[FOF_NOCOMFIRMATION

S ource filefs]: Ermror Copying File <]

Ic:\demo\"."
Q Cannot copy coversheet: Cannot find the zpecified file.

Destination folder:
Ic: YHewDirt p

Make sure pou specify the corect path and filename.

Progress litle string:

IThis iz a ghring

As explained earlier, you can work on multiple files by passing a double NULL terminated string
whose items are separated by single NULL characters. For example, you could hard-code the
following into ONOK() :

shfo. pFrom = "c:\\demob\\one. txt\0c:\\two. txt\Oc:\\three.txt\0";
shfo.pTo = "c:\\NewDi r";

Here, we're attempting to move/copy three files at a time: one. t xt, t wo. t xt, and t hr ee. t xt. All
three files will be copied into a new directory called NewDi r located under the root, c: \ . The first
source file is located in the c¢: \ denp directory, while the other two are in c: \ .

48

Working with Files

If the pFr ombuffer contains just one file name, the SHFi | eOper ati on() function can deal with the
content of pTo in two ways.

shf o. pFrom = "c:\\deno\\one. txt\0";
shfo.pTo = "c:\\NewDi r";

If a directory or a file called c: \ NewDi r already exists, then it will be treated properly. That is, the
file c: \ deno\ one. t xt gets copied to the directory or replaces the existing file. On the other hand,
if c: \ NewDi r doesn't exist, then it is considered to be the name of a new file, and is no longer
considered to be a folder name.

If you want to copy a single file to a new folder, then you might think that adding a final backslash \
to the content of pTo would work.

shf o. pFrom = "c:\\deno\\one. txt\0";
shfo. pTo = "c:\\ NewDi r\\";

Curiously, this will cause the missing folders to be created, but it fails to copy or move the file. If you
retry it, then it works as expected because on the second attempt the folder already exists! So what do
you have to do to copy a single file to a non-existent folder? The only approach that will always work
is to add a * at the end of the file. In doing so, you fool the function into thinking it is working on a
wildcard expression.

shfo. pFrom = "c:\\deno\\ one. t xt *\ 0";
shfo. pTo = "c:\\ NewDi r";

Another possible circumstance is where you want to copy many single files to the same number of
single files. You must meet two requirements. First, you should add the FOF_MJLTI DESTFI LES flag.
Second, make sure you have a destination file for each source file — you need a perfect, 1:1
correspondence. The nth file in the source list will be copied/moved to the nth file in the target list.

shfo. fFlags | = FOF_MJLTI DESTFI LES;
shfo. pFrom = "c:\\one.txt\Oc:\\two.txt\0";
shfo.pTo = "c:\\ New one. txt\0c:\\ New two. t xt\0";

What if you fail to meet these criteria? What happens, for example, if you attempt to execute code
such as the following?

shfo. fFlags | = FOF_MJLTI DESTFI LES;
shfo. pFrom = "c:\\one.txt\Oc:\\two.txt\Oc:\\three.txt\0";
shfo. pTo = "c:\\ New one. txt\0c:\\ New two. txt\0";

If this happens, the first item of the target list (that is, c: \ New one. t xt) is considered to be the
folder name where all the source files go. In practice, it is handled as if it were a many-to-one
operation.

When you make use of wildcards, the source buffer can implicitly refer to both files and directories. If

you want the function to handle only files, add the FOF_FI LESONLY flag. If you want to copy an
entire directory, you need to add \ *. * to the end of its path.

49

Chapter 3

Unless you specify the FOF_SI LENT flag, SHFi | eOper ati on() always displays a progress dialog
with an animated control, a progress bar, and some labels to show the files being copied or moved.
By using FOF_SI MPLEPROGRESS you can hide these labels, replacing them with the text you provide
in the | pszProgressTi t | e member. This may be of help if, for any reason, you want to hide the
names of the files being copied or moved.

Copying... I

& i

This iz a string

(IITIIIT]]]

20 Secondsz Remaining

Deleting Files

File deletion is a simpler operation, as it only affects the input buffer pFr om— the pTo buffer is
ignored. As before, the details of its operation depend which flags are set. The flags of interest are:

Flag Value Description

FOF_SI LENT 0x0004 The operation occurs without feedback to the
user, which means that the progress dialog isn't
displayed. Any relevant message boxes will still
appear, however.

FOF_NOCONFI RVATI ON 0x0010 This flag causes the function to assume "Yes" is
always the answer to any message box it may
encounter.

FOF_ALLOWINDO 0x0040 If set, this flag forces the function to move the

files being deleted to the Recycle Bin. Otherwise,
the files will be physically removed from the disk.

FOF_FI LESONLY 0x0080 Setting this flag results in the function deleting
only files, and skipping directories. It applies
only when you specify wildcards.

FOF_SI MPLEPROGRESS 0x0100 This results in a simplified user interface, with
animation but without reporting the names of the
files being deleted. Instead of the names, it will
display the text you specified through the
| pszProgressTitl e member.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will not
result in a message box being displayed. All
you'll get is a return code.

50

Working with Files

The most striking thing here is the new flag FOF_ALLOWINDO, which allows the programmer to
decide whether the files should be deleted once and for all, or stored in the Recycle Bin awaiting
possible restoration. If FOF_ALLOWINDO s set, the files are moved to the Recycle Bin, and the
operation may be undone (though you can only do this manually). The API that deals with the
Recycle Bin is covered in Chapter 10. The 'undo' feature is available only for deletion — there's no
equivalent for copy and move operations.

The presence of the FOF_ALLOWJINDO flag affects the user interface of the function, as I'm about to
demonstrate. It wouldn't be too difficult to modify our sample project to accept requests for deletions
as well as for copies and moves, but for the sake of brevity I'll just put the code straight into the
OnOK() function:

Zer oMenor y(&shf o, si zeof (SHFI LEOPSTRUCT)) ;
shfo. hwnd = hDl g;

shf o. wrunc = FO_DELETE;

shfo. | pszProgressTitle = pszTitle;

shfo. f Fl ags = FOF_NOERRORUI ;

shf o. pFrom = "c:\\deno\\ *. *\ 0";

The above code attempts to delete the entire content of the ¢: \ denp directory, and results in the
following dialog:

Confirm Multiple File Delete E

| é\ Are pou gure pou want to delete theze the selected files tems?

As you can see, there's no mention of the Recycle Bin in the message because we haven't specified
the FOF_ALLOWUNDO flag. By doing so, the files would instead be sent directly to the Recycle Bin:

Confirm Multiple File Delete E

@ Are you sure you want ta send these the selected files items to the
Recycle Bin?

The other flags listed above work in much the same way as they did for copy and move. Accordingly,
you can hide the names of the files being deleted with FOF_SI MPLEPROGRESS or FOF_SI LENT, and
delete only files with FOF_FI LESONLY. Note that FOF_FI LESONLY doesn't go down into sub-
directories.

The dialogs shown above don't mention how many files are about to be deleted, but this is simply
because the command that originated the figures included wildcards (the number of files would
otherwise be displayed) so the function can't easily figure out the number of files. This might also be
one of the reasons why it returns successfully even if there are no files to delete.

51

Chapter 3

It is accepted practice that an operating system will ask for confirmation before deleting files. If you
find such dialogs useless, then you can hide them by answering "Yes" to all questions automatically
through use of the FOF_NOCONFI RMATI ON flag. Typically, an FO_DELETE operation will look
something like this:

Deleting... I

(3 o

U |MNZIP LMK
Fram ‘HewDir'

Renaming Files

The first thing I must do in this section is to confess that I have been unable to make

SHFi | eOper ati on() rename files through wildcards. It seems that the only way to change the
name of a file is by specifying a single source file name as pFr om and a single target file name as
pTo:

Zer oMenor y(&shf o, si zeof (SHFI LEOPSTRUCT)) ;

shf o. wrunc = FO_RENAME;
shfo. pFrom = "c:\\deno\\one. t xt\0";
shfo. pTo = "c:\\dem\\ one. xxx";

Obviously, there are a couple of things that it's quite reasonable for you not to be allowed to do when
you're renaming files. Specifically, these are:

O Changing the destination folder. Renaming just means changing the name, not the folder!
O Overwriting an existing file.

If you attempt to perform such operations, then it's natural that you'll get errors. Searching for all the
error codes I could find, I tried passing parameters like those shown below to the function:

shfo. pFrom = "c:\\denmo*. *\ 0";
shfo. pTo = "c:\\newdi r";

This is obviously nonsense, and the function duly returns a message like this:

Ermor Renaming File 1]

Q Cannot rename file; Select only one file to rename, or use M5-D05 wildcards (for example, *tat] to rename a group of files with zimilar names,

52

Working with Files

The message is clear enough, although paradoxically the command ends up returning success (a value
of 0)! The implication of the message, however, is that the syntax used by MS-DOS will also work
here. In other words, we should be able to rename, say, *. t xt to *. xt t . With MS-DOS this works
just fine; with SHFi | eOper ati on() it doesn't. If you try, the message you'll get is:

Error Renaming File]

Q Cannot rename ane: Cannat find the specified file.

take sure pou specify the comect path and filename.

The message you can see originated from these two lines of code:

shfo. pFrom = "c:\\dermo\\ *. t xt\ 0";
shfo. pTo = "c:\\demo*. xtt";

For this example, the c: \ denp directory contained two files: one. t xt and t wo. t xt . Hence, one in
this case is just the name of one of the files involved, without the extension. The return code behind
this message is 2 — 'file not found'. I'll say more about return values later on.

Since the FO_RENAME command seems to be successful only with single files, the flags that affect the
user interface of the dialog lose importance — the speed of the operation is such that the user interface
simply won't be seen. The flags that still make sense are:

Flag Value Description

FOF_RENAMEONCOLLI SI ON 0x0008 If the target location already contains a file with
the same name as one being renamed, this flag
instructs the function to change the target name
automatically to Copy of Xxx, where XxXx is the
original file name without the extension. If you
don't set this flag, you still won't be prompted,
but you'll get an error message instead.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will not
result in a message box being displayed. All
you'll get is a return code.

SHFileOperation() Return Values

The online documentation states that SHFi | eOper ati on() will return 0 if the function succeeded,
and a nonzero value in case of failure. Obviously this is true, but it's not the most helpful information.
By testing and re-testing the function, I have become convinced that there are very many possible
ways for the function to terminate. In fact, I have often run into system errors, suggesting that
somewhere in the code the function is simply returning what it gets from other routines that are
closer to the file system.

53

Chapter 3

Nevertheless, here's a table (that almost certainly isn't exhaustive) of the most common errors
returned by SHFi | eOper ati on() . More precisely, it's a table of the most common errors I got
while I was testing the function!

Error Code

Description

2

115

117

123

1026

As mentioned above, you run into this message if you're trying to rename
multiple files. The description is quite straightforward — The system cannot
find the file specified — but I don't understand why it can't find the file.

This is returned if you click Cancel when you're asked whether you want
to replace a given file. It has a rather ambiguous description: The storage
control blocks were destroyed.

A file system error that occurs when you attempt to rename files to a
different folder. Renaming a file just means changing the file name, not
the folder too.

An IOCTL (Input/Output Control) error that appears when there's
something wrong with the destination path, or you canceled the creation
of a new directory.

You're trying to rename a file, but you're giving it the name of an existing
file. Once again, we have an unhelpful description: The file name, directory
name, or volume label syntax is incorrect.

A file system error that's raised when you try to move/copy a file that
doesn't exist. More generally, it warns you that something should be
changed in the source buffer. The code causes an error box to appear —
you can prevent this by setting FOF_NOERRORUI .

Error Moving File []

0 Cannat move file: File system emor [1026).

Error code 117 is returned in many cases, all of which relate to problems with the target directory.
For example, it's returned (but there's no system message box) if you cancel the creation of a required
directory. If there's an obvious error in a directory name that you've specified then an error box is
provided which you can prevent from appearing by using FOF_NOERRORUI .

Two Poor Man's Utilities for Surviving Error Messages

Error messages are a curse for most programmers. Either you are given a numeric code but want a
textual description, or else it's the other way around. Frameworks like MFC provide some facilities,
but you certainly wouldn't want to move your code to MFC just to exploit such features.

54

Working with Files

Given this, I've made the Wrox AppWizard (see Appendix A) generate a file containing a couple of
utility functions that we'll be using regularly, as we progress through the book. The first one is a
revised version of MessageBox() that extends the standard functionality by adding the formatting
capabilities of the evergreen printf (). I called the function Msg(), and it looks like this:

#i ncl ude <stdarg. h>

voi d WNAPI Msg(char* szFormat, ...)
{

va_list argptr;
char szBuf [MAX_PATH] ;
HWAD hwndFocus = GCet Focus();

/1 init va_ functions
va_start (argptr, szFormat);

// format output string
wvsprintf(szBuf, szFormat, argptr);

/1 read title and show
MessageBox(hwndFocus, szBuf, NULL, MB_| CONEXCLAVATI ON | MB_CK);

/'l close va_ functions
va_end(argptr);
Set Focus(hwndFocus) ;

Basically, the code exploits the va_ functions that are included through the st dar g. h header. The
variable list of arguments is then formatted via wspri nt f (), and finally displayed by the ordinary
MessageBox () function. Now you can write code such as this:

i RC = Cal | Func(pl, p2);
Msg(" The error code returned is: %", iRO;

The second utility is called SPB_Syst emMessage() . (The SPB prefix stands for Shell Programming
Book, and is intended to differentiate these functions from yours!) It accepts an error code and passes
it down to For mat Message(), a Win32 API function capable of returning descriptive text for all
system errors (at least, all those defined in wi nerror. h). The string that For mat Message()
provides is then aggregated with the numeric code, and displayed:

voi d WNAPI SPB_Syst enmVessage(DWORD dwRC)

{
LPVA D | pMsgBuf ;
DWORD rc;
rc = Format Message(FORVAT_MESSAGE_ALLOCATE_BUFFER |
FORVAT_MESSAGE_FROM _SYSTEM |
FORVAT_MESSAGE_| GNORE_I NSERTS,
NULL, dwRC,
MAKELANG D(LANG_NEUTRAL, SUBLANG DEFAULT),
rei nterpret_cast<LPTSTR>(& pMsgBuf), 0, NULL);
Msg("%: %d.\n\n\n%:\n\n%", "This is the error code", dwRC,
"This is the systenis explanation", (rc == 0 ? "<unknown>" : |pMsgBuf));
Local Free(l pMsgBuf) ;
}

55

Chapter 3

Did Everything Really Work Properly?

Undoubtedly, SHFi | eOper ati on() has some problems with |[TH I
its return codes. In particular, it can return 0 (that is, success) L

. . This i the ermor code: 0.
even when, due to an error in the input parameters, the &

requested operation couldn't be completed: » :
Thiz iz the system's explanation:

The operation completed successfully.

Try this code that is intended to copy/move files:

shfo. pFrom = "c:\\deno\\one. t xt\ 0";
shfo.pTo = "c:\\NewDi r";

If the one. t xt file exists in the original folder, everything works fine. If the file doesn't exist, error
1026 is raised. That's just what you'd expect, and there's nothing else to say. However, now see what
happens if you try this code (making sure that no files match the pattern):

shfo. pFrom = "c:\\deno\\x. *\ 0";
shfo.pTo = "c:\\NewDi r";

The function will still return zero, even if no file actually gets processed. The same thing occurs with
deletion. Even if there's no file to delete, the return code indicates success. To be honest, I don't
know whether this should be considered a bug, or whether this behavior was intended. There's no
quick way to verify whether the desired result has been achieved. The solution that comes to mind is
to check for the existence of the file in question, after the function returns.

Long File Names

Although the Windows shell has been designed and coded with the idea of bringing information to
the user's fingertips, one of the most important shell functions seems to have some problems with
long file names. Yes, that's right — with long file names. Let's see what's going on.

In all the samples you saw above, we specified a fully qualified name for the target folder (we often
used c: \ NewDi r). The documentation says that if you don't provide a full pathname, the function
assumes it should use the current directory returned by the API function

Get Current Di rectory(). Well, let's test it. Try to use this code with SHFi | eOperati on():

shfo. pFrom = "c:\\demo\\ *. *\ 0";
shfo.pTo = "NewDir";

We're attempting to copy/move all the files found in the c: \ denp directory into a new or existing
directory called NewDi r, located under the current directory. All goes well, provided that there are
no long file names among the files to be transferred. If there are any, this dialog will appear:

56

Working with Files

Select Filename

The destination does not support long file names. Please enter
a name for this file,

Ornginal path: c:hdemo%4 Yery Long File Mame. txt

To folder: MewDir

MHew narme;

QK. I gutomaticl Skip | Cancel |

What's happening is that the function is trying to shorten a long file name to make sure it will be
correctly stored on the target drive. This is a perfectly natural action if you're moving files across a
network where the destination machine is running Windows 3.1, for example. Unfortunately, we're
trying to copy/move files on a single machine running a 32-bit — and long file name compliant —
operating system. If we weren't, SHFi | eOper ati on() itself wouldn't work!

Curiously, if you add a drive to what the function perceives to be the target folder, everything will
work properly again. As if that wasn't strange enough, you will be surprised to know that if you use a
relative path, such as . \ ANewDi r, all will be well. Curiously though, the floppy drive is accessed for
reading. What on earth is going on?

It appears that if the path begins with a letter that is also the logical representation of one of the
available drives, then SHFi | eOper ati on() works well with long file names. Otherwise, it thinks
that you're attempting to connect to a remote drive, for which the check for long file name support
failed. (If there isn't an N: drive, it will surely fail...) On my home machine, for example, it works
well up to the letter F, which is the CD-ROM drive.

It's likely that there's an error somewhere in the code that is used to figure out the destination drive
for the files. The workaround is fairly simple: always use fully qualified paths.

File Name Mapping Objects

Reading the official documentation for SHFi | eOper ati on(), you'll have noticed the discreet
presence of a thing called a file name mapping object. In particular, the documentation speaks of such
objects when describing the hNameMappi ngs member of the SHFI LEOPSTRUCT structure.

hNameMappi ngs is a pointer to a block of memory that contains a certain number of
SHNAMEMAPPI NG structures — it is declared as LPVO D. A SHNAMEMAPPI NG data structure looks like
this:

typedef struct _SHNAMVEMAPPI NG

LPSTR pszd dPat h;
LPSTR pszNewPat h;
int cchd dPat h;
i nt cchNewPat h;
} SHNAMEMAPPI NG FAR* LPSHNAMEMVAPPI NG

57

Chapter 3

The structure identifies a file being copied, moved, or even renamed. More precisely, it stores both

the original and the new (fully qualified) filename. Put this way, it suggests an interesting possibility:
you could have a complete report of what happened during the execution of SHFi | eOper ati on().
Sadly, things don't quite work out like that.

First of all, to have SHFi | eOper ati on() fill the hNameMappi ngs member, you must specify an
additional flag: FOF_WANTMAPPI NGHANDLE. However, even that isn't enough, because the member
only gets filled if you also set the FOF_RENAMEONCOLLI S| ON flag. Furthermore, for it to be anything
other than zero, it's necessary that some files really do get renamed to avoid collisions. In all other
cases, the hNameMappi ngs handle simply points to NULL.

Demonstrating File Mapping

Using the Wrox AppWizard once again as my starting point, I created a dialog-based application
called Fi | eMap to test out some aspects of file mapping. Here's its user interface:

IDC_FROM

File Mapping Objects [%]

From: |o-hedity>
Ta Ic::\newdir
riginal File | Taiget File

—————— IDC_LIST

To set up the dialog with the values shown, and to initialize the list view, it's necessary to adjust the
Onl ni t Di al og() function as follows (remember to add a #i ncl ude for r esour ce. h):

58

void OnlnitD al og(HWND hDl g)

HWAD hwndLi st = GetDiglten{hD g, |1 DC LIST);

// Set up the report view
LV_COLUW | vc;

Zer oMenory(& vec, sizeof (LV_COLUW));

| ve. mask = LVCF_TEXT | LVCF_W DTH,
lvc.cx = 200;
lvc. pszText = "Original File";

Li st Vi ew_| nsert Col um(hwndLi st, O,

| vc. pszText = "Target File";
Li st Vi ew_I nsert Col um(hwndLi st, 1,

// Initialize the edit fields

&l vc);

&l vc);

Set DI gl teniText (hDl g, IDC_FROM "c:\\thedir*. *");
Set Dl gl tenilext (hDig, IDC_TO "c:\\newdir");

Working with Files

/!l Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSnall));
SendMessage(hDl g, WM SETI CON, TRUE, reinterpret_cast<LPARAM>(g_hl conLarge));

Now you can edit OnOK() , adding code that demonstrates how to acquire and test a handle to a file
name mapping object:

voi d OnOK(HWAD hDl g)

{
TCHAR pszFronf 1024] = {0
TCHAR pszTo[MAX_PATH] =

Get Dl gl t enText (hDI g, | DC_FROM pszFrom NMAX_PATH);

| F
Get Dl gl tenfext (hDl g, | DC_TO, pszTo, MAX_ PATH);

SHFI LEOPSTRUCT shf o;

Zer oMenor y(&shf o, si zeof (SHFI LEOPSTRUCT)) ;

shfo. hwnd = hDl g;

shf o. wrunc = FO_COPY;

shf o. pFrom = pszFrom

shfo. pTo = pszTo;

shfo. f Fl ags = FOF_NOCONFI RMWKDI R |
FOF_RENAMEONCOLLI SI ON |
FOF_WANTMAPPI NGHANDLE;

int i RC = SHFi | eOperation(&shfo);
if(i RO
{
SPB_Syst em\vessage(i RO ;
return;

}

/'l Trace the value of the handle
Msg(" hNameMappi ngs is: %", shfo. hNameMappi ngs);

/1 Free the object, as recommended
i f (shf o. hNaneMappi ngs)
SHFr eeNameMappi ngs(shf o. hNameMappi ngs) ;

Pay particular attention to the last line in this code — freeing a file name mapping object is the
simplest operation you can perform on it, but it's also one of the most important. You just have to call
SHFr eeNameMappi ng(), passing the handle you received from SHFi | eOper ati on() . Everything
works properly, and it's perfectly understandable. Perhaps one day, all the Windows documentation
will be this clear!

Anyway, by running this code, you'll discover that the hNameMappi ngs handle is always NULL
unless and until the operation you're performing (copy, move, rename) causes name collisions. If
renaming occurs, the handle serves the purpose of giving you a report of what files have actually been
renamed to avoid overwriting other files, indicating both their new and original names.

So, a file name mapping object has nothing to do with memory-mapped files or other mechanisms for

interprocess communication. It's just a chunk of memory that allows the shell (and you) to keep track
of what files have been renamed in order to avoid name collisions.

59

Chapter 3

If the target directory (c: \ newdi r in the sample) doesn't exist, or if it Emor
contains files whose names are all different from those in the source path
(c:\thedir*.* in the sample), then, despite the flags we specified, & hM ametd appings is: 0

the handle is NULL:

On the other hand, if at least one rename-on-collision occurred, the handle refers to a meaningful
block of data, and you're returned a valid memory address.

Using the Object

Obtaining a handle to a file name mapping object is only half the battle — now you have to figure out
how to use it! The documentation simply says that (when it isn't NULL) hNameMappi ngs points to an
array of SHNAMEMAPPI NG structures. There's no mention, for example, of how to get the size of this
array. Even worse, the LPVOl D member that SHFi | eOper ati on() uses to store the handle is
anything but a pointer to an array of data structures. The obvious method of walking the array via a
loop simply doesn't work here.

In some old MSDN documentation, you will find mention of a couple of functions called

SHGet NameMappi ngCount () and SHGet NaneMappi ngPt r () . However, these now
seem to be not only undocumented, but unexported as well. No version of shel 1 32.dl | (from
Internet Explorer 4.0 onwards) has any trace of them. This is a shame, since they were exactly
the kinds of functions I'm going to write right now! I really don't understand why these functions
have been removed, but support for the hNameMappi ngs member has been neither withdrawn
nor declared obsolete.

An Undocumented Structure

What the documentation claims is true, but incomplete. The problem is that it neglects to mention a
data structure that sits in the middle, between hNameMappi ngs and the array, desperately calling

you. There were two clues that put me on the right track, the first of which was the output from code
like this:

TCHAR* pNM = stati c_cast <TCHAR*>(shf 0. hNameMappi ngs) ;
Msg(pNM ;

When I tried this, I was resigned to getting yet another access violation error, but to my surprise it
just dumped a number (such as 9) instead. Could that be the number of renames-on-collision? I
checked the directories and found that it was. Of course, I immediately performed another test with a
different number of files, and that confirmed my theory. Whatever it is that hNameMappi ngs points
to, it begins with the total number of file name mapping objects.

So what's the next step? Well, looking through the Internet Client SDK and MSDN documentation, I
ran into some unknown (at least, to me) clipboard formats. They are mentioned in:

O Windows Shell API | Dragging and Dropping, for the Internet Client SDK
O Knowledge Base Article Q154123, for the MSDN Library

60

Working with Files

These formats (among which there's an encouraging one called "FileNameMap") are used internally
by the shell when you request copy and paste operations, or when you drag-and-drop file objects

from one folder to another. More interestingly (at least for our purposes), many of these formats are
stored in the clipboard as a block of data, comprising a number and a pointer to an array of custom
data structures. The number denotes the size of the array, and the pointer refers to its first element.

Towards a Solution
Happily, the same pattern applies to mapping objects, so I defined an intermediate structure called
SHNAMEMAPPI NGHEADER:

struct SHNAMENVAPPI NGHEADER

U NT cNunmf Mappi ngs;
LPSHNAMVEMAPPI NG | pNM
IE

typedef SHNAMEMAPPI NGHEADER* L PSHNAVEMVAPPI NGHEADER,
The structure has exactly the same format as the data pointed to by hNameMappi ngs. This is

illustrated in the diagram below, which also demonstrates the way to access the array of
SHNAMEMAPPI NG structures:

hNameMappingsH cNumOfMappings ‘ IPNM
Ip[...]
1p[0]

Ip[1]

e

With this done, writing a function that enumerates all of the file name mapping objects is pretty
straightforward; I called mine SHEnunFi | eMappi ng() . Before we look at the function itself,
though, we need to extend our earlier listing for ONOK() to incorporate a call to it:

voi d OnOK(HWAD hDl g)

{
/'l Trace the value of the handle
Msg(" hNameMappi ngs is: %", shfo. hNameMappi ngs);
/1 Enunerate the file napping objects
SHEnunti | eMappi ng(shf o. hNameMappi ngs, ProcessNM
reinterpret_cast<DWORD>(GetD gltem(hDi g, IDC _LIST)));
/! Free the object, as recommended
i f (shf o. hNameMappi ngs)
SHFr eeNameMappi ngs(shf o. hNameMappi ngs) ;
}

61

Chapter 3

SHEnunFi | eMappi ng() accepts the handle, a callback procedure, and a generic buffer. It
enumerates all the SHNAMEMAPPI NG structures, passing them one by one to the callback function for
further processing.

int WNAPI SHEnunti | eMappi ng(
HANDLE hNaneMappi ngs, ENUMFI LEMAPPROC | pf nEnum DWORD dwDat a)

{
SHNAMVEMAPPI NG shNM
/| Check the handle
i f (! hNameMappi ngs)
return -1;
/] Get the header of the structure
LPSHNAVEMAPPI NGHEADER | pNVH =
st ati c_cast <LPSHNAMENVAPPI NGHEADER>(hNarmeMappi ngs) ;
int i NunOf NM = | pNVH >cNunOf Mappi ngs;
/] Check the function pointer; if NULL, just return the number of nappings
if(!lpfnEnum
return i Numof NM
/1 Enunerate the objects
LPSHNAMVEMAPPI NG | p = | pNVH >| pNM
int i =0;
whi | e(i < i NumOf NM)
{
CopyMenory(&hNM &l p[i ++], sizeof (SHNAMENVAPPI NG)) ; i f(!lpfnEnun{&hNM
dwbat a))
br eak;
}
/! Returns the nunber of objects actually processed
return i;
}

SHEnunFi | eMappi ng() follows the same pattern as most of the other 'enum-like' Windows
functions. It accepts a callback function and a generic DWORD buffer that's used to pass custom data

from the calling program to the callback. Furthermore, it expects the callback to return 0 if the
enumeration should stop. I defined the callback function to be of type ENUMFI LEMAPPROC:

typedef BOOL (CALLBACK * ENUMFI LEMAPPROC) (LPSHNAMVENVAPPI NG DWORD) ;

The function receives a pointer to a SHNAMEMAPPI NG object, together with any custom data the
calling program wants to send.

Of course, creating an ‘enum-like' function for listing all the structures is a matter of personal
preference. I could equally have defined a navigational interface, by providing functions like
Fi ndFi r st SHNameMappi ng() and Fi ndNext SHNameMappi ng() .

In practice, pretty much all the work is carried out by the callback function. The one I've used here

(ProcessNM)) extracts the pszO dPat h and pszNewpPat h fields from any SHNAMEMAPPI NG
structure it receives, and adds them to the report list view:

62

Working with Files

BOOL CALLBACK ProcessNM LPSHNAVEVAPPI NG pshNM DWORD dwDat a)
{
TCHAR szBuf[1024] = {0};
TCHAR szd dPat h[MAX_PATH|
TCHAR szNewPat h[MAX_PATH|
OSVERS| ONI NFO os;

{0};
{0};

/1l W need to know the underlying OS

o0s. dwOSVer si onl nf 0Si ze = si zeof (OSVERSI ONI NFO) ;

Get Ver si onEx(&o0s) ;

BOOL bl SNT = (os.dwPl atformid == VER PLATFORM W N32_NT) ;

/1 Under NT the SHNAMEMAPPI NG structure includes UNI CODE strings
i f (bl sNT)

W deChar ToMul ti Byt e(CP_ACP, 0, reinterpret_cast <LPWSTR>(pshNM >pszd dPat h),
MAX_PATH, szd dPath, MAX_PATH, NULL, NULL);
W deChar ToMul ti Byt e(CP_ACP, 0, reinterpret_cast <LPWSTR>(pshNM >pszNewPat h) ,
MAX_PATH, szNewPath, MAX_PATH, NULL, NULL);
}

el se

| strcpy(szd dPat h, pshNM >pszd dPat h) ;
| strcpy(szNewPat h, pshNM >pszNewPat h) ;

}

/1l Save the list view handle
HWND hwndLi st Vi ew = rei nterpret_cast <HAND>(dwDat a) ;

/] Create a \0 separated string

LPTSTR psz = szBuf;

| strcpyn(psz, szd dPath, pshNMm >cchd dPath + 1);
| strcat (psz, __ TEXT("\0"));

psz += Istrlen(psz) + 1,

I strcpyn(psz, szNewPath, pshNM >cchNewPath + 1);
I strcat (psz, _ TEXT("\0"));

/1 Add the strings to the report view
LV_I TEM | vi ;

ZeroMenory (& vi, sizeof (LV_ITEM);
Ivi.mask = LVI F_TEXT;

I vi.pszText = szBuf;

lvi.cchText Max = | strlen(szBuf);
lvi.iltem= 0;

Li stView I nsertlten(hwndListView, & vi);

psz = szBuf + Istrlen(szBuf) + 1;
Li st Vi ew_Set |t enifext (hwndLi stView, 0, 1, psz);

return TRUE;

Note that under Windows NT, the strings in the SHNAMEMAPPI NG structure are in Unicode format.

Here, if the operating system is NT, I convert the strings to ANSI format in order to use them in the
example. Also notice that the dwDat a buffer I added to the prototype is used to pass the handle of

the list view to the callback function.

63

Chapter 3

With all this code in place, the basic example I put together earlier in the chapter is now able to give
details of the files renamed by the call to SHFi | eOper ati on(). A test, in typical circumstances,
might result in something like this:

File Mapping Objects E4 I
From: | \thedin* Copy |

Tar Ic:: “redin
Original File | Target File
o hnesdinithree bt chvnewdityCopy of three et
chrevedinhd, really long file nametst cnewdirCopy of & really lang file narme. bt
o newdirsbwo, tat chvnewdirtsCopy of beo, bt

Summary

This chapter was devoted entirely to a single function. Each aspect of SHFi | eOper ati on() was
thoroughly examined, starting with the commands that let you copy, move, rename or delete files,
and the flags you can set to make the function work as you'd like it to. Then I spent some time talking
about the undocumented return codes, bugs, and pitfalls of the function. In summary, in this chapter
I've shown you:

How to program SHFi | eOper ati on()
The most common programming errors
The shortcomings of the function's documentation

000 Oo

How to take advantage of file name mapping

Further Reading

It's difficult to find reference material for a single function like SHFi | eOper ati on(), but there are
at least a couple of brief articles on MSDN that are worth a glance. They are:

O Knowledge Base Article Q133326: SHFILEOPSTRUCT pFrom and pTo Fields Incorrect
O Knowledge Base Article Q142066: SHGetNameMappingPtr() and SHGetNameMappingCount ()

In addition to these, MSDN is full of tips and quick examples on how to use SHFi | eOper ati on()
with Visual Basic. Good suggestions can be found in Manipulating Files with the SHFileOperation
Function in Visual Basic 4.0 by Deborah L. Cooper, which can be found under Technical Articles | Visual
Tools | Visual Basic | Visual Basic 4.0. The documentation for Cr eat eFi | () contains details of the
security attributes of files.

64

f_l.l

Investigating the Nature of Files

Once upon a time, all files and directories had a limited and well-defined set of attributes: time, date,
size, and a set of flags denoting their status, which could be 'read-only', 'hidden', 'archive' or 'system'.
However, Windows 95 (and then Windows NT 4.0) brought with it a number of changes, the most
important of which is that the concept of a 'file' has been widened. A file is now any object that's a
part of the shell — it doesn't necessarily have to be a part of the file system.

To give a precise definition, any object that's part of the shell namespace is called a file object. Note
once again that in this context, the word 'namespace' has nothing to do with the C++ keyword. By
'shell namespace', I just mean the collection of all the named items that actually form the shell. They
all appear in the Explorer's tree view.

Not all file objects are entries in the file system, as items like Pri nt er s and My Conput er
demonstrate. A file object that contains other, child file objects is called a folder object. Files and
directories are only the most common of the file objects.

In all probability this change has been made as a first step towards what some years ago was
known as 'Cairo' — Microsoft's fully object-oriented operating system that would have fused
Windows 9x and Windows NT into a single product. From what we mere mortals can see today,
a unified operating system is still a project in divenire, even if the hype about its object-oriented
nature has disappeared.

How many attributes can a file object have today? It will come as no surprise that the complete set
comprises all the attributes a file had under MS-DOS, plus a few others due to the graphical nature of
the Windows 9x and Windows NT shells. The shell API provides a composite and quite rich function
for investigating the properties of a given file object, be it an ordinary file, a directory, or even a
system folder or a system object like a printer or a dial-up connection. This function is

SHGet Fi |l el nfo().

Chapter 4

In this chapter, my aim is to examine carefully the prototype of this routine, emphasizing for a given
file object:

How to get its type name
How to get a handle to its Explorer icon
How to get the target platform for an executable

ODO00D

How to retrieve the attributes that define what you can do and what you cannot do with it from
within the Explorer

You might be surprised at the diversity of the information you can get through SHGet Fi | el nf o().
I still remember the reader who once asked me how to determine whether a given . exe file was a 16-
bit or a 32-bit module (without the hassle of mapping the EXE header structures). My answer was
SHGet Fi | el nf o() . A few days later, he came back to me again with a question about getting hold
of the icon for a given drive. Once again, my answer was SHGet Fi | el nf o() . A weekend went by,
and he sent me a third message with lots of excuses for being so boring. Now he was searching for a
clever way to determine whether a folder had sub-folders. My answer was the same as before. The
last message I got from him asked what arguments he should pass SHGet Fi | el nf o() to get a good
cup of coffee!

What SHGetFilelnfo() Can Do for You

As usual, let's start with the function's prototype, which is located in shel | api . h. The function
takes five arguments:

DWORD SHGet Fi | el nf o(LPCTSTR pszPat h,
DWORD dwFi | eAttri butes,
SHFI LEI NFO FAR* psfi,
Ul NT cbFi | el nf o,
Ul NT uFl ags) ;

Basically, SHGet Fi | el nf o() provides information about an object in the file system. As explained
earlier, this object can be a file, a folder, a directory or a drive root. The DWORD it returns has a
meaning that can vary quite a lot, depending upon the contents of the uFl ags argument. In a
nutshell, by means of this function you can expect to:

O Determine the target platform of an executable file (Win32, Win16, MS-DOS)
O Get the various flavors of the file icon (small, large, with the link overlay, selected, opened)

O Retrieve other display attributes, such as the file type (the short description shown by Explorer in
the Type column) and the display name (what appears in the Name column)

Q Retrieve any other attribute that can characterize the file, such as whether it can be copied,
moved, deleted or renamed; whether it can originate a shortcut; whether it has sub-folders;
whether it is shared, is a drop target or has additional property pages, and much more

How SHGetFilelnfo() Works

To understand exactly what the function can do for you, a tour of all the possible ways to call it is
mandatory. To begin, let's examine the arguments it requires:

68

Investigating the Nature of Files

Name Description

pszPath A buffer that contains the relative or absolute path to the file for
which information is required. It can handle short and long file
names.

dwFi [eAttri butes The documentation says that this parameter is used only if uFl ags

includes the SHGFI _USEFI LEATTRI BUTES flag. If so, it should be
a combination of file attribute constants: archive, read-only,
directory, system and the like. (See later)

psfi Points to a SHFI LEI NFO structure that will receive the data.
cbFilelnfo This is simply the size of the above structure.
uFl ags The brains of the function. Through all the possible flags, you can

drive the behavior and the information actually retrieved. (See later)

The SHFI LElI NFOstructure is defined like this:

typedef struct _SHFI LEI NFO

HI CON hl con;
int ilcon;
DWORD dwAt t ri but es;
char szDi spl ayNane[MAX_PATH] ;
char szTypeNane[80] ;
} SHFI LEI NFQ,

With a single exception, this structure is always used to transfer data back to the calling program, and
never needs initialization. The only member that may sometimes contain information that affects the
behavior of the function is dwAt t r i but es, and I'll have more to say on this later in the chapter.

It's clear that all the interesting uses to which SHGet Fi | el nf o() can be put depend upon the value
you put in the uFl ags argument. In most cases, information is returned via the psfi buffer, but
there are circumstances where the answer can be packed efficiently in the DWORD return value of the
function.

Specifying the Input File

A function that retrieves information about files first requires the name of the file on which to
operate, and the pszPat h parameter serves this purpose. However, there are some points about even
this that need to be clarified. For one thing, it can be a path name (as you'd expect) or a PIDL, which
we discussed in Chapter 2.

If you want to pass a PIDL instead of an ordinary path name, then you should set the SHGFI _PI DL
flag in the uFl ags argument. The converse is true as well: if you set the SHGFI _PI DL flag, then the
pszPat h must be a pointer to an | TEM DLI ST structure (in other words, a Pl DL). Of course,
pszPat h can also be a folder name or a drive name, in which cases you need to leave a final
backslash in the path name. That is, you should specify 'c: \ ' rather than 'c: ' to avoid errors when
retrieving information about the C drive.

69

Chapter 4

Using Wildcards with SHGetFilelnfo()

The documentation doesn't say anything about using SHGet Fi | el nf o() with wildcards, and from
that you might expect that wildcards aren't recognized. However, I've discovered that if you pass a
string with wildcards then provided that at least one file matches the pattern, the function works
correctly. The next figure shows the output from a sample program that we'll discuss in detail later
on:

File Information

File M arne:

[EAMSSDRSDOCWMISCY |

™ Accept any file name

Flag lzon
¥ Display Name [EXETwpe | | [T ‘
¥ Type Mame J
v lcon
¥ Other Attributes IIcon Index: 58
Retun Code: 4
Type: Text Diocument
Display: Genthunk. kst
Attributes: Copy. Move, Delete, Rename, Link, PropSheet. and mare! ﬂ

The program lets you select a file name or a path name, and retrieves the information you checked
beneath. It can return the icon, the display name, the type name and a list of all the other attributes.
Also, you can ask the program to determine the type of executable of the file in question. Checking
the EXE Type box suppresses all the other options. The Return Code label shows the return code of
the function (or a textual representation of it), and by checking Accept any file name you can force
the function to accept anything as the input file.

On this occasion, the program has called SHGet Fi | el nf o() with the path

e:\ nesdk\ doc\ m sc\ *. t xt, and you can see the response: the icon and the type name are both
correct (on my PC, a text file is described as a Text Document). Curiously though, despite specifying
a wildcard, we also have non-null file attributes and a display name! While the icon and the type
name may be obtained from the file extension, the same can't be true for display names and attributes
— those are clearly only relevant to a particular file.

To examine what was happening here, I tried calling the function with a different path:

e:\mssdk\ doc\ m sc\ g*. *. As you can see, there's now a wildcard for the extension as well as for
the name of the file. The resulting dialog looked like this:

70

Investigating the Nature of Files

File Information

File: M ame:

E|| As you can see, we've got the same file as
before, and the clear implication of this is
that if you pass wildcards,

[EMSSDK\DOCHISCrg [] SHGet Fi | el nf o() takes the first file

[~ Accept any file name

that matches the string and works with it.
If no file matches the pattern, the functios

Flag lzon

v Dizplay Mame [T ExE e | | B |
¥ Type Mame |
¥ lcon

¥ Other Attributes FrE———

does nothing but return zero.

Return Code: |1

Tepe: Text Document
Display: Genthunk. tzt
Attributes: Copy, Move, Delete, Rename, Link. PropSheet, and more! ;I
I
The other possibility we need to check is File Information []

what happens when you pass a path name
ending in *. *. As you can see in the
screenshot opposite, when I tried it, the
function returned information about a
folder:

File: Mame:

[EMSSDRDOCMISCY |

™ Accept any file name

Flags lcon

v Display Mame [EXE Type E,
¥ Type Name

M lzon

v Other Attributes Izon Index: 3

Return Code: [4

Tope: File Folder

Display:

Attributes: Copy, Maowve, Delete, Rename, Link, PropSheet. Folder, ;I

and more!
I

What's going on now? Well, stop for a while, and have a closer look at the output. In the Display
field, you can see a dot (.), just like in an old DOS directory listing! This result confirms what I stated
earlier: SHGet Fi | el nf o() operates on the first file object whose name matches the pattern. In fact,
if you try to enumerate the content of a folder using *. * as the matching string, the first item you get
is the dot. If you still aren't convinced, try this code when you next get the chance:

71

Chapter 4

W N32_FI ND_DATA wf f;
FindFirstFile("*.*", &wf);
Msg(wf f. cFil eNane) ;

In summary, even though it's an undocumented feature, you can use wildcards with
SHGet Fi | el nf o() provided that:

O You specify a pattern string that matches at least one file
O You are aware that the function stops at the first file found

It's likely that somewhere in its internal code, SHGet Fi | el nf o() gets hold of a

W N32_FI ND_DATA structure. This is filled with low-level file information, and its use wouldn't be at
all surprising here. Incidentally, this structure is also involved in another shell function that we'll
examine in a later chapter — SHGet Dat aFr om DLi st () — that can also return information about a
file object.

The Display Name

Looking at the screenshots above and running the same program on your machine, you may notice a
slight difference in what is returned as the 'display name'. In my screenshots, the display name is
composed of the filename plus the extension, but it may be that you only see the filename. It all
depends upon the settings in Explorer's View | Folder Options... dialog, in which you can choose to
'Hide file extensions for known file types'.

Here, a "known file type" is simply a registered file type. We'll discuss thoroughly how file type
registration works in Chapter 14, but for now it's enough to know that this is just a class of documents
the shell knows how to handle. If you double-click a file of a known type, the chances are that the
document will open up in a program that knows how to deal with it. To retrieve this kind of setting
programmatically, you need to use a function called SHGet Set ti ngs() that will be covered in the
next chapter.

The Sample Program

It's about time we had a look at the sample program that I've been using for the tests so far, and
which you'll see a few more times before the end of this chapter. Once again, it's a dialog-based
application built from the Wrox AppWizard, and this time I called my project Fi | el nf 0. The
operational part of the sample is built around SHGet Fi | el nf o(), and works as a generic executor
of queries about the state and the attributes of a given file or folder. This is what its user interface
looks like:

72

Investigating the Nature of Files

IDC_FILENAME IDC_BROWSE

File Information
File: Marne:
| T
IDC_WILDCARD ———F &ceept arw file name
IDC_EXETYPE
 Flag leon
IDC_DISPLAYNAME ———{— Dizplay Mame ™ EXE Type
IDC_TYPENAME ——+——1"| Type Mame IDI_ICON
IDC_FILEICON 1" leon .
IDC_OTHER T Other Attributes I IDC_ICONINDEX
Return Code: IDC_RETCODE
Type: IDC_TYPE
Display: IDC_DISPLAY
Attributes: 2]
— IDC_ATTRIB
[]

As you can see, the user interface is composed of an edit field with an associated browse button that
lets you choose a file. Unfortunately, you can't select a directory in this fashion; if you want to pass in
a folder name, you must type its name by hand. The checkboxes allow you to select which flags you
want to add to the call; if you check the EXE Type box, all the others will be discarded. This is due to
a feature of SHGet Fi | el nf o() that requires the flag for specifying the executable type to be
specified alone. The icon for the file will be drawn in a static control, while the attributes are parsed
and transformed into a descriptive string.

Most of the significant code goes in the OnOK() method, which executes when the user clicks on the
Go button. In order to successfully compile the code after these changes, remember to #i ncl ude
"resource. h" to keep track of the dialog's control IDs, and <shl obj . h> for the prototype of
SHGet Fi | el nfo().

voi d OnOK(HWAD hDl g)

TCHAR szFi | e[MAX_PATH = {0};
TCHAR szBuf[1024] = {0};

/!l Get the file nane
Get Dl gl teniText (hDl g, | DC_FI LENAME, szFile, MAX PATH);

LLEEEEEEEEE i irrrd
/1 Collect Flags

/1

DWORD dwFi | eAttributes = 0;

U NT uFl ags = 0;

i f(IsD gButtonChecked(hDi g, | DC _FILEI CON))
uFl ags | = SHGFI _| CON,

i f(IsD gButtonChecked(hDl g, | DC DI SPLAYNAME))
uFl ags | = SHGFI _Di SPLAYNANME;

73

Chapter 4

74

i f(IsD gButtonChecked(hDl g, | DC _TYPENAME))
uFl ags | = SHGFI _TYPENAME;

i f(IsD gButtonChecked(hDl g, | DC_OTHER))
uFl ags | = SHGFI _ATTRI BUTES;

i f(IsD gButtonChecked(hDi g, | DC W LDCARD))
uFl ags | = SHGFI _USEFI LEATTRI BUTES;

i f(IsD gButtonChecked(hDl g, | DC_EXETYPE))
uFl ags = SHGFI _EXETYPE;

LI rirrrrrd
// Call the function
I
SHFI LEI NFO sfi ;
Zer oMenor y(&sfi, sizeof (SHFI LEI NFO));
DWORD dwRC = SHGet Fi | el nf o(
szFile, dwFileAttributes, &sfi, sizeof (SHFILE NFO),

LEEEELLLEEEE i i rrrrrd
/] Deal with the U

/1

wsprintf(szBuf, "%l", dwR(C);

Set Dl gl t enText (hDl g, | DC_RETCODE, szBuf);

wsprintf(szBuf, "lcon Index: %", sfi.ilcon);
Set DI gl t enText (hDI g, | DC_| CONI NDEX, szBuf);

Set Dl gl t enilext (hDl g, | DC DI SPLAY, sfi.szDi spl ayNane);
Set DI gl t enText (hDI g, | DC_TYPE, sfi.szTypeNane);

LI rrrrrd
/] Parse attributes and display

I

DWORD dwAttrib = sfi.dwAttri butes;

| strepy(szBuf, "");

if(dwAttrib !'= 0)

{

if(dwAttrib & SFGAO CANCOPY)

| strcat (szBuf, "Copy, ");
if(dwAttrib & SFGAO CANMOVE)

| strcat (szBuf, "Mve, ");
if(dwAttrib & SFGAO CANDELETE)

| strcat (szBuf, "Delete, ");
if(dwAttrib & SFGAO CANRENAME)

| strcat (szBuf, "Rename, ");
if(dwAttrib & SFGAO CANLI NK)

| strcat (szBuf, "Link, ");
if(dwAttrib & SFGAO HASPROPSHEET)

| strcat (szBuf, "PropSheet, ");
if(dwAttrib & SFGAO GHOSTED)

| strcat (szBuf, "Chosted, ");
if(dwAttrib & SFGAO SHARE)

| strcat (szBuf, "Shared, ");
if(dwAttrib & SFGAO HASSUBFOLDER)

| strcat (szBuf, "SubFolders, ");
if(dwAttrib & SFGAO REMOVABLE)

| strcat (szBuf, "On renovable nedia, ");
if(dwAttrib & SFGAO FOLDER)

| strcat (szBuf, "Folder, ");

| strcat (szBuf, "and nore!");

uFl ags) ;

Investigating the Nature of Files

Set Dl gl t eniText (hDl g, | DC_ATTRI B, szBuf);

LEEEEEEEEEEE i
/'l Show the icon
/1
HI CON hl con = sfi.hlcon;
SendDl gl t em\Vessage(
hDl g, |IDI_I CON, STM SETI CON, reinterpret_cast <WPARAM>(hl con), O0);

This code is enough to reproduce the behavior you've seen so far, although we will be adding more
functionality as we go. The two most important sections are the i f blocks, and while it may not be
immediately clear what they do, we'll be focusing on them for the majority of the rest of the chapter.

The only other function we need to implement at this stage is the handler for the browse (...) button.
This involves adding an extra case to the swi t ch in APP_DI gPr oc(), and the OnBr owse()
function itself, which looks like this:

voi d OnBrowse(HWND hDl g)

{ TCHAR szFi | e[MAX_PATH = {0};
OPENFI LENAME of n;
Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;
of n. 1 Struct Si ze = si zeof (OPENFI LENAME) ;
ofn.IpstrFilter = "Al files\0*.*\0";
of n. nMaxFi | e = MAX_PATH,
ofn.lIpstrFile = szFile;
i f (Get OpenFi | eNanme(&of n))
Set Dl gl t enText (hDl g, | DC_FI LENAME, ofn.lpstrFile);
}
To make use of common dialogs (in this File Information I
case, the Open dialog), you need to link
against condl g32. 1 i b and #i ncl ude itz e
<commd! g. h>. The screenshot shows IC:\\"‘”r““:m\’\‘fS\FE"“:"ites _I

typical output from the program. It's been
asked to provide information about the

[~ Accept any file name

icon, type, display name, and attributes Flags Icon
for the Favori t es folder: ¥ Display Mame I E=E Type
v Tupe Mame *
v lcon
[V Other Attributes Ilcon Indes: 131
Retum Code: [4
Type: Shell Favorite Folder
Diisplay: Fawvontes
Attributes: Copy, Move, Delete, Bename, Link, PropSheet, =
SubFalders. Folder, and mare!

75

Chapter 4

Note that in this case we're referring to the folder by its physical name rather than its PIDL. On my
home PC, this directory is C: \ W NDOWS\ Favor i t es, but it wouldn't have mattered if the file I was
looking for were on a network drive — such details are transparent to SHGet Fi | el nf o() .

The Flags of the Function

It's clear that the uFl ags argument is absolutely central to SHGet Fi | el nf o() . It can be
constructed from almost any combination of the following values, some of which you've already seen
in the code we've put together so far:

Code Value Description

SHGFI _I CON 0x0100 Stores the HI CON handle to the file icon in the
hl con member of the SHFI LEI NFO structure.

SHGFI _DI SPLAYNAME 0x0200 Stores a pointer to the display name string for the file
in the szDi spl ayName member of the
SHFI LEI NFO structure.

SHGFI _TYPENAME 0x0400 Stores a pointer to the type string for the file in the
szTypeName member of the SHFI LEI NFO
structure.

SHGFI _ATTRI BUTES 0x0800 Stores a DIWORD with all the settings retrieved for the

file in the dwAt t r i but es member of the
SHFI LEI NFO structure.

SHGFI _| CONLOCATI ON 0x1000 Stores a pointer to the name of the file that contains
the icon the shell is using for the specified object in
the szDi spl ayNanme member of the SHFI LEI NFO
structure. Because of this, you can't use it together
with SHGFI _DI SPLAYNAME. Strangely, it seems to
work only if you specify a folder name; if you specify
a file name, the return buffer is always empty.

SHGFI _EXETYPE 0x2000 Causes the function to return a value denoting the
binary format of an executable file, and its target
platform.

SHGFI _SYSI CONI NDEX 0x4000 Causes the function to return the handle of the

system image list that contains the icon. The index of
the icon is stored in the i | con field of the
SHFI LEI NFO structure.

By using the test program described earlier, I've discovered an interesting thing. It seems that there
exists a relationship between SHGFI _I CON and SHGFI _ATTRI BUTES: the former implies the latter.
This means that the dwAt t ri but es member of the SHFI LEI NFOstructure is always filled in when
you specify SHGFI _| CON, regardless of whether you also specify SHGFI _ATTRI BUTES.

All the above are flags that make the function perform some kind of useful task for the programmer.

There are other flags, but these play a secondary role. In some cases, they refine one of the flags from
the above table. This is true for:

76

Investigating the Nature of Files

Code Value Description

SHGFI _LARGEI CON 0x00000 Causes the function to retrieve the file's large
icon.

SHGFI _SMALLI CON 0x00001 Causes the function to retrieve the file's small
icon.

SHGFI _OPENI CON 0x00002 For a folder, this causes the function to retrieve

the icon displayed when it's open.

SHGFI _SHELLI CONSI ZE 0x00004 Causes the function to retrieve an icon with the
size that's set in the Appearance tab of the
Display Control Panel applet.

SHGFI _SELECTED 0x10000 The icon retrieved is the one displayed when the
file is selected (blended with the highlight color).
SHGFI _LI NKOVERLAY 0x08000 The icon retrieved is the one displayed when the

file is a shortcut (with that little arrow over it).

The flags in this table affect SHGFI _| CON, and only work in conjunction with it. As you can see, it's
possible to get every flavor of icon.

Another flag that refines one of the earlier ones is SHGFI _ATTR_SPECI FI ED, which applies to
SHGFI _ATTRI BUTES. It means that the dwAt t ri but es field of the SHFI LEI NFO structure is
already initialized with the attributes flags the caller wants SHGet Fi | el nf o() to retrieve. In other
words, if dWAt t ri but es has a particular flag set, say SFGAO_SHARE, the function must check that
flag (and only that flag) on the file being operated upon. By default, dwAt t r i but es contains
OxFFFFFFFF, which means that all the attributes must be checked. I'll have more to say about file
attributes a little later on.

To complete the list of the flags, there are just two that I haven't yet mentioned: SHGFI _PI DL and
SHGFI _USEFI LEATTRI BUTES. We'll discuss more about these two, and the flags that modify
SHGFI _I CON, in the forthcoming sections.

Provided that there's a way to return data, you can specify several flags at the same time. In other
words, you can request (say) the icon, the display and the type name together, but not the large
and the small icon, since these are both returned through the same buffer.

Getting Information for a Given File Type

If you want to know the icon and the type name that the system uses for a certain kind of document,
you have no need to resort to wildcards. Instead, you can exploit a feature of SHGet Fi | el nf o()
that's well documented.

By setting the SHGFI _USEFI LEATTRI BUTES flag in the uFl ags parameter, you force the function
to assume that the file you passed in through pszPat h exists. In this case, it just takes the extension
and searches the registry for information about the icon and the type name. This is a really interesting
feature because it allows you to ask, for example, for the icon of a given family of files simply by
specifying *. ext .

77

Chapter 4

Of course, if you're using SHGFI _USEFI LEATTRI BUTES, you can't expect other flags like
SHGFI _EXETYPE, SHGFI _ATTRI BUTES or SHGFI _PI DL to work properly, since they are specific to
a particular, file that exists.

In my opinion, the oddest thing in this procedure is the name of the constant. Why did they use
SHGFI _USEFI LEATTRI BUTES? The name and the documentation seem to suggest a link between
this flag and the dwFi | eAtt ri but es argument of SHGet Fi | el nf o() : the idea is that the function
behaves as if a file exists with the name specified in pszPat h and the attributes set in

dwFi | eAttri but es. However, the role played by the file attributes here appears to be somewhat
tenuous. All the samples I wrote worked fine, regardless of the value assigned to

dwFi | eAttri butes.

To see this flag in action, you can check the Accept any file name box in the sample application and
enter something like *. ht mas the File Name. Alternatively, here's a helper function that you can use
in isolation to get the icon and type name for any type of file:

Hl CON Get Fi | eTypel con(LPCTSTR szFi | eType, LPTSTR szTypeNane)

{
SHFI LEI NFO sfi ;
Zer oMenor y(&sfi, sizeof (SHFILEI NFO));
SHCet Fi | el nfo(szFil eType, 0, &sfi, sizeof (SHFILEI NFO),

SHGFI _USEFI LEATTRI BUTES | SHGFI _| CON | SHGFI _TYPENAME) ;

| strcpy(szTypeNane, sfi.szTypeNane);
return sfi.hlcon;

}

Shell Icon Size

The SHGFI _SHELLI CONSI ZE flag forces the function to retrieve a large icon with the size specified
in the Shel | | con Si ze value of the following registry path:

HKEY_CURRENT_USER\ Cont rol Panel \ deskt op\ W ndowiMetri cs

&' Registry Editor

FRegistry Edit Wiew Help

E|--- My Computer Mame | Data o
: -] HKEY_CLASSES_ROOT [ab] D efauil) [value not set]
=1+ HKEY_CURREMNT_USER BorderWidth "E"
(3 AppEvents CaptionFant 07 0 00 00 00 00 00 00 be
EID Cantral F'an_elu CaptionH sight waE
&0 Accessibilty [3B] Captioriwidth g7
:g ’éppea'am lconFont 0F 00 00 00 00 00 00 00 90
Hisars lconSpacing "1125"
=0 desktop

- ResourceLocale IconSpacingFactor 00"
3 WindowMetrics IconVerticaISpacing 112at

(17 Intemational MenuFont (02 00 00 00 00 00 00 00 80
{21 InstallLocationsMRU MenuHeight e
-0 keyboard layout MenuWidth 2
-2 Metwork MeszageFont 03 000000 00 00 00 00 9C
#-{Z Remaotetccess ScroIIHeight 240"
[]--D Saftware E] Scrolhafidth ek 1
-2 HKEY_LOCAL_MACHINE lcan Size R L
- HKEY_USERS SmCaptionFont (04 00 00 00 00 00 00 00 8¢
B-{Z1 HKEY_CURRENT_CONFIG SmCaptionHeight npaE -
-0 HKEY_DYN_DATA, 0| | _'lJ
|My ComputerhHEEY_CURREMT_USERAControl Panelidesktophtwindowhd etrics 4

78

Investigating the Nature of Files

This value may be set through the Control | =T
Panel's Display applet, by selecting the

Appearance tab. It affects the size of large
icons throughout the desktop, and inside
folders:

Backgroundl Screen Saver Appearance IWeb I Effectsl Settings I

Inactive Window

Active Window
Maomal Dizabled | Selected

Yindow Text

Meszzage Box

Meszage Text

Scheme:

I j Save As... | Delete |
Item: Size: [Eclar; (B 2
IIcon j I 32ﬁ |v| |v|
Font: Size: [l ar:

IMS Sans Serif [westem) =l IS =l |'| Bl fl
Ok I Cancel I Al |

If the key doesn't exist, or if the SHGFI _SHELLI CONSI ZE flag is not specified, then the size of the
icon retrieved by SHGet Fi | el nf o() follows the default window metric, which is 32 x 32 pixels.
Each time you change the Shel | | con Si ze key, the Explorer refreshes its internal cache of icons,
which is simply the system image list that's returned by SHGFI _SYSI CONI NDEX. To get the real size
of the icon retrieved, you should use the | mageLi st _Get | conSi ze() function.

Using a PIDL

SHGFI _PI DL simply informs the system that the item being passed as if it were a file name is actually
a PIDL, and therefore needs special treatment. This code, for example, demonstrates how to get the
icon of the My Conput er folder:

LPI TEM DLI ST pi dI ;
SHGet Speci al Fol der Locati on(NULL, CSIDL_DRI VES, &pidl);
DWORD dwRC = SHGet Fi | el nf o(rei nterpret_cast <LPCTSTR>(pi dl),
dwFi | eAttributes, &sfi, sizeof (SHFILEINFO, uFlags | SHGFI _PIDL);

My Conput er is a special folder that doesn't map to a physical directory on your disks. Rather, it's a

virtual folder whose underpinnings are coded into a namespace extension. Since such a folder doesn't
have a matching path name, we need to identify it to SHGet Fi | el nf o() by some other means. The
obvious approach is to use its PIDL.

Since version 4.71, the shell API has defined a function called SHGet Speci al Fol der Locati on()
that takes a symbol identifying a special folder, and returns the corresponding PIDL. For My

Comput er, this symbol is CSI DL_DRI VES. In earlier versions of the shell, getting the PIDL of a
special folder was still possible, but it was a complex task. However, it's exactly the kind of code we'll
have to deal with ourselves if we want the PIDL of an object that isn't part of the file system and isn't
a special folder. Such code is presented in Chapter 5, where we'll be writing a custom routine to walk
the content of any folder.

79

Chapter 4

If you replace the call to SHGet Fi | el nf o() with the three lines of code you see above, the
resulting output will be:

File Information I

File: Mame:

| -

™ Accept any file name

Flag lcon

W Dizplay Mame ™ ExE Type

v Type Name

¥ Icon

v Other Attributes Ilcon Indew: 53
Return Code: [4
Type: File:
Display: My Computer

Attributes: Rename, Link, PropSheet, SubFolders, Folder, and more! d

]

Getting Attributes for a File

There's a long list of attributes you can retrieve for a given file object, many of which appeared in the
second i f block of our OnNOK() implementation. The attributes you can obtain using

SHGet Fi | el nf o() are the same as those you can retrieve through using the Get At t ri but esCOf ()
method of the | Shel | Fol der interface. In other words, SHGet Fi | el nf o() acts as a wrapper for
the | Shel | Fol der interface in this case. The attributes you can read are all defined in the

shl obj . h header file. Here's a list of the ones you're most likely to have to deal with:

Attribute Description

SFGAO_CANCOPY The file object can be copied through drag-and-drop or the
clipboard.

SFGAO_CANDELETE The file object can be deleted through the shell.

SFGAO_CANLI NK It is possible to create shortcuts for the file object.

SFGAO_CANMOVE The file object can be moved through drag-and-drop or the
clipboard.

SFGAO_CANRENANME The file object can be renamed through the shell.

SFGAO_HASPROPSHEET The file object has at least one property sheet.

SFGAO_GHOSTED The file object is displayed using a ghosted icon (normally, this is
a hidden file).

SFGAO_LI NK The file object is a shortcut.

SFGAO_READONLY The file object is read-only.

80

Investigating the Nature of Files

Attribute Description

SFGAO_SHARE The specified folder is shared.
SFGAO_HASSUBFOLDER The specified folder has at least one sub-folder.
SFGAO_COMPRESSED The file object resides on a compressed drive.

SFGAQ_FI LESYSTEM The file object is part of the file system and not a virtual folder.
This also means that a physical object (drive, directory or file)
exists for it.

SFGAO_FOLDER The specified object is a folder.
SFGAO_REMOVABLE The file object resides on removable media (typically a floppy
disk).

Given this, it's easy to arrange quick functions to test such conditions. For example, a question I'm
often asked is, "How can I know whether a given directory is shared?" Determining this is simply a
matter of checking the contents of the dwAt t ri but es field of the SHFI LEI NFO structure returned
by SHGet Fi | el nf o() against SHGAO_SHARE:

BOOL |sDirectoryShared(LPCTSTR szDi r Nane)

{ SHFI LEI NFO sfi ;
Zer oMenor y(&sfi, sizeof (SHFI LEI NFO));
SHCGet Fi | el nfo(szDi rName, 0, &sfi, sizeof(SHFILEI NFO, SHGFI_ATTRI BUTES);
return(sfi.dwAttributes & SFGAO SHARE) ;
}
If a given folder is shared, you might want the function to return the icon in which a
hand is holding the object: gl

After all, SHGet Fi | el nf o() can return 'selected’ icons for folders, so ours isn't a far-fetched
demand. Unfortunately, the function doesn't support this feature, but that's no good reason to give
up! Let's see how we can work around this problem.

Creating the 'Hand-held' Folder Icon

The 'holding hand' icon is the 29th icon in shel | 32. dI | Change Icon HE

(with a zero-based index of 28): Eile rame:
[WINDOWS'S Y5 TEMASHELLI2 DLL
LCurrent icon:

AN=@S S 7]
|F=29mB 9,
I ETE N NN

=88 m @& oy
T — »

Ok I Cancel | Browse... |

81

Chapter 4

Rather than resorting to hard work with device contexts, XOR and AND masks, and the like, we can
exploit the power of an underused Windows 95 common control: the image list.

An image list is a collection of images (icons and bitmaps) that are kept in memory in a very special
and efficient way: they are stored as a single bitmap that's created by putting all the constituent images
side-by-side. Think of it as a comic strip or, better yet, as a film roll. A fundamental constraint of
image lists is that all the images have the same size, allowing the system to access any image by index
quickly and easily. Image lists are generally used to manage large numbers of small images, and many
of the Windows 9x and Windows NT common controls (list views and tree views, for example)
require you to provide icons through an image list.

From the programmer's standpoint, an image list is an invisible control with its own set of messages
and styles, and a specific handle (Hl MAGELI ST). Image lists have a very rich programming interface,
though, and there are functions to manage the list (extract, add, copy), to support drag-and-drop and
especially to support drawing. For more information about image lists, and for a complete
programming guide, you can refer to the documentation under Platform SDK | User Interface
Services | Shell and Common Controls | Image Lists.

The aspect of image lists we're interested in here is their substantial, built-in support for overlaying
and combining icons and small bitmaps. Explorer itself uses image lists when it comes to displaying a
composite icon for certain types of file objects, such as shortcuts and shared folders: it first gets hold
of the right 'basic' icon, and then, if necessary, processes it in one of the following ways:

O Blending with the highlight color (selected state)
O Blending with the gray color (ghosted state, for a hidden file)
O Overlaying the icon with others, such as the link or the 'holding hand'

If all you want to do is simply to produce output, then | mageLi st _Set Over| ayl mage() is the
function that does the job. It works in conjunction with | mageLi st _Dr aw() to combine two icons
in a given device context. Here's an example:

HI CON hi Fol der;
HI CON hi Hand;

/1 Load the icons
/1 hiFolder = ...;
// hiHand = ...;

/!l Get the DCto draw into
HDC hdc = Get DC(Get Focus());

I/l Create the image |ist
H MAGELI ST hinml = I magelLi st_Create(32, 32, ILC_MASK, 1, 0);

// Add icons to the inage |ist
| mageLi st _Addl con(hi nl, hi Fol der); /1 lcon index of 0O
| mageLi st _Addl con(hi nl, hi Hand); /1 lcon index of 1

/1 lcon 1 (hand icon) is the overlay mask #1
| mageLi st _Set Overl ayl nage(hinl, 1, 1);

/1 lcon O (the folder) must be overlaid by mask #1 in the device context
| mageList_Draw(him, 0, hdc, 0, 0, | NDEXTOOVERLAYMASK(1));

82

Investigating the Nature of Files

/'l Free the icons
Dest r oyl con(hi Fol der) ;
Dest r oyl con(hi Hand) ;

/] dean up and exit
Rel easeDC(Get Focus(), hdc);
| mageLi st _Destroy(him);

The source code employs a number of functions from the image list APIL. In particular,

| magelLi st _Create() gives you a brand new image list with the specified size for the images (32 x
32 in the sample above). When you've finished, you destroy it using | mageLi st _Destroy(). Asits
name suggests, | mageLi st _Addl con() adds icons to the given image list. For these and other
functions, documentation is available in Visual C++ Books Online.

The call to | mageLi st _Set Over |l ayl mage() in the above code defines the second icon in the
image list (index 1, the 'holding hand') as overlay mask #1. Then, in the device context specified by
hdc, the icon with index 0 (that is, the folder) is overlaid with mask #1. Take care here, because the
indexes for icons and masks are different — the former are 0-based, while the latter are 1-based.

Version 4.71 of the shell has increased the number of overlay masks available from 4 to 15.

Although the code presented so far works fine and does what we asked it to, it would be more useful
if we could return a brand new icon to a caller, and so we need to find something like

I mgelLi st _Dr aw(), but which creates an icon that can be addressed by an HI CON handle. We can
then return that handle to the caller. In fact, we don't have to look very far for help, because

I mgeLi st _Merge() does just what we need.

H MAGELI ST | mageLi st _Mer ge(H MAGELI ST hini 1,

int i1,

HI MAGELI ST him 2,
int i2,
int dx,

i nt dy);

The function takes two images from two image lists (it can be the same image list in both cases, if you
wish), and merges them by drawing the second over the first. The new image is stored in a new image
list, and the mask for the resulting image is obtained by ORing the masks (if any) of the two
constituent images. The documentation is not completely clear what the dx and dy parameters do,
but a moment's experimentation reveals that they indicate the position relative to the first image at
which you want the overlaying image to be drawn. The offset is calculated from the top-left pixel, but
I bet that in most cases you'll set both parameters to 0.

Here, then, is the source code for a reusable function called Get Shar edFol der | con() that takes
an HI CON and returns a handle to a new icon in which the original image has been overlaid with the
'holding hand' icon:

HI CON Get Shar edFol der | con(Hl CON hi Fol der)

{
Hl CON hi Shar ed;

HI CON hi Hand;

/1 Get the 'holding hand' icon
ExtractlconEx("shel I 32.dl ", 28, &hiHand, NULL, 1);

83

Chapter 4

// Create an image list to nerge the folder and hand icons
H MAGELI ST himl = I magelLi st_Create(32, 32, ILC_MASK, 1, 0);

// Add icons to the inage |ist
| mageLi st _Addl con(hi nl, hi Fol der);
| mageLi st _Addl con(hi nl, hi Hand);

// Merge the icons to a new imge |ist
HI MAGELI ST hi M New = | nageLi st_Merge(him, 0, hinm, 1, 0, 0);

// Extract the icon fromthe new i nage |i st
hi Shared = | mageLi st _Extractlcon(0, him New, 0);

I/l Free the 'holding hand' icon. W don't free the 'folder' icon
/'l because we received it fromthe caller, who may still need it.
Dest r oyl con(hi Hand) ;

/1 Cean up the image lists and exit
| mageLi st _Destroy(hinl);

| mageLi st _Destroy(hi m New) ;

return hi Shared;

The function receives the icon whose 'shared' version is required from the caller, so the first thing we
have to do is get hold of the 'holding hand' icon, which (as explained earlier) is stored in

shel 1 32. dl | with an index of 28. To extract the icon, we use Ext ract | conEx() . This is not the
only possibility (Extract | con() is fine as well), but it's the more flexible choice: it lets you extract
more icons in more sizes at the same time.

Extract!lconEx("shell32.dlI", 28, &hiHand, NULL, 1);

This single line instructs the function to load only the large version of the 29th icon (remember that
0-based index) in shel | 32. dl | . We want neither the small version, nor more icons. See the Visual
C++ Books Online for further details about Extract | conEx().

With both icons in our possession, we create an image list and fill it with the two icons to combine.
Then, we merge the icons and save the result into another new list that has just one icon — the syntax
of | mgelLi st _Mer ge() requires you to identify the icons through an <image list, icon index> pair.
After calling | magelLi st _Mer ge(), we have a brand new image list from which to extract the
composite icon. You can now amend the code in OnOK(') so that this new function is called if the
object on which SHGet Fi | el nf o() operates is shared:

THEELLEEEE i
/1 Show the icon
/1
HI CON hl con;
if(dwAttrib & SFGAO _SHARE)

hl con = Get Shar edFol der | con(sfi.hlcon);
el se

hl con = sfi.hlcon;

SendDl gl t emMVessage(
hDi g, |1 D _I CON, STM SETI CON, reinterpret_cast <WPARAM>(hl con), 0);

84

Investigating the Nature of Files

The following screenshot shows how the function works:

File Information

File Mame:

IC:\T empC++ Draft _l

™ Accept any file name

Flags lcon

V| Display Name ™ E%E Type

V' Type Mame

¥ lzon

IV Other Attributes Ilcon Indesw: 3
Return Code: [{
Type: File Falder
Display: C++ Draft

Attributes: Copy, Move, Delete, Rename, Link, PropSheet, Shared, d
Folder, and more!

Binary Format of Executables

Another interesting feature of SHGet Fi | el nf o() is its ability to return the binary format of an
executable file. By specifying the correct flag, you can discover whether a given . exe is a 32-bit or
16-bit module, and even which is the minimum Windows platform it requires. Typical scenarios when
this might be necessary are when you're:

Q Writing a system-wide routine to analyze processes and windows, or to scan files. You might want
to indicate whether a 16-bit or a 32-bit program has created that process or window.

Q Detecting programmatically whether your customers have upgraded from the old 16-bit version of
your tool.

O Writing low-level tools to spy on the system and its files.

Q Implementing interprocess communication, as this may also require knowledge of the type of an
executable.

If you're in one of these situations, it looks at first like there's only one way out: learn about the
binary format of Windows (and possibly DOS) executables, and manually scan the binary code
looking for identifying characteristics. Fortunately, SHGet Fi | el nf o() saves us from having to do
so. In order to decide which generation of Windows platform a given program was designed for, you
just need to specify the SHGFI _EXETYPE flag. Note, though, that to work properly, this flag cannot
be combined with any other.

Retrieving information about the executable format is one of the few cases where you must analyze
the return code of the function to extrapolate the result. SHGet Fi | el nf o() returns a DWORD value,
and in this case the low order word is the signature of the executable, which is given by the following
strings:

85

Chapter 4

File Signature Hex Code Meaning

PE 0x4550 Win32 Portable Executable format, as adopted by
all the 32-bit Microsoft operating systems.

NE 0x454F Windows 3.x New Executable format, which is
typical of all 16-bit Windows programs.

MZ 0x5A4D DOS executable format. This value is also returned
if you interrogate a . comor a . bat file.

The hexadecimal codes correspond exactly to the letters in the 'file signature' column. For example,
0x50 is the P, 0x45 is the E, and so on.

The two bytes of the high order word, on the other hand, contain the version number of the minimum
release of the operating system required to run the program. This information isn't strictly necessary
if your goal is just to know whether a given module is 16- or 32-bit, but you'll find it to be 0x030A in
the case of old Windows 3.1 programs, and 0x0400 for all the other 32-bit platforms. The only
exceptions to this are programs specifically targeted to Windows NT 3.5x, where the value is less than
0x0400 even if they're 32-bit programs — in this case, the number is 0x0350. It's also possible that
there will be a zero value in the high order word, which means you're looking at a 32-bit console
application.

So while SHGet Fi | el nf o() can give you all the information you could ever want to know about a
file, its programming interface has considerable room for improvement. Given a file name, for
example, it's quite a complex process to arrange a test to determine whether it is a 32-bit, a 16-bit or a
DOS program. Calling the function is only half the job; you then have to check the result and decide
what to do about it.

We will round off this discussion by implementing the code that deals with the EXE Type box being
checked in our sample application. It involves defining constants for the three different types of file at
the top of Fi | el nf 0. cpp, and then testing the return value of SHGet Fi | el nf o() in the fashion
described above. The results of these tests are then used to modify the output of the application:

/'l Constants

const int PE_SIGN = 0x4550;
const int NE_SIGN = 0x454E;
const int MZ_SIGN = Ox5A4D;

FEELTEELEET T i b rd
/1l Deal with the U
/1
i f (uFl ags == SHGFI _EXETYPE)
i f(dwRC == 0)
| strcpy(szBuf, "Not an executable file.");

el se
| strcpy(szBuf, "");

i f (LOWORD(dwRC) == PE_SI G\)
{

| strcat (szBuf, "32-bit");
i f (H VWORD(dwRC))

86

Investigating the Nature of Files

| strcat (szBuf, " Wndows executable");

el se
| strcat (szBuf, "

Consol e executabl e");

}
el se i f (LONMRD(dWRC) == NE_SIQN)
| strcat (szBuf, "16-bit executable");

el se i f (LONORD(dwWRC) ==

MZ_SI GN)

| strcat (szBuf, "DOS executabl e");

}

el se

wsprintf(szBuf, "%l", dwRO);

The screenshot below illustrates what
happens with Expl or er. exe:

File Information =] I
File M ame:

|c: S NDOWSAE xplarer. exe |

I~ Accept any file name

Flag lcon

™ Dizplay Mame
™ Type Name
™ lcon

[~ Other Attributes

¥ EXE Type

Ilcon Index: 0

Retun Code: [32-kit Windows executable

Type:

Dizplay:

Altributes: ;I

I]

Curiously, SHGet Fi | el nf o() doesn't recognize a DLL or a VxD as an executable file, and
doesn't return its binary format. There's therefore no way to know about the binary format of a
DLL other than delving into the file. This means that the explanation above works well only for
stand-alone executables with the . exe extension. In fact, the function even fails with screen
savers, despite files with . scr extensions being no more than ordinary stand-alone executables.
This may (or may not) be a bug, depending upon the definition of ‘executable file' you want to

adopt.

SHGetFilelnfo() Return Values

If the function returns 0, then an error occurred somewhere. In most cases, this means that you
passed an invalid file name or PIDL, or that you specified a faulty combination of flags. The latter of

these is the more likely of the two.

Unless the flags specified instruct it to do otherwise, the function returns 1 if everything went well.
One example of where this is not the case is when the SHGFI _EXETYPE flag is set, as we have been
discussing. A second situation in which the return code means something more than just 'success' is
when the SHGFI _SYSI CONI NDEX flag is set. In this case, the function returns the handle of the
system image list that contains the icon for the specified file or folder.

87

Chapter 4

Interestingly, SHGet Fi | el nf o() may even be used successfully to retrieve the icon associated with
a CD-ROM. While the icons for other drives are almost always standard, the icon shown by the
Explorer for the CD-ROM often depends upon the content of the aut or un. i nf file. Having a
function capable of returning the correct icon is a great help whenever you need such an icon.

Summary

SHGet Fi | el nf o() doesn't have any obvious bugs, but once again it suffers from documentation
that is at the survival level. If you spend a few hours studying what's there and testing all the possible
combinations, it's likely that you will eventually find what you need, but that's hardly the point —
good documentation must emphasize clearly what a function can and cannot do. At least three of the
questions I get asked most frequently are answered by SHGet Fi | el nf o(), but discovering that fact
was a far from easy business.

To redress the balance a little, this chapter showed you:

How to get the various icons associated with a given file or folder
How to discover the binary format of executable (. exe) files
How to determine the system attributes of a given file or folder may have

ODO00D

How to merge two icons using image lists, instead of XOR masks and device contexts

88

Investigating the Nature of Files

Further Reading

Unfortunately, I don't have a list of books or magazine articles for you on this occasion — this is a
subject for which there's a very limited range of material. There are a few things I can recommend,
but as you can see, most of them are errata in the official documentation or accessory articles and
examples.

The sources listed here are among those I used in researching this chapter, so you might not find
anything new. Then again, four eyes are better than two, and you could just notice something that I
missed. In particular, I'd like to point you towards a couple of Knowledge Base articles:

O Knowledge Base Article ID Q132750: Convert a File Path to an ITEMIDLIST
Q Knowledge Base Article ID Q128786: How to Shade Images to Look Like Windows 95 Active Icon

The first one touches upon a topic we'll cover later on, and shows how to create PIDLs from scratch,
and for non-folder objects. The second may help if you need to do some quick graphical processing
of your windows' client areas.

We talked briefly about the size of shell icons, and there are a couple of articles to read on that topic.
One of these, a piece by Bret Pehrson, appeared in the April 1998 issue of the Windows Developer's
Journal (WDJ) under the title Rebuilding the Internal Shell Icon Cache. It shows how to force the system
programmatically to recognize that the user has changed the current default size for large icons. This
same topic (along with many others) is covered by John Hornick in an article called Icons in Win32,
which appears in the MSDN library under Technical Articles | Windows Platform | User Interface.

89

Browsing for Folders

I provided an overview of folders and their place in the Windows shell in Chapter 2, but in this
chapter we're going to look at them in detail. We'll focus on the shell functions that deal with folders
at any level, and all the underlying machinery that makes sure everything is working properly. In
doing so, we'll run into two things that play very important roles: shortcuts and PIDLs. The former
will be the subject of the next chapter, but we'll examine PIDLs in this one, covering:

Q The use of the SHBr owseFor Fol der () function

QO More about what PIDLs are, and how to work with them
Q Virtual folders and special locations

O How to get the settings of a folder

The examples we'll discuss include an enhanced version of the SHBr owseFor Fol der () API
function, some helper functions to make it easier to work with PIDLs, and some samples of how to
enumerate the contents of some special locations, such as SendTo, Favori tes, and My Docunents.

Choosing a Folder

Let's begin our trip with a look at the various ways there are to select a folder. It's a common
requirement for an application to be able to allow the user to choose a particular directory from a
specific drive. The Windows 3.x API didn't provide any built-in facility for this, so you had to create
your own helper function, and there was a pretty common technique for doing so. It consisted of
modifying the common dialog template, leaving out some unnecessary controls like the list box that
contained the file names.

Chapter 5

Porting this solution to Win32 has a drawback, however: you have to renounce the new Explorer-
style user interface and instead remain faithful to the old one:

Open H E
File name: Folders:
exanices

Cancel |
- e =
E5) articles
[dep | —Iﬂelp
(3 cui |
0 ddi Metwork....
= (2 mind -
List files of type: Drives:
IHilmap files [*.bmp] j I e j

On Win32 platforms, the Explorer-style Open dialog is a single entity, and you can't just 'get rid' of
any of its components (like the file list, for example...).

Directary name:

IE:\BDDk\SHELL'\T et Chapls
o et ;I

AT

Diives:

Ige:

L

Choose Directory ﬂ E I

Ok
Cancel

Metwork...

fl

A More Modern Approach

Starting with Windows 95, the Win32 SDK finally
delivered a system-provided solution for browsing
folders: the function called SHBr owseFor Fol der ().
Its main feature is that it uses a tree view that's similar
to the one we know and love from using Explorer:

92

Another option that's open if you elect to adopt the
old Windows 3.x interface is to arrange a dialog like
the one shown by Visual C++ when it asks you to
specify a folder for your new project. Check out the
Win32 documentation for Get OpenFi | eName() to

discover more about it.

Browse for Folder

Choose a folder:

[7]%]

E{@j Deskto

gf Recycle Bin
----- 5 My Brigfease

My Computer:
Metwork Neighborhood

o]

Cancel

Browsing for Folders

Like the functions we've examined in the last two chapters, SHBr owseFor Fol der () hasa

prototype that looks simple, but which actually involves a structure with lots of settings and flags.
Unlike those others, however, it may be considered a more 'focused' function — its one purpose in life
is to let you choose a folder from those available in your desktop's namespace.

The Prototype of SHBrowseForFolder()

Let's have a look at the prototype of SHBr owseFor Fol der (), which can be found in shl obj . h:

LPI TEM DLI ST W NAPI

SHBr owseFor Fol der (LPBROASEI NFO | pbi) ;

It takes a single pointer to a BROWSEI NFO structure, which is declared in the same file:

typedef struct _browseinfo

HWAND hwndOaner ;

LPClI TEM DLI ST pi dl Root ;
LPSTR pszDi spl ayNane;

LPCSTR | pszTitle;
U NT ul FI ags;
BFFCALLBACK | pf n;
LPARAM | Par am

int ilmge;

} BROWSEI NFO, * PBROWSEI NFO, * LPBROWSEI NFQ,

Let's see what each member is for.

pszDi spl ayNane

| pszTitle

ul Fl ags

I pfn

| Par am

Il mge

Name Description
hwndOwner Handle of the window that owns the dialog.
pi dl Root Identifies the root node for the hierarchy of objects to be presented.

This is a PIDL.

Must be a pointer to an allocated buffer that will contain the display
name of the selected object.

Must be a pointer to a buffer that contains the string to be assigned to
the label just above the tree view.

Specifies the appearance and behavior of the window. (See later for
permitted values.)

Callback function used to hook the dialog.

32-bit custom data to be passed to the callback function. Usually a
pointer or a handle.

Buffer that will contain the index of the icon for the selected folder or
file. This index is relative to the system image list.

93

Chapter 5

The very simplest way to call SHBr owseFor Fol der () is:

BROWSEI NFO bi ;

Zer oMenor y(&i , si zeof (BROASEI NFO)) ;

bi . hwhdOmer = hDl g;

LPI TEM DLI ST pi dl = SHBrowseFor Fol der (&bi) ;

This code will display a dialog box like the one in the figure you saw earlier in the chapter, and it
retrieves a PIDL to the selected folder. If the folder has a corresponding path, you can get it through
this code:

TCHAR szPat h[MAX_PATH] = {0};
SHGet Pat hFrom DLi st (pi dl, szPath);
Msg(szPat h);

There are, however, a number of interesting issues connected with using SHBr owseFor Fol der ().
We can summarize them as follows, and over the next sections, we'll be looking at them in detail.

a
a
a

Q

The function handles both PIDLs and path names transparently.
The function allows you to browse even into special system folders.

The function returns a great deal of information, not unlike SHGet Fi | el nf o() . (See the
previous chapter.)

The dialog is slightly customizable, which is always good news.

Using SHBrowseForFolder()

What you can do with SHBr owseFor Fol der () is strongly bound to the ul FI ags member of
BROWSEI NFO, whose legal values are combinations of the following flags:

Flag

Description

Bl F_RETURNONLYFSDI RS If set, the function enables the OK button only if the user

Bl F_DONTGOBEL OWDOMAI N Do not show network folders, only nodes with the domain

Bl F_STATUSTEXT The dialog template contains a label where you can

Bl F_EDI TBOX This is a new feature (shell version 4.71 and above) that

Bl F_VALI DATE This is another new feature (shell version 4.71) that

selects a file system directory. If, for example, you were to
select the Network Neighborhood node with this flag set,
the OK button would be grayed out.

name.

display any text you want, especially if you subclass the
dialog window. (More on this later on.)

allows you to have an edit box from which to choose a
folder manually.

complements Bl F_EDI TBOX. If you set this flag and
subclass the dialog window, then you'll be notified each
time the user enters and confirms an incorrect file or
folder name in the edit box. (More on this later on.)

94

Browsing for Folders

Flag Description

Bl F_BROWSEFORCOMPUTER Allows the user to choose only a computer name. The
browse takes place as usual, but the OK button that
enables the selection is always disabled, except when a
computer name is selected.

Bl F_BROWSEFORPRI NTER The same as above, but for printer names.

Bl F_BROWSEI NCLUDEFI LES If this flag is set, then despite the function's name, the tree
view shows and lets you select file names and not just
folder names. This offers a great chance to set up dialogs
with all the printers or the fonts available in the system.

When calling SHBr owseFor Fol der (), there are two ways in which you can customize the look of
the final dialog. The more powerful requires you to subclass the window via a callback function, and
we'll cover this later in the chapter. A far simpler way to get a limited degree of customization is by
modifying the text above the tree view. The | pszTi t | e member of BROASEI NFOis responsible for
this; it is declared as a pointer, so you just have to pass a 32-bit pointer to an existing memory buffer:

TCHAR szBuf [MAX_PATH = {0};
| strcpy(szBuf, __ TEXT("Choose a folder:"));
bi .l pszTitle = static_cast <LPCSTR>(szBuf);

The same holds true for pszDi spl ayNane, which is a return buffer. If you're interested in the
display name of the selected folder, then you need to pass a valid buffer to be filled. First declare or
allocate it, and then assign the pointer to pszDi spl ayNarme:

TCHAR szDi sp[MAX_PATH] = {0};
bi . pszDi spl ayNane = static_cast <LPSTR>(szDi sp);

The function assumes that pszDi spl ayNamne is at least MAX_PATH bytes in size. Of course, this field
may be NULL, in which case you won't receive the display name of the folder.

As explained in earlier chapters, the display name of the folder is the name used by Explorer to display
that folder. On my machine, for example, (C:) is the display name of C: \ .

What the Function Returns

Technically, the return value of SHBr owseFor Fol der () is a PIDL that identifies the selected file or
folder. If you cancel the dialog, then the function returns NULL. Simple as ever.

However, the function is capable of returning other useful information through the BROWSEI NFO
structure that you pass to it. Specific examples of this include the display name of the selected object
(as I've already mentioned), and even the icon that represents it.

Getting the Folder Icon

Even though SHBr owseFor Fol der () seems to be reproducing functionality we've already observed
in SHGet Fi | el nf o(), there's quite a bit of work you have to do on your own to get and display the
icon.

95

Chapter 5

When the function returns, the i | mrage member of the BROASEI NFO structure contains a number
that is the index to the position the icon occupies in the system image list. Thus, if you want to draw
the icon — or more simply, if you want the HI CON handle to it — you must first get a handle to the
image list.

I talked about this in the previous chapter, so it's fairly easy to employ the method here. If you call
SHGet Fi | el nf o() with the SHGFI _| CON and (above all) SHGFI _SYSI CONI NDEX flags set, the

function returns a handle to the system image list.

HI CON SHGet Syst erm con(int il conl ndex)

{
SHFI LEI NFO sfi ;
Zer oMenor y(&sfi, sizeof (SHFI LEI NFO));
// W aren't specifying a file nane, since all we want is the handle...
HI MAGELI ST himl = reinterpret_cast <H MAGELI ST>(SHCGet Fi | el nf o(
mx % 0, &fi, sizeof (SHFILEINFO), SHGFI | CON | SHGFI _SYSI CONI NDEX)) ;
H CON hl con = | mageLi st _Extractlcon(0, him, ilconlndex);
return hlcon;
}

The above code is a helper routine that given an index, returns the corresponding icon in the system
image list. To run this code, you need to include shel | api . h and to initialize the common controls
library by calling either | ni t CormonControl s() or | ni t CommonControl sEx(). As discussed
in Appendix A, the first is the approach to use for old versions of the shell, while the second is
recommended for shell versions 4.71 and above.

Using a Callback Function

The most interesting things you can do with SHBr owseFor Fol der () require a callback function.
This kind of thing is well supported and, once in a while, even pretty well documented. To subclass
the dialog box created by the function, you need to assign a valid function pointer to the | pf n field
of BROWSEI NFO. The pointer must point to a function with a prototype like this:

i nt CALLBACK BrowseCal | backProc(HVWAD hwnd,
U NT uMsg,
LPARAM | Par am
LPARAM dwDat a) ;

As I'm sure you've guessed, hwnd is the handle of the hooked window, while uMsg is the code of the
message being received. | Par amis a value that can have different meanings according to uMsg, and
finally dwDat a is user-defined data — the same data you specified through the | Par ammember of
BROWSEI NFO. If you need the callback function to work on data created by the calling program
instead of using global variables, you can fill the BROWSEI NFOstructure's | Par ammember with a 32-
bit value and be sure that it will automatically be passed to the callback via the dwDat a argument. To
fit more data in those 32 bits, you can use pointers or, better yet, allocate a handle to a block of
memory, lock it, package everything you need, unlock it, and store it as the | Par amfield.

96

Browsing for Folders

The figure shows the situation once the callback has
been set up: SHBr owseFor Fol der () calls a function
that you define, passing in some data and notifying N 3

some events. SHBrowseForFolder Callback
Dialog alibac

ké

Events You Can Detect

The dialog box created by SHBr owseFor Fol der () can notify the callback function of the following
events:

Q Dialog initialization has completed
Q The selection has changed
QO The user entered some invalid file or folder name in the edit box

It does this by sending the following messages:

O BFFM_I NI TI ALI ZED
Q BFFM_SELCHANGED
Q0 BFFM _VALI DATEFAI LED

These messages are received by the callback function through its uMsg parameter. Each message
carries with it a LPARAMvalue, which evaluates to the | Par amargument. Let's see how | Par amis
configured message by message.

Message |Param Meaning

BFFM_I NI TI ALI ZED Unused — it is always NULL. This message is sent after the
dialog's window procedure has finished processing the
VWM_I NI TDI ALOG message.

BFFM_SEL CHANGED Points to the identifier list of the newly selected folder. Note
that, like other Windows controls, this event is notified
when the selection has already changed.

BFFM_VALI DATEFAI LED Points to the current contents of the edit box, which means
that like its subject, this message is supported only with
shell version 4.71. By returning zero, the callback can force
the browsing dialog to close. By returning a non-zero value,
on the other hand, the dialog is kept active.

97

Chapter 5

Messages You Can Send

There are a few messages that a callback function can send to the dialog window to have it execute
certain actions. Specifically, they are:

Message Description

BFFM_ENABLEOK This enables or disables the OK button, according to the value of
| Par am If non-zero, the button is enabled so you can confirm
the currently selected folder. wPar amis unused.

BFFM_SETSELECTI ON Selects the specified file or folder. A pointer to the PIDL or the
path name is stored in | Par am while wPar amdictates how to
interpret the pointer. FALSE means it is a PIDL, TRUE stands for
a path name.

BFFM_SETSTATUSTEXT Sets the text you provide in the dialog's status area. The actual
text is pointed by | Par am while wPar amis unused.

These messages are sent using the ordinary SendMessage() function, and by combining them you
can really enhance the behavior of SHBr owseFor Fol der ().

Customizing the User Interface

By using a callback function, you can intervene and make changes to the dialog's user interface so
that it suits your needs perfectly. Suppose, for example, that you don't want the ? button on the
caption bar, or that you want to give a more marked 3D look to some controls. In this section, I'll
explain how such things can be done.

Removing the Context Help Button

Removing the context help button from the caption bar is simply a matter of style. That's right: you
just have to turn off the bit that causes Windows to draw and handle it! The button appears when the
extended style of any window has the W5_EX_CONTEXTHELP bit set.

Extended styles were first introduced with Windows 3.1, and reinforced with the SDK version that
shipped with Windows 95. To the best of my knowledge, the only difference between 'ordinary' styles and

extended' styles lies in the memory area where they are stored. There are no conceptual differences and no
hidden meanings.

You need to use different code to access 'extended' styles than you do to access window styles. To
turn off the bit that makes the help button appear, what you have to do in your callback function in
response to the BFFM_I NI TI ALl ZED message is the following:

DWORD dwstyl e = Get W ndowLong(hwnd, GA._EXSTYLE) ;
Set W ndowLong(hwnd, GW._EXSTYLE, dwStyle & ~W5_EX CONTEXTHELP) ;

First, you get the current extended style (using GAL_EXSTYLE instead of GAL_STYLE), and then you
turn off the specified bit. Finally, save the style back again.

98

Browsing for Folders

Adding a 3D Border to the Status Text

Doing this is only a little more complex and requires just one more line of code than the last
example. However, you should be aware that doing things like we're about to do doesn't guarantee
that your code will work on all existing and future versions of Windows. You can only be sure it
works where you have successfully tested it.

That warning aside, we want to draw the status label with a 3D border, just like any other status bar.
The Bl F_STATUSTEXT flag is somewhat misleading — it doesn't add a real status bar to the bottom of
the window as you might expect it to. Instead, it adds a static label just above the tree view and below
the title. This window has a control ID that we can discover through a utility like Spy++:

Browse for Folder

Choose a folder:

|E:\WINDDWS
B2 Windows N
L Al Users
. {7 Application Data
™. Microsoft Spy++ - [Windows 1] 9 [=] B3
E Spy Tiee Sgarch Wiew Messages Window Help = |E'|1|
Slolo] ol B 0]l) R |

-1 0000029C "™ URL Moniker No | General | Styles | Windows | Class I Process I

-1 000007148 " URL Moniker Noi
053 00000104 '™ tooltips_class32

-1 00000088 ™' Shell_Tray¥/nd

‘window Caption: |C:\W\NDDW’S
Wfindow Handle: 00000DES

Window P 80278022
[00000084 ™ #3Z771 [WinSwil H;Zt:r:;lemc (310, 133606, 153), 29620
-] 00000DBC "Microsoft Spy++'" . c T
 DOD00ET 4 toottine clageqy FecoedRect (310, 133606, 153, 296,20
ps_ Clent Rect: 1. 1295, 1], 29418

-0 00000DC8 "Browse for Folder

T Instance Handle: 70930000
- [00000DBEE "CAWINDOWS'

: Contiol D: 0T
- [00000DCA "Choose a faldi | oo

D e oo User Data: 00000000
il “afindau Bptes [+0 ooooomoc =l
For Help, press F1
| Cloze I Refresh | Help |

When you know the control ID, and once the callback function has brought you inside the dialog's
code, getting the handle of any child window is as easy as calling:

HWD hwndChild = GetDi glten{hDi g, control|D);

You can see from the screenshots above that the label we're interested in has a control ID of 0x3743,
so:

HWAD hwndLabel = Get D glten{hwnd, 0x3743);
dwsStyl e = Get WndowLong(hwndLabel , GAL_EXSTYLE) ;
Set W ndowLong(hwndLabel , GAL_EXSTYLE, dwStyle | W5 _EX STATI CEDGE);
Set W ndowPos(hwndLabel , NULL, O, 0, 0, O,
SWP_NCSI ZE | SWP_NOVOVE | SWP_DRAWFRAME) ;

99

Chapter 5

The above code just adds a slightly inset edge to the window, making it look like this:

Browse for Folder E I

Choose a folder:

|E:\W’INDDW’S
1 My Documents ;I
-1 Program Files
-2 Programmi
----- @ Recycled
- Wehshare

: - Al Users

-2 Application Data
-1 CatRoot

-2 Command

Note that in order to see the change, you need to force the window to redraw its non-client area,
which is where Set W ndowPos() comes in. Once again, all this is done in your callback function
responding to the BFFM_I NI Tl ALl ZED message.

I warned you earlier about the potentially temporary nature of this code. Today, it works well on all
Win32 platforms, but what if some day Microsoft decides to change that ID? A good workaround
might be the following.

HWD hwndLabel = Get D gltenm(hwnd, 0x3743);

/l Check if it is a valid w ndow
i f(IsWndow hwndLabel))

{
/1l Now check if it is window of class 'static'
TCHAR szd ass[MAX_PATH = {0];
Get d assNane(hwndLabel , szC ass, MAX_PATH);
if(lstrcnpi (szCO ass, _ TEXT("static")))

return;

}

el se
return;

We perform a double check against the window handle returned from Get DI gl t em() . Firstly, we
check that it's a valid window using | SW ndow() . Secondly, we verify that the window really is a
label — a window of class 'static'. If either of these tests fails, we should exit the procedure to avoid
access violation errors.

Changing the Dialog Caption

A more useful (and rather safer) action than adding a 3D border might be to change the caption of
the dialog window — you have just to call Set W ndowText () with the new string. Again, this code
will execute in response to BFFM_I NI TI ALI ZED.

Set W ndowText (hwnd, szNewCapti on);

100

Browsing for Folders

Moving the Dialog Window

Another thing you might want to do during the initialization step, responding to
BFFM_I NI TI ALI ZED, is to position the window wherever it suits your needs. Typically, you would
move the dialog to the center of the screen:

RECT rc;

Getd i ent Rect (hwnd, &rc);

Set W ndowPos(hwnd, NULL,
(Get Systemvetri cs(SM CXSCREEN) - (rc.right - rc.left)) / 2,
(Get Systemvetri cs(SM CYSCREEN) - (rc.bottom- rc.top)) / 2
0, 0, SWP_NCZORDER | SWP_NOCSI ZE) ;

Animating the Status Label
A typical use for the status label is displaying the name of the file or folder that's currently selected,
as shown in the previous figure. The mechanism that makes this possible is built around the
BFFM_SEL CHANGED message.

TCHAR szText [MAX_PATH] = {0};
SHGet Pat hFrom DLi st (rei nterpret_cast <LPI TEM DLI ST>(| Paran), szText);
SendMessage(hwnd, BFFM SETSTATUSTEXT, 0, reinterpret_cast <LPARAM>(szText));

When you receive it, the | Par amargument points to the PIDL of the newly selected folder or file.
Then, provided that one exists for that folder, you can get the path name in displayable form by calling
the SHGet Pat hFr om DLi st () function. The reason for this proviso is that not all folders map to a
physical directory — My Conput er, for example, appears to be a folder without actually being one. If
you call SHGet Pat hFrom DLi st () with a PIDL that points to My Conput er, you'll get an empty
string as a result.

The string retrieved by SHGet Pat hFr om DLi st () can then be sent to the status window using the
BFFM_SETSTATUSTEXT message.

Validating Manual Editing

Since 4.71 version of the shell, which was bundled with Browse for Folder
Internet Explorer 4.0, it has been possible to add an edit
box to the user interface of this dialog, and it's not even

Choose a folder:

necessary to resort to callbacks in order to do so. It [WwWINDWSASYSTEM

suffices simply that you specify the Bl F_EDI TBOX flag [System

when calling SHBr owseFor Fol der () . The result is the 50 St e —
fOllOWingi ----- Subscriptions

-1 Syshokup

i
-

oK I Cancel I

101

Chapter 5

The edit box allows you to type in the name of a folder to select. When you confirm it by clicking
OK, the function will validate your input. The content of the edit box is correct if it contains the full
path name for a folder, or the name of the currently selected folder, as in the figure above.

If the BI F_VALI DATE flag is specified and the function finds the contents of the edit box to be
incorrect, then SHBr owseFor Fol der () will invoke your callback function specifying the
BFFM_VAL| DATEFAI LED message. The string in the edit box is passed via the callback's | Par am
argument (the third one). Any data it receives from the user in the BROASEI NFO structure's | Par am
member becomes the fourth argument to the callback. Thus, if you want to select a folder by typing
its name into the edit box you absolutely need to type in the full path name.

The following listing presents a sample callback procedure that encompasses all the examples we've
looked at so far. We'll look at an application that uses it later in the chapter, so keep it in mind until
then!

i nt CALLBACK BrowseCal | backPr oc(
HWAD hwnd, U NT uMsg, LPARAM | Param LPARAM dwDat a)

swi t ch(uMsg)

case BFFM. I NI TI ALI ZED:

{
/! Rerove the ? fromthe caption
DWORD dwstyl e = Get W ndowLong(hwnd, GA._EXSTYLE) ;
Set W ndowLong(hwnd, GA._EXSTYLE, dwStyle & ~W5_EX CONTEXTHELP);
/1 Add a 3D border to the status text
HWD hwndLabel = Get Dl glten{hwnd, 0x3743);
/] Check if it is a valid wi ndow
i f(IsWndow hwndLabel))
{
/1 Now check if it is window of class 'static'
TCHAR szd ass[MAX_PATH = {0};
Get d assNane(hwndLabel , szC ass, MAX_PATH);
if(lstrcnpi(szCO ass, _ TEXT("static")))
br eak;
}
el se
br eak;
dwsSt yl e = Get W ndowLong(hwndLabel , GAL_EXSTYLE) ;
Set W ndowLong(hwndLabel , GAL_EXSTYLE, dwStyle | WS _EX STATI CEDGE) ;
Set W ndowPos(hwndLabel , NULL, O, 0, O, O,
SWP_NOSI ZE | SWP_NOVOVE | SWP_DRAWFRANE) ;
}
br eak;

case BFFM_SELCHANGED:

{
TCHAR szText [MAX_PATH = {0};
SHGet Pat hFroml DLi st (rei nterpret_cast<LPl TEM DLI ST>(| Paranm), szText);
SendMessage(hwnd, BFFM SETSTATUSTEXT, O,
rei nterpret_cast <LPARAM>(szText));
}
br eak;

102

Browsing for Folders

case BFFM VALI DATEFAI LED:

Msg("\"9%\" is a wong path nane.", reinterpret_cast<LPTSTR>(I| Param);
return 1,

}

return O;

Specifying the Initial Folder

A significant flaw in the design of SHBr owseFor Fol der () is that there isn't an easy way to specify
the initial directory from which to start browsing. You can specify the root of the hierarchy being
displayed, but even this is not so simple if you want a regular directory instead of a special folder. To
set the folder to be selected initially in code, we have to resort to callbacks. In particular, we can
exploit the BFFM_SETSELECT| ON message and ask the function to move the focus over a specific
folder. The best place to do this is in response to the BFFM_|I NI TI ALl ZED notification.

After reading the previous sections, working out how to select an initial folder shouldn't worry you.
The code required looks like this:

int CALLBACK BrowseCal | backProc(
HWAD hwnd, Ul NT uMsg, LPARAM | Param LPARAM dwDat a)
{

swi tch(uMsg)

{
case BFFM._I NI Tl ALl ZED:
{

SendMessage(hwnd, BFFM SETSELECTI ON, TRUE, dwData);
}

br eak;

return O;

}

The BFFM_SETSELECTI ON message needs to know whether its| Par amargument is a PIDL or a
path name. In the fragment above, we're saying dwDat a points to a path name by setting our | Par am
(the third parameter) to TRUE. Had dwDat a been a PIDL, the third parameter would have been
FALSE.

Specifying the Root Node

As I hinted in the previous section, SHBr owseFor Fol der () allows you to specify which node of
the desktop's hierarchy you want to be the root of the tree. In other words, you can choose which
sub-tree of the Explorer view you want to browse. The parameter that lets you do this is the

pi dl Root member of the BROWSEI NFO structure. If this parameter is set to NULL, the tree view has
the desktop as its root.

103

Chapter 5

The figure shows a browsing dialog where the Browse for Folder =]l
root has been set to Pri nt er s and the
Bl F_BROWSEI NCLUDEFI LES bit has been set:

Chooze a printer:

-J&| Add Printer
Microsoft Fax
8 OKIPAGE 4w

Ok I Cancel I

Incidentally, this sample demonstrates how powerful the Bl F_BROWSEI NCLUDEFI LES flag can be.
The code involved in the figure is:

LPI TEM DLI ST pidl = NULL;

BROWSEI NFO bi ;
Zer oMenor y(&i, si zeof (BROASEI NFO)) ;
bi .l pszTitle = _ TEXT("Choose a printer:");

SHCet Speci al Fol der Locati on(NULL, CSIDL_PRI NTERS, &pidl);
bi . pi dl Root = pidl;

bi . ul Fl ags = Bl F_BROWSEI NCLUDEFI LES;

SHBr owseFor Fol der (&bi) ;

If you check out the declaration of the BROASEI NFO structure, you'll see that the pi dl Root member
must be of type LPCI TEM DLI ST — that is, a PIDL. In the sample above, we've obtained a value to
assign to it by passing CSI DL_PRI NTERS as the second argument to

SHGet Speci al Fol der Locat i on(), which we'll discuss a little later on. For now, in summary, you
can specify the root of the displayed tree, but you need to provide its PIDL.

Using a Directory as the Root

If our goal is just to browse into some special system folder, like Pri nt ers or Font s or

Favori t es, there's no further problem — just take the code fragment shown above and replace
CSI DL_PRI NTERS with the ID of the folder you want. If you want an ordinary directory to be the
root of the tree view, however, things get a little trickier.

For a list of special folder IDs, check out SHGet Speci al Fol der Locat i on() ‘s documentation or

snoop around the source code of shl obj . h, where you'll even find some undocumented IDs. (I'll have
more to say on this later in the chapter, in the section dedicated to special folders.)

104

Browsing for Folders

Converting Path Names to PIDLs
There's nothing else for it: you have to convert your path name into a PIDL. Now, you might expect
that somewhere in the shell API there would exist a function that does this for you, but unfortunately
you'd be quite wrong. Happily though, there's an MSDN article (See the Further Reading section at the
end of the chapter) that shows the way. To convert the name of a directory to a PIDL, you need to
follow two steps:

Q Geta pointer to an | Shel | Fol der interface
Q Callits Par seDi spl ayNanme() method

The Par seDi spl ayNanme() method of the | Shel | Fol der interface does exactly what we need: it
takes a path name and converts it to a PIDL. The problem, of course, is how we get hold of a pointer
to an | Shel | Fol der interface in the first place!

| Shel | Fol der is an interface that you need to implement when you're writing namespace
extensions (see Chapter 16), and Explorer uses it when working with folders to ask them to draw and
enumerate their contents. A pointer to an | Shel | Fol der interface is returned by the

SHGet Deskt opFol der () function — more precisely, it returns the | Shel | Fol der of the desktop
folder. For the case we're considering here, we just need a pointer to an object that provides a 'real’
implementation of Par seDi spl ayName(), and the one returned by SHGet Deskt opFol der () is
fine.

Here's the source code for a new shell function that takes a path name and returns its PIDL. In the
spirit of Microsoft's naming conventions, I've called it SHPat hToPi dl () :

HRESULT SHPat hToPi dl (LPCTSTR szPath, LPI TEM DLI ST* ppi dl)

{
LPSHELLFOLDER pShel | Fol der = NULL;
OLECHAR wszPat h[MAX_PATH] = {0};
ULONG nChar sParsed = O;
/1l Get an | Shell Fol der interface pointer
HRESULT hr = SHGet Deskt opFol der (& Shel | Fol der) ;
i f (FAI LED(hr))
return hr;
/'l Convert the path nane to Uni code
Mul ti Byt eToW deChar (CP_ACP, MB_PRECOWCSED, szPath, -1, wszPath, MAX_PATH);
/1 Call ParseDi splayName() to do the job
hr = pShel | Fol der - >Par seDi spl ayNane(
NULL, NULL, wszPath, &nCharsParsed, ppidl, NULL);
/1l dean up
pShel | Fol der - >Rel ease() ;
return hr;
}

The prototype of Par seDi spl ayName() looks like this:

HRESULT Par seDi spl ayNane(HAND hwndOaner ,
LPBC pbcReserved,
LPOLESTR | pszDi spl ayNane,
ULONG* pchEat en,
LPI TEM DLI ST* ppi dl,
ULONG* pdwAt t ri but es) ;

105

Chapter 5

The first argument is the handle of a window to be used as the parent of any message box the
function might need to show. The second, pbcReser ved, is unused at present and must be NULL.
The first significant argument is | pszDi spl ayNanme, which basically represents the name to convert
and must be in Unicode format. pchEat en is a buffer that will contain the number of characters
actually processed, while pdwAt t ri but es (if not NULL) will contain the shell attributes of the folder
item specified in | pszDi spl ayNamne. These attributes are the SHGAO_ constants we examined in
Chapter 4, but if you don't care about this, you can just pass NULL. Finally, ppi dl is the return
buffer for the newly generated PIDL.

Once you've successfully generated a PIDL for a path name, you can limit the user to browsing a
specific sub-tree without the ability to go up a level, like this:

Browse for Folder I

Choose a folder:

|E: “Program Files

{:l Accessories

-2 Comman Files

-2 10w Internet Connection ‘wizard

-2 Internet Explarer

-2 Matroxn MGA PowerDesk

-] Microsoft Chat

-2 Microsoft Exchange

[]--D Microzoft FrontPage

-0 Microsoft FrontPage E xpress

-2 Microsoft Image Composer ;I

(1] 9 I Cancel |

The figure shows what happened on my PC when I chose C: \ Progr amFi | es as the root.

Putting it all Together

So far, we've been discussing aspects of SHBr owseFor Fol der () in isolation, always providing
single pieces of code to solve specific problems. It's about time we constructed a whole application
that puts together all the features you've seen above.

i~ Root Folder | IDOK
Folder.
Flags
IDC_FOLDER ——
™ Don't go below domain ——— IDC_NOBELOW
PIDL:
IDC_SPECIAL + j " Retumn only physical directotizs -——— IDC_ONLYDIRS
™ Browse for computer —— IDC_COMPUTER
IDC_USEFIDL — o E ™ Include fies | IDC_INCLUDEFILES
Title:
Edit by —— IDC_EDITBOX
IDC_TITLE —] L ecites -
[Status Test —— IDC_STATUS
~ Return buffer
Path: I IDC_PATHNAME
- % IDI_ICON
e | IDC_DISPLAYNAME

106

Browsing for Folders

The dialog rendered in the figure is the interface of the program I've been using throughout this
chapter to test the features of the SHBr owseFor Fol der () function. Called SHBr owse, I generated
it using the Wrox AppWizard, and it allows you to decide which should be the root folder to use by
choosing a path name (the Folder edit box) or a PIDL (the PIDL combo box) — the Use PIDL check
box determines which. You can also set the title of the dialog (the Title edit box), and a few flags
whose names roughly match the constants used by SHBr owseFor Fol der () . The results are shown
in the area at the bottom: display name, path name, and folder icon.

The first code I added to the Wizard-generated skeleton was to the Onl ni t Di al og() function, in
order to set up the PIDL combo box with the names of some special folders:

voi d OnlnitDi al og(HWND hDl g)

{
/1 Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmall));
SendMessage(hDl g, WM SETI CON, TRUE, reinterpret_cast<LPARAM>(g_hl conLarge));
/1 Fill the combo box
HWAD hwndCbo = Get Dl glten(hDl g, | DC_SPECI AL);
int i = ConboBox_AddStri ng(hwndCbo, "Control Panel");
ConmboBox_Set | t enDat a(hwndCbo, i, CSIDL_CONTROLS);
i = ConmboBox_AddStri ng(hwndCbo, "Favorites");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_FAVCRI TES);
i = ComboBox_AddStri ng(hwndCbo, "Printers");
ConmboBox_Set | t enDat a(hwndCbo, i, CSIDL_PRI NTERS);
i = ConmboBox_AddStri ng(hwndCbo, "Fonts");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_FONTS);
i = ComboBox_AddStri ng(hwndCbo, "SendTo");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_SENDTO);
ConboBox_Set Cur Sel (hwndCho, 0);
}

With this in place, you'll be able to choose (say) the SendTo folder from the list, and depending on
the other options you've set, you'll be presented with something like:

Browse for Folder [X] I

Chooge where to zend your objects:

|EI:\WINDDW’S MSendTo

=3
@ Desktop as Shortcut
(& Fax Recipient

59 My Brisfoase

B4 Outlook Express

{4 \web Publishing \wizard

ak I Cancel

107

Chapter 5

Of course, the dialog you'll obtain on
your own computer will probably differ
from this, due to the different shortcuts in
your SendTo directory. Select Outlook
Express at this point, though, and here's
the result:

Demonstrating SHBrowseForFolder E
—Roat Falder
Folder: q
Ic: b =
PIDL: ™ Don't go below domain
ISendTo j ™ Retuin only phpsical dirs
™ Browse for computer
v Use PIDL
- ¥ Include files
) ™ Edit box
Uil IV Status Text
|Ehoose where to zend pour objects:
— Rieturn buffer
Path: |EI:\W’INDDW’S\SendTU\DutIook E spress. MAPIM ail @
Digplay: |Dut|00k Express

The entire project is available on our web site; the code includes the Br owseCal | backProc()
SHGet Syst eml con() and SHPat hToPi dl () functions we defined earlier in the chapter. Before
compiling, don't forget to #i ncl ude shl obj . h and r esour ce. h. The function reproduced here

executes when the user clicks the OK button:

void OnCK(HWAD hDi g)

{
BROWSEI NFO bi ;
TCHAR szTitl e[MAX_PATH = {0};
TCHAR szPat h[MAX_PATH] = {0};
TCHAR szDi spl ay[MAX_PATH]|

LPI TEM DLI ST pidl = NULL;
LPMALLOC pMal | oc = NULL;

/1 Prepare the call
Zer oMenor y(&bi ,
bi . hwnhdOwner = hDl g;

/1 Title and display name

= {0};

si zeof (BROABEI NFO)) ;

Get Dl gl tenilext (hDl g, | DC TITLE, szTitle, MAX PATH);
bi .l pszTitle = szTitle;
bi . pszDi spl ayNanme = szDi spl ay;
// Initial directory
i f(1sD gButtonChecked(hDl g, | DC_USEPI DL))
{
HWD hwndCbho = GetDiglten{hD g, | DC_SPECI AL);

int i

= ConboBox_Get Cur Sel (hwndCho) ;

i nt nFol der = ConboBox_Cet | t enDat a(hwndCho, i);

SHCet Speci al Fol der Locat i on(NULL,

bi . pi dl Root = pidl;

108

nFol der,

&pidl);

Browsing for Folders

el se
{
/1 Convert a path nane to a PIDL
Get Dl gl t enText (hDl g, | DC_FOLDER, szPath, MAX_PATH);
if(lstrlen(szPath) == 0)
Get Current Di rect ory(MAX_PATH, szPath);
SHPat hToPi dl (szPat h, &pidl);
bi . pi dl Root = pidl;
}

/'l Collect the flags

U NT ui Fl ags = 0;

i f(I1sD gButtonChecked(hDl g, | DC_NOBELOW)
ui Fl ags | = Bl F_DONTGOBELOADOVAI N,

i f(IsD gButtonChecked(hDi g, | DC_ONLYDI RS))
ui Fl ags | = Bl F_RETURNONLYFSDI RS;

i f(IsD gButtonChecked(hDi g, |DC_| NCLUDEFI LES))
ui Fl ags | = Bl F_BROWSEI NCLUDEFI LES;

i f(IsD gButtonChecked(hDl g, | DC _EDI TBOX))
ui Fl ags | = BI F_EDI TBOX | BI F_VALI DATE;

i f(IsD gButtonChecked(hDi g, | DC_STATUS))
ui Fl ags | = Bl F_STATUSTEXT;

i f(IsD gButtonChecked(hDi g, | DC _COVWUTER))
ui Fl ags | = Bl F_BRONSEFORCOVPUTER,

bi . ul Fl ags = ui Fl ags;

/1 Set up the call back
bi .l pfn = BrowseCal | backProc;
bi . | Param = 0;

/1 Call the function
LPI TEM DLI ST pi dl Fol der = SHBr owseFor Fol der (&bi) ;
i f (pidl Fol der == NULL)

return;

/! Display the results...
/1 Show t he display nane
Set Dl gl t enifext (hDl g, | DC_DI SPLAYNAME, bi . pszDi spl ayNane);

/'l Show t he path nane
SHGet Pat hFr oml DLi st (pi dl Fol der, szPath);
Set Dl gl t eniText (hDl g, | DC_PATHNAME, szPath);

/1 Show the folder icon
HI CON hl con = SHGet Syst em con(bi . il mage);
SendDl gl t emvessage(
hDi g, 1D _|I CON, STM SETI CON, reinterpret_cast <WPARAM>(hl con), 0);

Il Free

SHGet Mal | oc(&pMal | oc) ;
pMal | oc- >Free(pidl);

pMal | oc- >Fr ee(pi dl Fol der);
pMal | oc- >Rel ease();

The way that the above function works should be pretty clear to you — except, perhaps for the very
last section. In order to explain what's going on there, though, we need to dig a little deeper into the
world of the PIDL.

109

Chapter 5

That Crazy Little Thing Called PIDL

We examined the basics of PIDLs in Chapter 2, but here we have a specific application for them: we
want to use them to browse the contents of a folder, whatever that content may be. Every element in
the Windows shell has its own PIDL and is contained in some kind of folder. For each element,
therefore, there's a piece of code that wraps the folder and provides the PIDL according to the
folder's own rules and requirements. This means that we can never make assumptions about the

structure of a PIDL or the data it is composed of. We must use common interfaces to deal with
PIDLs.

If, for example, you want to follow the chain of SHI TEM D structures, you should check the length of
the next chunk of data at every step. As you've already seen, an | TEM DLI ST — or a PIDL, if you
prefer — is made up of one or more SHI TEM D structures allocated consecutively. This chain is
terminated by an element whose cb field is set to 0. Here's a function excerpted from MSDN that
demonstrates how to walk an item identifier list. It's not very different from navigating an 'ordinary’
list:

LPI TEM DLI ST Get Next|tem D(LPI TEM DLI ST pi dl)

{
Il Get the size of the specified itemidentifier
int cb = pidl->nkid.cb;
// 1f the size is zero, it is the end of the |ist
if(cb == 0)

return NULL,;

// Add cb to pidl (casting to increment by bytes)
pidl = (LPITEM DLI ST) (((LPBYTE) pidl) + cb);
// Return NULL if it is null-term nating, or a pidl otherw se
return (pidl->nkid.cb == 0) ? NULL : pidl;

}

You can't make assumptions about the format of a PIDL. An approach that works well for one folder
may fail with another. To make sure two items are identical, for example, you must ask the folder
itself to compare them through the | Shel | Fol der: : Conpar el Ds() method.

Freeing PIDLs

Before we go any further, let's just take a moment to explain that code at the end of the last example.
While it's true that folders create PIDLs, they usually have to be destroyed by another module, and
that's what I was doing at the end of the OnOK() function. The memory for identifier lists is taken
from the allocator for shell applications, and as you also saw in Chapter 2, you can get a pointer to
that by calling the SHGet Mal | oc() function. In general, the sequence of calls will look something
like this:

LPMALLOC pMal | oc;

SHGet Mal | oc(& Mal | oc) ; I/l Get a pointer to the IMalloc interface
pMal | oc- >Free(pidl); I/l Free the identifier |ist
pMal | oc- >Rel ease(); /! Release the IMlloc interface

110

Browsing for Folders

How to Use PIDLs

Returning to our theme of putting PIDLs to some practical uses, we have two main goals. First, we
want to be able to enumerate the content of any folder; second, we'd like to reproduce a nice feature
of Explorer that's supported by shell versions 4.71 and higher. To show you what I mean, here's a
screenshot of Explorer that I produced by typing Printers into the Address Bar and hitting Return:

N Exploring - Printers

J File Edit ‘iew Go Favoites Tools Help |

JAddress I@ Frinters j
| Al Folders X || Mame Documnents | Status | Comment
(] Desktop | |eadd Prreer B R
=) My Computer = @HP Laseret 5N 1
=4 3% Floppy [4:] ﬁQMS 1725 Print System a
= Winde [T

[

[#-= Linux [D:)
[#-= Studio [E:)
=3 Shuif [F:)
(195 Audio CD (G:)
[#-52 Editarial on 'Des’ H:)
[-52 Production on 'Dec’ [):]
-5 Software on ‘Dec' [S:]
-5 Users on 'Dec’ U]
[#-{=) Removable Disk [£:]
-] Printers

{52 Control Parel

-{&] Scheduled Tasks -

|3 object(s] A

Explorer is allowing you to use the name Printers as if it were the name of a regular folder. In other
words, it blurs the distinction between physical and virtual folders. To be accurate, Printers is the
display name of the virtual folder that contains the available printers.

For my example, I used our custom AppWizard to create a demonstration program called Pi dl with
a user interface that looks like this:

That crazy little thing called PIDL [%]
Falder Mame:
IDC_FOLDER 4| Search Path :l—— IDC_SEARCHPATH
Special Folder:
IDC_SPECIAL ———] ShowPIDL's Content]L— IDC_PIDLCONTENT

IDC_FOUND 0 item(z) found.

yellow red green magenta cyan

' ——— IDC_LISTVIEW

blue

The Search Path button will take the contents of the edit box and attempt to identify a folder with
that name. The string in the edit box is intended to be the display name of a folder (keep in mind that
a path name is also a display name). If successful, the application will display all the file objects found
inside the folder in a list view. The Show PIDL's Content button, on the other hand, will enumerate
in the list view all the file objects found in the special folder that you select using the combo box.

111

Chapter 5

Searching by Display Name

Let's begin by looking at the code that executes when you click the Search Path button. Of course,
both the new buttons need to be handled by APP_DI gProc(), so we can add code for both of them
here:

case VW _COVVAND:
swi t ch(wPar am

case | DC_SEARCHPATH:
DoSear chPat h(hDl g) ;
return FALSE;

case | DC_PI DLCONTENT:
DoEnuner at ePi dl (hDl g) ;
return FALSE;

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

The function we're dealing with first, then, is DoSear chPat h() . It will retrieve the name you
entered in the Folder Name edit box, and treat it as if it's a path name to search for. If it really isa
path name, everything will be fine, but what if it's the display name of a folder? We want the function
to be able to deal with, say, C: \ and (C:) . This implementation will be able to handle correctly all
the path names and display names whose associated folders are children of either Deskt op or My
Comput er, although the limitation is purely by design.

Note that normally, the display name of a drive is given by its label followed the drive letter in brackets.
An example is Ms- dos_6 (C:) . However, if you don't have a label, then consider that there's a leading
blank in (C:) .

DoSear chPat h() starts by enumerating the content of the Deskt op folder:

voi d DoSear chPat h(HWAND hDl g)

{
LPI TEM DLI ST pidl = NULL;
LPSHELLFOLDER pFol der = NULL;
LPSHELLFOLDER pSubFol der = NULL;

// Get the menory all ocator
LPMALLOC pMal | oc = NULL;
SHGet Mal | oc(& Mal | oc) ;

/] Get the nane to search
TCHAR szNanme[MAX_PATH] = {0};
Get DI gl t enText (hDI g, | DC_FOLDER, szName, NMAX_PATH);

/'l Get the IShell Folder interface for the desktop
SHCet Deskt opFol der (&Fol der) ;

112

Browsing for Folders

/1 Try to find a natch under Desktop
int i NunOfltens = SHEnuntol der Cont ent (pFol der, NULL, 0, NULL);
int rc = SHEnunfol der Cont ent (
pFol der, SearchText, reinterpret_cast<DWORD>(szNane), &pidl);

SHEnumFol der Cont ent () is a user-defined function that takes a PIDL to a folder and a callback
function as input, and then enumerates all the items in the folder, passing them to the function for
further processing. We'll discuss it more thoroughly later on, but in order to understand its use here
you need to know that if no callback function is specified, it returns the number of items found:

int i NumOfItems = SHEnuntol der Cont ent (pFol der, NULL, 0, NULL);

Otherwise, it returns the number of items actually processed. These two values aren't necessarily the
same, because the callback function could stop the enumeration at a point of its own choosing. The
Sear chText () function, for example, causes SHEnunFol der Cont ent () to stop when it finds the
name you're looking for.

SHEnunt¥ol der Cont ent () begins its search by checking whether the name we typed in the edit
box corresponds to the display name of a folder under Deskt op. This is the case if at the end of the
above code, rc and i NumOf | t ens are not equal. If they are equal, we start a new search under the
My Conput er node:

/1 If not found, try under My Conputer
if(rc == iNunCfItemns)
{
/1 Bind to My Conputer
LPI TEM DLI ST pi dl MyConp;
SHGet Speci al Fol der Locati on(NULL, CSI DL_DRI VES, &pidl MyConp);
pFol der - >Bi ndToCbj ect (pi dl MyConp, NULL, |ID_I Shel |l Fol der,
rei nterpret_cast<LPVO D*>(& SubFol der));

/1 Free the pointer to the desktop fol der
pFol der - >Rel ease() ;

pMal | oc- >Fr ee(pi dl MyConp) ;

pFol der = pSubFol der;

/1l Scan My Conputer
i NumOf | t ems = SHEnuntol der Cont ent (pFol der, NULL, O, NULL);
rc = SHEnuntol der Cont ent (
pFol der, SearchText, reinterpret_cast <DANORD>(szNane), &pidl);

Before calling SHEnunt¥ol der Cont ent () again to work on the My Conput er folder, we need to
get a | Shel | Fol der pointer for it. What we have at the moment is the desktop's | Shel | Fol der,
but we can get the one we want by using the Bi ndToObj ect () method of this interface. This lets
you bind to the | Shel | Fol der interface of a child folder that you identify to the method using a
PIDL:

HRESULT | Shel | Fol der: : Bi ndToObj ect (

LPCI TEM DLI ST pi dl, /1 PIDL of the fol der you want

LPBC pbcReser ved, /1 Reserved; nust be NULL

REFI | D riid, /1 Must be IID_| Shell Fol der

LPVO D* ppvCQut /'l Receives the | Shell Fol der pointer

113

Chapter 5

If the display name has been found under neither Deskt op nor My Conput er, we take a shortcut
and decide that we aren't able to locate it at all. Don't think this is a system limitation, though — it's
quite possible to set up a recursive search on folders to locate the name wherever it is. The approach
to follow might be outlined as follows:

O Enumerate the content of the Deskt op folder, as we do above
O For each folder found (not just My Conput er), repeat the search

However, a fully recursive search could lead us to try to identify by name a folder that is not unique
— it's quite possible, of course, to have two folders with a display name of MyDi r, one under ¢: \ and
one under d: \ . The above algorithm would stop at the first occurrence.

A better approach would be to accept and parse fully qualified folder names, like the following:

My Conputer\ (c:)\W ndows
Control Panel\ Add New Har dwar e

To do this, we would need only a little extra code to parse the folder name and search for the first
item in the desktop, the next item in the folder reached by the previous step, and so on. The code
seen above could be generalized slightly, and enclosed in a loop.

If you think about it, this is really no different from searching for a directory within the file system. It's
Just that instead of using Fi ndFi r st Fi | e() and Fi ndNext Fi | e() to enumerate the contents of a
directory, you have to use the methods of a COM interface exposed by the folder object.

Prior to giving up completely, it could be that the display name entered is a full path name, like c: \ .
It's worth taking this one last chance before outputting a message box — we just have to convert the
name into a PIDL and see what happens. If there are no errors, then a path name was entered.

if(rc == i Nunt¥ | tens)
{
/1 Make the last attenpt: is it a path name?

HRESULT hr = SHPat hToPi dl Ex(szNane, &pidl, pFol der);
i f (FAILED(hr))
{

Msg("\ "%\ " not found under Desktop or My Conputer.", szNane);
pMal | oc- >Free(pidl);
pFol der - >Rel ease();

/1 Call a helper function to refresh the Ul
Cl earU (hD g);
return;

}
}
}

Finally, if the function hasn't returned before this point, we know that we have a PIDL we can use to
output the icons in the folder it points to. In other words, we had a string entered in the edit box,
referred to in the source code above as szName. We identified the folder object with that name and
obtained its PIDL. Now, to enumerate the content of this folder we need to get its | Shel | Fol der
interface and pass it to SHEnunmFol der Cont ent () .

114

Browsing for Folders

The Search Path button handler therefore ends like this:

/1 1f here, then:
/1 pidl points to the folder we need to bind to enunerate the content
/1 pFol der points to the I Shell Fol der of the pidl's parent folder

/! Bind to the subfolder we're searching for
/'l pFol der can point to Desktop's or My Conputer's | Shell Fol der
pFol der - >Bi ndToCbj ect (pi dl, NULL, |ID_I Shell Fol der,
reinterpret_cast <LPVO D*>(&SubFol der));

/'l Refresh U (enpty list view, inage list and the |ike)
ClearVU (hD g);

/] Enunerate the content of the folder in the listview
HWAD hwndLi st View = GetD gltem(hDi g, | DC LI STVIEW ;
SHEnhuntol der Cont ent (pSubFol der, ShowFol der Cont ent ,
rei nterpret_cast <DWORD>(hwndLi st Vi ew), NULL);

/1 dean up

pFol der - >Rel ease() ;
pSubFol der - >Rel ease() ;
pMal | oc- >Free(pidl);
pMal | oc- >Rel ease();
return;

}

Converting Path Names to PIDLs (again)
Looking at the source code above, you'll notice that I used a function called SHPat hToPi dl Ex() to
convert a path name into a PIDL. Now, earlier in this chapter we developed the SHPat hToPi dlI ()
helper function for the same purpose — it used the Par seDi spl ayName() method of the
| Shel | Fol der interface in order to do so. The code in SHPat hToPi dl () boiled down to this,
which gets a PIDL relative to the desktop - that is, the root of the hierarchy

SHGet Deskt opFol der (&pFol der) ;
pFol der - >Par seDi spl ayNane(NULL, NULL, wszPath, &n, ppidl, NULL);

Unfortunately, this PIDL is relative to the folder that is providing the | Shel | Fol der interface, the
desktop. In the new case, we need a PIDL that's relative to the parent of the folder we're considering.
The reason for this is that when you're using Bi ndToObj ect () to get the | Shel | Fol der interface
for a sub-folder, you're required to pass in a PIDL that is relative to the same folder from which you're
calling Bi ndToObj ect ().

Given this, we need an extra step between getting a pointer to an | Shel | Fol der interface and
calling Par seDi spl ayName() . This extra step must ensure that the | Shel | Fol der used to call
Par seDi spl ayNane() is the one of the folder we want to work with.

The code becomes:

HRESULT SHPat hToPi dI Ex(
LPCTSTR szPat h, LPI TEM DLI ST* ppi dl, LPSHELLFOLDER pFol der)
{

OLECHAR wszPat h] MAX_PATH] = {0};
ULONG nChar sParsed = 0;
LPSHELLFOLDER pShel | Fol der = NULL;
BOOL bFreeOnExit = FALSE;

115

Chapter 5

Mul ti Byt eToW deChar (CP_ACP, MB_PRECOWPCSED, szPath, -1, wszPath, MAX_PATH);
/'l Use the desktop's | Shell Fol der by defaul t
i f (pFol der == NULL)

SHGet Deskt opFol der (&Shel | Fol der) ;
bFreeOnExit = TRUE;

}

el se
pShel | Fol der = pFol der;

HRESULT hr = pShel | Fol der - >Par seDi spl ayName(
NULL, NULL, wszPath, &nCharsParsed, ppidl, NULL);

i f(bFreeOnExit)
pShel | Fol der - >Rel ease() ;

return hr;

This function is a bit more general than SHPat hToPi dl (), and requires you also to pass in the
folder that the PIDL will be relative to. If you pass NULL instead of a valid | Shel | Fol der pointer,
the desktop's | Shel | Fol der interface is used and then released. In the sample program, the code
that invokes the conversion function is:

HRESULT hr = SHPat hToPi dl Ex(szName, &pidl, pFol der);

Try passing NULL instead of pFol der, specify a path name to search, and see what happens:
whatever the path name, you'll be always enumerating the contents of the Deskt op folder.

Clearing the User Interface

Apart from the details of SHEnunol der Cont ent (), which are coming up in the next section, the
only other function you've seen in the code so far is the simple helper Cl ear Ul () :

void O earU (HWD hD g)

{

HWND hwndLi st View = GetDi gltem(hDl g, |IDC LI STVIEW;

Li st Vi ew Del et eAl | It ems(hwndLi st Vi ew) ;

| mageLi st _RenoveAl | (g_hinl);

Set Dl gl t enilext (hDl g, | DC_FOUND, _ TEXT("O iten(s) found."));
}

This just resets the application's dialog, deleting all items from the list view, and emptying the image
list that will be created by SHEnunmFol der Cont ent () in order to fill the list view in the first place.
The latter task is done by means of g_hi nl, a global variable of type HI MAGELI ST that should be
initialized to zero in W nMai n() .

Building an Enumerator Function

There's still plenty to say about enumerating the content of a given folder, whether it's a physical
directory or a virtual folder like Pri nt er s. The source code you've seen so far makes considerable
use of a user-defined function called SHEnunt¥ol der Cont ent (), which is responsible for asking the
folder itself to enumerate its items one after another.

116

Browsing for Folders

There are folders whose content is given by a collection of files. There are other folders whose visible
items might be the records of a single file, or hardware devices of some kind. In general, only the
folder knows exactly what its content is. There's no safe way for either Explorer or programmers to
enumerate the items contained in a folder without 'asking' the folder itself about it. It will come as no
surprise to you that this communication is based on a COM interface.

In my design, SHEnunFol der Cont ent () interrogates a folder for its contents, and passes the name
of each item it finds to another function for further processing. You've seen a couple of these
functions named in the listing above: Sear chText () and ShowFol der Cont ent () . To understand
their roles properly, however, it is better first to study how the enumeration of items occurs.

Reading the Folder's Content

The purpose of the code linked to the Search Path (and the Show PIDL's Content) button is that it
should read the content of a folder. To allow the enumeration of its items, a folder implements the

I Enum DLi st interface, which exposes four functions to move back and forth within a given
collection: Next (), Ski p(), Reset () and Cl one() . We'll be interested mainly in Next (), whose
prototype is:

HRESULT | Enuml DLi st : : Next (ULONG celt,
LPI TEM DLI ST* rgel t,
ULONG* pcel t Fet ched) ;

The first argument is the number of items required, the second is a pointer to an array of PIDLs, and
the third is an output parameter set with the number of items actually copied. The | Enuml DLi st
interface itself is responsible for allocating the memory to hold the PIDLs.

A piece of software that wants to know about the content of a specific folder must begin by getting a
pointer to | Enum DLi st , and the | Shel | Fol der interface exposes the EnumCbj ect s() method
with exactly this task in mind. Its prototype looks like this:

HRESULT | Shel | Fol der: : Enuntbj ect s(
HWAD hwndOwmner , // Handl e to an owner w ndow
DWORD grf Fl ags, Il A set of flags (see bel ow)
LPENUM DLI ST* ppenum DLi st /'l Receives the | Enum DLi st poi nter

The second parameter to this method allows you to dictate the type of the items to be enumerated. It
takes a combination of the values defined in the following enumerated type:

typedef enum t agSHCONTF

SHOONTF_FOLDERS = 32,

SHOONTF_NONFOLDERS = 64,

SHOONTF_| NCLUDEHI DDEN = 128,
} SHOONTF;

The mnemonic names are almost self-explanatory: you can decide to enumerate folders, non-folder
objects, and even hidden objects.

By necessity, we'll be discussing rather more about the details of these interfaces later on, when we begin

writing namespace extensions. For now, I recommend you take a look at the Visual C++ help files for
clarification of any issues regarding method names and prototypes.

117

Chapter 5

LPENUM DLI ST pEnuml DLi st = NULL;
LPI TEM DLI ST pltem = NULL;
ULONG ul Fet ched = 0;

pFol der - >Enuntbj ect s(
NULL, SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &pEnum DList);
whi | e(pEnuml DLi st - >Next (1, &pltem &ul Fetched) == NOERROR)

{
}

The above fragment represents the 'engine’ of a function that enumerates the items of a folder. Each
time the loop passes the condition, pl t emis a PIDL to a single item. Once we have that, there are
two things we might need: its display name, and possibly its icon.

Getting an Item's Display Name

Even though you have the PIDL, getting the display name of an item is not as easy as you might
think. Despite an ideal-sounding function like | Shel | Fol der: : Get Di spl ayNaneCf (), there's
additional work to be done. The problem is that this method doesn 't provide a normal string in ANSI
or Unicode format. Instead, it returns a pointer to a STRRET structure, defined as follows:

typedef struct _STRRET

U NT uType;
uni on

LPWSTR pA eStr;
LPSTR pStr; /1 Unused
U NT uCffset;
char cStr[MAX_PATH] ;
} DUMMYUNI ONNANE;
} STRRET, *LPSTRRET;

As you can see, the structure is formed from a flag that denotes the type of the string that follows it.
This might be a Unicode string (pO eStr), an ANSI string (cSt r), or even an offset to the address of
the string (UOf f set). This means that you need to write your own wrapper routine that returns the
kind of string you need, regardless of the original type. The one I wrote looks like this:

void StrretToString(LPI TEM DLI ST pidl, LPSTRRET pStr, LPSTR pszBuf)

{
| strcpy(pszBuf, "");

swi tch(pStr->uType)
{
case STRRET_WSTR: // Uni code string

W deChar ToMul ti Byt e(
CP_ACP, 0, pStr->pdeStr, -1, pszBuf, MAX_PATH, NULL, NULL);

br eak;

case STRRET_OFFSET: /Il Ofset
| strcpy(pszBuf, reinterpret_cast<LPSTR>(pidl) + pStr->uCfset);
br eak;

118

Browsing for Folders

case STRRET_CSTR: /1 ANSI string
| strcpy(pszBuf, pStr->cStr);
br eak;
}

}

Strret ToString() accepts the PIDL and a pointer to the STRRET structure, and returns an LPSTR
via its third argument. Incidentally, the above listing also shows the legal values for uType.

Moving back to the main thrust of our discussion, the prototype of Get Di spl ayNameCOf () is:

HRESULT | Shel | Fol der: : Get Di spl ayNameOf (LPCI TEM DLI ST pi dl ,
DWORD uFl ags,
LPSTRRET | pNane) ;

Where the flags to be used in uFl ags come from the SHGNO enumerated type:

typedef enum t agSHGDN

SHGDN_NORVAL = 0,
SHGDN_| NFOLDER = 1,
SHGDN_| NCLUDE_NONFI LESYS = 0x2000,
SHCGDN_FORADDRESSBAR = 0x4000,
SHCGDN_FORPARSI NG = 0x8000,

} SHANG,

The descriptions of these flags in the documentation seem to be clear enough, and so you build your
expectations as to the ultimate behavior of the function. However, all the samples I tried worked in
the same way, regardless of what flags I set. Frankly, don't know where the bug resides, if bug it is.
My advice is always to use 0 for this parameter.

STRRET sNane;

CHAR szBuf [MAX_PATH] = {0};

pFol der - >Get Di spl ayNaneOrf (pltem 0, &sNane);
StrretToString(pltem &sNane, szBuf);

This code fragment provides the display name of the item in human-readable format. Note once more
that this holds true for file folders as well as for special folders like Font s, Favorites, Printers,
Cont rol Panel, and so on. This means that in a while, we'll be able to list all the applets in the
Control Panel.

Personally, I've no argument with a structure like STRRET, but I would have very much appreciated a
‘conversion' function like St rret ToString() to have been provided natively by the shell libraries.

Getting an ltem's Icon

At first glance, programming the shell seems a huge task. However, once you've survived for the first
three or four months, the chances are that you'll start to know the answer to any question on the
subject in advance. To demonstrate the point, how do you think you get an item's icon? Once again,
you just have to ask the folder to provide it. The | Shel | Fol der:: Get Ul Obj ect Of () method
returns all the interfaces you could need to deal with the user interfaces of folders and file objects.

119

Chapter 5

HRESULT | Shel | Fol der : : Get Ul Obj ect O (

HWAD hwndOwmner , /1
U NT cidl, /1
LPCI TEM DLI ST* api dl , /1
REFI | D riid, /1
Ul NT* prgf | nCut, I
LPVO D* ppvCQut /1

)5

Handl e to the owner wi ndow

Nurmber of elements in the next paraneter
Pointer to an array of PIDLs

ID of the interface to return

Reserved (rmust be NULL)

Recei ves the interface pointer

What's interesting about this declaration is that you can request a number of different interface
pointers that affect Ul tasks. For example, you may ask for | Cont ext Menu to get the HVENU handle
of the context menu being displayed for that element. In our case, we'll be requiring | Ext ract | con
in order to find out about the icon. (We'll see more about Get Ul Obj ect Of () in Chapter 16, and
you should also take a look at the references listed in Further Reading.)

pFol der - >Get Ul Obj ect OF (NULL, 1,
I1D I Extractlcon, NULL,

const _cast <LPClI TEM DLI ST*>(&pltem,
reinterpret_cast <LPVO D*>(&pExtract!con));

The | Ext ract | con interface has just two new methods: Get | conLocati on() and Extract ().
The first of these lets you know about the location and index of the icon, while the second returns an
HI CON handle. When a client calls Get | conLocat i on(), it will be returned the name of the file
that contains the icon, and the 0-based index of the icon in the file's resources.

HRESULT | Extractlcon:: GetlconLocati on(U NT

uFl ags,
LPSTR szl conFil e,
I NT cchiax,

LPI NT pi | ndex,
Ul NT* pwFl ags) ;

Extract () in turn extracts the given icon from the specified file and returns its Hl CON. This method
is nearly identical to the API function Extract | conEx().

HRESULT | Extract| con: : Extract (LPCSTR
Ul NT
HI CON*
HI CON*
Ul NT

pszFil e,

nl conl ndex,
phi conLar ge,
phi conSmal | ,
nl conSi ze) ;

The documentation for these functions suffers from a few little omissions. For instance, you need to
know that pwFl ags can't be NULL, even if you don't care about its contents. Similarly, even if you
need only, say, the large icon, you must still pass a valid, non-zero Hl CON for the small icon as well.

Here's a brief example of how to call them:

pExtract | con->Cet | conLocation(0, szlconFile, MAX_ PATH, & lconlndex, &u);
pExtract | con- >Ext r act (
szlconFile, ilconlndex, &hlcon, &hlconSm MAKELONG 32, 16));

pExtract | con- >Rel ease();

When developing this sample code, I ran into another interesting side effect, whose causes are frankly
beyond me. In some cases, the handle returned by Ext ract () is NULL, even when the icon's
location and index are known and correct. Curiously, calling the API function Ext ract | conEx()

with the same parameters works perfectly!

120

Browsing for Folders

The workaround, of course, is immediate:

i f(hlcon == NULL)
Extract | conEx(szl conFile, ilconlndex, &hlcon, NULL, 1);

At this point, we finally have all we need to create a new shell function that takes a pointer to

I Shel | Fol der and loops over its items, invoking a callback function for each one. Just like many
other functions called 'Enum, our SHEnun¥ol der Cont ent () function will provide a user-defined
buffer (dwDat a) to send program-level variables down to the callback function. Furthermore, if the
callback returns FALSE, the function will stop working. Here's the prototype:

i nt SHEnuntol der Cont ent (LPSHELLFOLDER pFol der,
FOLDERCONTENTPROC pfn, DWORD dwbDat a, LPI TEM DLI ST* ppidl);

Where FOLDERCONTENTPROC is a user-defined function pointer declared this way:
typedef BOOL (CALLBACK * FOLDERCONTENTPROC) (LPCSTR, HI CON, DWORD);

The first argument here is the display name of the element. After that comes the handle to the icon,
and then the user-defined buffer. As already mentioned, this function will return FALSE to abort
enumeration, and TRUE otherwise.

The last parameter of SHEnuntol der Cont ent () is a pointer to a PIDL. This isn't strictly
necessary; it's just that sometimes (as in our sample application), knowing the last processed PIDL
can be of considerable help. If the argument passed is NULL, then it is ignored. At long last, here's the
source code for SHEnunt¥ol der Cont ent ().

i nt SHEnuntol der Cont ent (LPSHELLFOLDER pFol der,
FOLDERCONTENTPRCC pfn, DWORD dwDat a, LPI TEM DLI ST* ppidl)
{

int i NunCfltens = O;

/1 Enunerates the content
LPENUM DLI ST pEnum DLi st = NULL;
pFol der - >Enuntbj ect s(
NULL, SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &pEnum DLi st);

ULONG ul Fetched = 0;
LPI TEM DLI ST pltem = NULL;
whi | e(NOERROR == pEnuml DLi st - >Next (1, &pltem &ul Fetched))
{
STRRET sNare;
TCHAR szBuf [MAX_PATH = {0};
pFol der - >CGet Di spl ayNameOf (pltem 0, &sNane);
Strret ToString(pltem &sNanme, szBuf);

/'l 1 nvoke call back
i f(pfn)
{

/1l Get the icon

UNT u = 0;

int ilconlndex = O;

H CON hl con = NULL;

H CON hl conSm = NULL;
TCHAR szl conFi | e[MAX_PATH]
LPEXTRACTI CON pExtractl|con

{0};
NULL;

121

Chapter 5

pFol der - >Get Ul Obj ect OF (NULL, 1, const_cast <LPClI TEM DLI ST*>(&plten),
IID | Extractlcon, NULL, reinterpret_cast<LPVO D*>(&pExtractlcon));
pExtract| con->Get | conLocat i on(
0, szlconFile, MAX_PATH, & |conlndex, &u);
pExtract | con- >Ext ract (
szlconFile, ilconlndex, &hlcon, &hlconSm MAKELONG 32, 16));
pExtract| con- >Rel ease();

i f(hlcon == NULL)
Extract | conEx(szlconFile, ilconlndex, &hlcon, NULL, 1);

i f(!pfn(szBuf, hlcon, dwbata))

/'l Returns the current PIDL

i f(ppidl !'= NULL)
*ppidl = pltem
br eak;

}

}
++i Nunf | t ens;

return i Numcf It ens;

}
The Callback Functions

Typically, callback functions are used to accomplish some tasks on a collection of items. In this case,
SHEnuntFol der Cont ent () calls such functions on the various folder items. Sear chText () simply
reports whether the two strings you pass it are equal:

BOOL CALLBACK Sear chText (LPCSTR pszltem H CON hl con, DWORD dwDat a)
{
return static_cast<BOOL>(I strcnpi (
pszltem reinterpret_cast<LPCSTR>(dwData)));

And ShowFol der Cont ent () is used to build up an image list of the icons passed to it, inserting
them in the list view it was also supplied with as it does so:

BOOL CALLBACK Showfol der Cont ent (LPCSTR pszltem H CON hl con, DWORD dwDat a)
{

/] Create the imageli st

int ilconWdth = Get Systemvetri cs(SM CXI CON) ;

int ilconHeight = GetSystemetrics(SM CYlI CON);

if(g_him == NULL)

g_him = InageList_Create(ilconWdth, ilconHeight, ILC MASK, 1, 0);
int ilconPos = | magelLi st_Addl con(g_him, hlcon);

HWND hwndLi st Vi ew = rei nterpret_cast <HWND>(dwDat a) ;
Li st Vi ew_Set | mageLi st (hwndLi stView, g_him, LVSIL_NORVAL);

LV_ITEM I vi ;

Zer oMenory(& vi, sizeof (LV_ITEM);

I vi.mask = LVIF_TEXT | LVI F_I MAGE;

| vi.pszText = const_cast<LPSTR>(pszlten);
I vi.cchText Max = | strlen(pszlten);
Ivi.ilmage = il conPos;

Li stView I nsertlten{hwndListView, & vi);

122

Browsing for Folders

/1 Update count

TCHAR s[MAX_PATH = {0};

wsprintf(s, "% iten(s) found.", ListView GetltenCount(hwndListView));
Set DI gl t enText (Get Par ent (hwndLi st Vi ew), | DC_FOUND, s);

return TRUE

The Sample Program

Make sure that your main source file contains
#i ncl udes for shl obj . h and resource. h, F
. § older Mame:
and the following figures show what you can do [Pinies
with the sample program at this stage in its S
development. By typing Printers, you can fill the [Cortrol Farel El o
list view and have it look just like a standard
. 3 item(z] found.
folder window: .
Add Printer OMS 1725 HP Laserlet
Frint System i)
Alternatively, by specifying a path name you'll
. . , .
have files and folders, just as you'd get in e
Explorer: IE:\F‘rogram Files\Microsoft Visual Studio\CI8
Special Folder:

IControl Panel j Show PIDL's Content

B item(z] found.

Lib Include Mic Bin Crt
&l
Remember that if you want the contents of the root Error]

'c:" ot found under Desktop or My Computer,

directory of any drive, you must include the final backslash.
For example, c: \ works fine, but ¢: produces this result: &

123

Chapter 5

Searching by PIDL

With all our helper functions in place, writing the handler for the Show PIDL's Content button won't
be too onerous a task. The combo box that the button relates to is initialized with the names and the
IDs of some special folders, which involves exactly the same code as we had in the SHBr owse
example earlier in the chapter.

That just leaves the DoEnumner at ePi dl () function that executes when you click on Show PIDL's
Content and fills in the list view:

voi d DoEnuner at ePi dl (HVWND hDl g)

{
LPI TEM DLI ST pidl = NULL;

I/l CGet the special folder and its PIDL

HWAD hwndCbo = GetDl glten(hDi g, | DC_SPECI AL);

int i = ComboBox_GCet Cur Sel (hwndCho) ;

i nt nFol der = ConmboBox_GCet | t enDat a(hwndCho, i);
SHGet Speci al Fol der Locati on(NULL, nFol der, &pidl);

/1l Get the |Shell Folder interface
LPSHELLFOLDER pFol der = NULL;
SHGet Deskt opFol der (&Fol der) ;

// Bind to subfolder
LPSHELLFOLDER pSubFol der = NULL;
pFol der - >Bi ndToObj ect (pi dl, NULL, I|1D_I Shell Fol der,
reinterpret_cast <LPVO D*>(&SubFol der));
pFol der - >Rel ease() ;
pFol der = pSubFol der;

// Cear the progranmis U
ClearU (hDl g);

/1 Enurerate the content
HWND hwndLi stView = GetDigltem(hD g, |IDC_LISTVIEW;
SHEnuntol der Cont ent (pFol der, Showrol der Cont ent ,
rei nterpret_cast <DWORD>(hwndLi st Vi ew), NULL);

/1 dean up

LPMALLOC pMal | oc = NULL;
SHGet Mal | oc(&Mal | oc) ;
pMal | oc- >Free(pidl);
pMal | oc- >Rel ease();

pFol der - >Rel ease();

124

Browsing for Folders

The function starts by getting the ID of the special

folder that was selected through the combo box,
and then calls [P s |
SHGet Speci al Fol der Locati on() to get the

PIDL of that folder. From the PIDL, we obtain the rg:;:l?;::
I Shel | Fol der interface to pass to

SHEnunFol der Cont ent () . The figure shows e lia Al
how the application can now enumerate the
applets in Control Panel:

Folder Mame:

Add/FRemave Internet Users Modems Game
Programs Controllers
5 =5
. - a2 -
Multimedia Sounds Metwork. Passwords 3Com PACE
Config &
J >

Special Folders

We first looked at special folders and their underpinnings in Chapter 2, and there are three basic
types. Almost all of them have a corresponding directory, but these are split between ordinary file
folders and custom folders. The third category consists of the folders without directories: the virtual
folders.

Virtual folders are perceived as folders, but their location and content can't be mapped in terms of files
and directories. Cont r ol Panel, Pri nters, Net wor k Nei ghbor hood and My Conput er are all
examples of virtual folders. The Control Panel, for instance, may be considered as a folder containing
all the installed applets.

Despite appearances, however, there's no physical directory called Cont r ol Panel containing
anything that could be associated with, say, Add New Hardware or Modems. All the icons listed in
the folder come from . cpl files located in the Syst emdirectory. They are gathered and presented as
a virtual folder by a namespace extension. (See Chapter 2 for an overview, and Chapter 16 for
examples of namespace extensions.)

System Support for Special Folders

The Windows API defines a number of special folders and a bunch of functions to work with them.
These routines identify each special folder through a number that works like an ID, but has nothing
to do with PIDLs or CLSIDs.

The IDs are defined in shl obj . h and have rather odd symbolic names: they all begin with CSI DL_.
What follows is a table of the available special folders.

Folder ID Virtual Description
CSI DL_DESKTOP Yes Desktop
CSI DL_DRI VES Yes My Computer

Table Continued on Following Page

125

Chapter 5

CS| DL_DESKTOPDI RECTORY
CSI DL_FAVORI TES

CSI DL_FONTS

CSl DL_NETHOOD

CSl DL_PRI NTHOOD

CSl DL_PERSONAL

CSI DL_PROGRAMS

CSI DL_RECENT

CSl DL_SENDTO

CSl DL_STARTMENU

CSl DL_STARTUP

CSl DL_COOKI ES

CSlI DL_TEMPLATES

CSI DL_HI STORY

CSI DL_I NTERNET _CACHE
CSl DL_APPDATA

CSI DL_ALTSTARTUP

Folder ID Virtual Description

CSI DL_BI TBUCKET Yes Recycle Bin

CSI DL_CONTROLS Yes Control Panel

CSI DL_NETWORK Yes Network Neighborhood

CSI DL_I NTERNET Yes The Internet Explorer node that appears in shell
version 4.71 and above

CSI DL_PRI NTERS Yes Printers

Directory with all the desktop shortcuts
Shortcuts to favorite folders

Installed fonts

References to network domains

References to printers

Shortcuts to personal files

The shortcuts in the Programs menu
Shortcuts to recently used documents
Shortcuts for the SendTo menu
User-defined items for the Start menu
Shortcuts to the programs that run at boot time
Cookies

Shortcuts to document templates

Shortcuts to visited web pages

Internet Explorer's temporary Internet files
A folder for application-specific data

The non-localized StartUp group

The documentation mentions other folders labeled as CSI DL_COMMON_XXX. They are:

CSI DL_COMMON_STARTUP
CS| DL_COMMON_PROGRANS
CSl DL_COMMON_DESKTOPDI RECTORY

CSI DL_ COMMON_STARTMENU
CSl DL_COMVON_FAVORI TES
CSI DL_COMMON_ALTSTARTUP

These work in the same way as the ones whose names don't contain COMMON, except that they point
to physical folders that are visible to all users. Even though this is not mentioned explicitly in the
documentation, these folders seem to make sense only under Windows NT, as I'll demonstrate in the
next section.

126

Browsing for Folders

Getting the Path to a Folder

Non-virtual folders have a path somewhere in the machine. You can obtain the path for a special
folder by calling the SHGet Speci al Fol der Pat h() API function, which I'll have more to say
about shortly. The link between special folders and their paths is stored in the registry, under this
key:

HKEY_CURRENT _USER
\ Sof t war e
\'M crosoft
\ W ndows
\ Current Versi on
\ Expl orer
\ Shel | Fol ders

The same key under the HKEY_LOCAL_MACHI NE node stores paths for all the available COMVON
folders, but not all the COMMON folders have their paths stored under Windows 95 and Windows 98.
In fact, it only happens with CSI DL_COMMON_DESKTOPDI RECTORY and CSI DL_COVMON_STARTUP.

Assuming that C: \ W ndows is your Windows directory, the paths listed are located inside the
C:\ W ndows\ Al | User s folder. However, under Windows 95 and Windows 98,

SHGet Speci al Fol der Pat h() doesn't return a value for any of them. Using the same function
under Windows NT, on the other hand, returns the correct path.

Functions

We can approach SHGet Speci al Fol der Pat h() by looking at an API function that we've already
made use of: SHGet Speci al Fol der Locat i on() . This retrieves a PIDL to the special folder you
specify, and has the following prototype:

HRESULT SHGCet Speci al Fol der Locat i on(HAND hwndOmner ,
i nt nFol der,
LPI TEM DLI ST* ppidl);

hwndOwner is the parent window for any popup window to be displayed, nFol der is the identifier
of a special folder and can be one of the constants listed above, and ppi dl is a pointer to the buffer
that will contain the PIDL for the folder. SHGet Speci al Fol der Pat h(), which is intended to
retrieve the path of a given folder, is very similar:

HRESULT SHCGet Speci al Fol der Pat h(HAND hwndOwner ,
LPTSTR | pszPat h,
i nt nFol der,
BOOL fCreate);

| pszPat h will contain the path name, while f Cr eat e is a Boolean value that denotes whether the
folder should be created if it doesn't already exist. Of course, you can't specify the ID of a virtual
folder in this case. Note that unlike SHGet Speci al Fol der Locati on(),

SHGet Speci al Fol der Pat h() is only supported by shell versions 4.71 and higher.

127

Chapter 5

Folder Settings

Internet Explorer 4.0 and Active Desktop greatly increased the number of settings for system folders.
The Folder Options dialog is now full of boxes to check or uncheck in order to have folders look the
way you want them to:

The dialog shown in the figure is one that everyone Folder Options [7]x]
uses once in a lifetime (or once every time they install Gereral View | Fils Types |

Windows, whichever comes sooner) to make all the i i

system and hidden files visible throughout Explorer. B e e s ks ol O s

Some (but not all) of these settings can be read i I Ee——"—
programmatically through the SHGet Set ti ngs() = ~
function, which naturally enough is only available in _

. Advanced settings:
version 4.71 of the shell. =] Filos and Folders

Remember each folder's view settings
O Dizplay the full path in title bar
Hide file extensions far knawn file types
O Show Map Metwork Drive button in toolbar
O Show file attributes in Detail Yiew
Show pop-up description for folder and desktop items.
O Allow all uppercase names -
[Hidden files
O Do not show hidden or spstem files
O Do not show hidden files
@ Show all fles d|

Festare Defaults |

ak | Cancel | gl |

|»

You can easily read about the details of each setting in the Visual C++ documentation. What you
won't find there, however, is an example.

SHGetSettings()

Actually, using SHGet Set ti ngs() is quite simple. The function requires just two arguments:
voi d SHGet Set ti ngs(LPSHELLFLAGSTATE | psfs, DWORD dw\ask) ;

SHELLFLAGSTATE is a very compact structure defined in this way:

typedef struct
{
BOOL f ShowAl | Obj ects : 1;
BOOL f ShowExtensions : 1;
BOOL f NoConfirmnmRecycle : 1;
BOOL f ShowSysFiles : 1;
BOOL f ShowConpCol or : 1;
BOOL f Doubl ed i ckl nWebVi ew : 1;
BOOL f DesktopHTM. : 1;
BOOL fWn95C assic : 1;
BOOL fDontPrettyPath : 1;
BOOL f ShowAttribCol : 1;
BOOL f MapNetDrvBtn : 1;
BOOL f Show nfoTip : 1;
BOOL fHidelcons : 1,
U NT fRestFlags : 3;
} SHELLFLAGSTATE, *LPSHELLFLAGSTATE;

128

Browsing for Folders

The dwMask parameter is a binary bitmask — you have to set the appropriate bit for each of the
above fields you're interested in and want the function to retrieve. The possible values are:

Field

Mask bit

Setting in the Folder
Options dialog

f ShowAl | Obj ect's

f ShowExt ensi ons

f NoConfirmRecycl e
f ShowSysFi | es

f ShowConpCol or
fpoubl eCl i ckl n\eb
Vi ew

f Wn95Cl assi ¢

f Dont PrettyPath
f MapNet Dr vBt n

f ShowAt t ri bCol

f Showl nf oTi p

f Deskt opHTM

f Hi del cons

SSF_SHOWALLOBJECTS
SSF_SHOWEXTENSI ONS

SSF_NOCONFI RVMRECYCLE
SSF_SHOWSYSFI LES
SSF_SHOWCOMPCOLOR

SSF_DOUBLECLI CKI NV\EBVI EW

SSF_W N95CLASSI C

SSF_DONTPRETTYPATH
SSF_MAPNETDRVBUTTON

SSF_SHOWATTRI BCOL

SSF_SHOW NFOTI P

SSF_DESKTOPHTM

SSF_HI DEI CONS

Show all files

Hide file extensions for
known file types

None
Do not show hidden files
None

Double-Click to Open an
Item option on the General
| Custom Settings dialog

Classic Style option in the
General page

Allow all uppercase names

Show Map Network Drive
button in toolbar

Show file attributes in the
Detail View

Show pop-up description
for folders and desktop
items

View as Web Page on the
Active Desktop context
menu

Hide icons when desktop
is viewed as a Web page

The documentation erroneously states that f Hi del cons is not used, when in fact it works perfectly:
it indicates whether the icons on the desktop will be shown when the desktop view is set to Web
mode. Let's have a look at some possible applications for the information you can get from these

flags.

Watch the File Extension

The first use that comes to my mind relates to whether programmers want to show file extensions in
the user interface of their applications. If your program displays file names for any reason, then you
should take the user's preferences into account and decide whether to display the extension according

to the status of this flag.

129

Chapter 5

Make the Desktop More Active

The f Hi del cons flag lets you know whether the icons on the desktop are viewable when the view
mode is set to As a Web Page. f Deskt opHTM., on the other hand, tells you if the desktop uses an
HTML page as its background. If the desktop is in Web mode, and the icons aren't viewable, then
you might not want to create new shortcuts on the desktop.

The combined use of both f Deskt opHTM. and f Hi del cons would be very useful if only we could
set these settings, and not just get their status. Consider the following scenario: there are many ways
of clearing the desktop in order to stop users of publicly available computers from browsing or
running applications other than yours. However, a new possibility is offered by the combination of

f Deskt opHTM. and f Hi del cons. The first of these allows you to set the flag that displays an
HTML page as the desktop background, while the second one hides all the icons on the desktop. In
this way, you can transform the Windows desktop (and the machine) into a dedicated server on which
a single HTML-based application is running. Admittedly, the taskbar will still be there, but you can
easily hide that by getting its HAND and then calling ShowW ndow() with the SW HI DE flag:

/1 The taskbar is a wi ndow of class 'Shell_Traywhd'
HWD hwnd = Fi ndW ndow(" Shel | _TrayWhd", NULL);
i f(IsWndow(hwnd))

ShowW ndow(hwnd, SW HI DE) ;

At the time of writing, there was no documented way to set the flags we're interested in. However,
there's almost always an undocumented way to work around these things! I'll have more to say on
this subject in a while.

How to Click a List View

Among the numerous folder settings in shell version 4.71, there's the possibility of arranging things so
folders are underlined when they're selected, and one click is enough to open them. You can set these
options through the General page of the Folder Options dialog. Interestingly, these styles are also
available for list views in version 4.70 of the common controls library, so you might want to modify
the activation modality and the mouse-tracking capability of your list views according to the

f Doubl eCl i ckl nWebVi ew flag. The styles to take into account are:

LVS_EX_ONECLI CKACTI VATE (4.70)
LVS_EX_TWOCLI CKACTI VATE (4.70)
LVS_EX_UNDERLI NECOLD (4.71)
LVS_EX_UNDERLI NEHOT (4.71)

ODO00D

In this list, the version numbers refer to the common controls library, and not to the shell. Version 4.70
of contt| 32. dl | shipped with Internet Explorer 4.0 (regardless of whether Active Desktop is
installed), while 4.71 shipped with IE 4.01.

To set the extended styles for a list view, you need Li st Vi ew_Set Ext endedLi st Vi ewSt yl e(),
which is a new macro built around the LVM_SETEXTENDEDL| STVI EWSTYLE message. The meaning
of the first two styles listed above is straightforward, while the others deal with hot items, a term used
to describe an item that the mouse is passing over. LVS_EX_UNDERLI NECOLD causes 'non-hot' items
to be underlined, while LVS_EX_UNDERLI| NEHOT underlines only the hot item.

130

Browsing for Folders

Delete Confirmation

The f NoConf i r mRecycl e flag informs you whether or not the confirmation dialog will be shown
before deleting files. As you might imagine, this applies only to deletions that go through the Recycle
Bin and the shell. However, even if you aren't deleting files via shell functions like

SHFi | eOper ation() that we saw in Chapter 3, wouldn't it be nice to ask for confirmation if the
user is expecting such questions to be asked? Reading f NoConf i r mRecycl e is a big step towards
making this possible.

The Sample Program

The interface for this, the final Fun with Folders
example in this chapter, looks
something like the one in the

. Metwark buttons on the toolbar
screenshot I wonder if you can guess Shaws all fles
what I used to create the skeleton? Shaows extensions for known file tppes

Falder settings:

— IDC_GETSETTINGS

IDC_SETTINGS

The code for this example is very easy indeed: you just need to add a handler for the Get Settings
button, which will cause the current shell option settings to be read. The following source code
produces the effect you can see in the screenshot. As always, remember to #i ncl ude shl obj . h and
resour ce. h at the top of the source file.

voi d OnSettings(HWD hDl g)

{
Set Dl gl t enifext (hDl g, | DC_SETTI NGS, "");
SHELLFLAGSTATE sfs;
SHGet Setti ngs(&sfs, SSF_DESKTOPHTM. | SSF_SHOMLLOBJECTS |
SSF_MAPNETDRVBUTTON | SSF_SHOMTTRI BCOL | SSF_SHOWEXTENSI ONS) ;
TCHAR szBuf [MAX_PATH] = {0};
i f(sfs.fDesktopHTM.)
| strcat (szBuf, _ TEXT("Active Desktop - View as Wb page is active\r\n"));
i f(sfs.fMapNet DrvBtn)
I strcat (szBuf, _ TEXT("Network buttons on the toolbar\r\n"));
i f(sfs.fShowAl | bj ects)
| strcat (szBuf, __ TEXT("Shows all files\r\n"));
if(sfs.fShowAttribCol)
| strcat (szBuf, _ TEXT("Shows attributes in Detail viewmr\n"));
i f(sfs.fShowExt ensi ons)
| strcat (szBuf, _ TEXT("Shows extensions for known file types\r\n"));
Set DI gl t enText (hDI g, | DC_SETTI NGS, szBuf);
}

131

Chapter 5

Setting Preferences

Reading these kinds of settings might indeed be helpful in a range of circumstances, but rather more
interesting would be the ability to sef these attributes programmatically. Unfortunately, a

SHSet Set ti ngs() routine is yet to appear, but in this section I'll demonstrate that there's plenty
you can do to achieve this goal without Microsoft's help.

Where are Preferences Stored?

As you could probably have guessed, all the settings you can read through SHGet Set ti ngs() are
stored somewhere in the registry, and that means there's a relatively secure way to set preferences
programmatically.

Before going any further, let me make clear an important point. In the
absence of official documentation, Microsoft is free to change the registry
keys it uses in future versions of the operating system, indirectly causing
your code to break. At the time of writing, the technique I'm presenting
here worked perfectly under version 4.71 of the shell and Windows 98.

With that warning out of the way, on with the show! While snooping in the registry, I ran across the
following key:

HKEY_CURRENT_USER
\ Sof t war e
\' M crosoft
\ W ndows
\ Current Ver si on
\ Expl orer
\ Advanced

& Registry Editor

Registry Edit Wiew Help

=3 Explarer | | Name | Diata
423 Advanced [Def It ; [value nat zet)
(] AutoComplete (&%) ClassicviewState 0200000000 (0
{0 BrowsshewPracess DontPretyPath 000000000 (3]
{0 CabinetState Hidden 000000001 [1)
(0 Deskiview HidsFilsE st 000000000 [0)
:g EE:VT;T SeecMAY | | e Hidelcons 000000000 [0)
X MapMetDrEtn 000000000 0]
{27 FindComputertRL s .
ShowdttibCol 0400000000 (0)

-2 Merulder 5
{23 NewSharcutHandlers ShowCompColor 000000000 [0)

[DCKStreamMAL _ 1 | E8] showinfaTip 0x00000001 1)
[« _ |>|_I 4 | »l

fy ComputertHEEY_CURRENT_USERMS oftware\Microsoft\windowsCurrentersionE sploreradvanced 4

It seemed that I had found what I was looking for. Would it be enough simply to modify these
registry entries? Unfortunately, this was not to be — I soon noticed that the list of values was missing a
number of entries, in particular the 'Web view' settings.

132

Browsing for Folders

At this point, I remembered the golden rule of trying to reverse-engineer registry settings: always
compare the contents of the same key under HKEY_CURRENT_USER and HKEY_L OCAL_MACHI NE.

Here's what I found:

£:" Reqgistry Editor
Begistry Edit Yiew Help

=1 esplorer
B3 Advanced

= g

= Hidden

{27 HideFileExt

[ShowdttribCol
{1 ShowFullPath
{27 ShowlnfoTip
= Wisual

{2 DragFullafin
{1 FontSmooth
--{Z7 Hidelcons
{1 AlwaysUnloadDLL

K

{22 NOHIDDEN
{1 NOHIDORSYS
{0 SHOWALL

[MapMetDrvBin

;I Narne

| Data

[Diefauit]
Bitmap

[ClassicViewState Text
g DontPrettyPath Type

=
[0 [O

[walue not get]
el

"Files and Folders"
“goup”

0|

| Iy ComputersHEE'Y_LOCAL_MACHINEASOFTWARE \Microsoft\w/indows\Cunenti/ersion\explorer\ddvanced 2

As you can see, there's an entire hierarchical structure that reproduces the same tree as the Folder

Options dialog. The main nodes are of type " gr oup"”, and have their own bitmap, and a display
name. The 'leaves' of the structure hold a collection of attributes, from which stand out a couple of

values: RegPat h and HKeyRoot :

-] Folder
State
{2 DontPrettyPath
¢ =0 Hidden
i-{Z NDHIDDEN
{2 NOHIDORSYS
1] SHOWALL

{23 HideFileE st

{23 MapMetDrvBtn
[0 ShowsttibCol

{22 ShowFulPath hd
4] | |l

Defaultvalue

3] HelplD

HKeyR oot

Ehj RegPath
Text

=t Type

W aluehl ame

&' Registry Editor
Heaqistry Edit Yiew Help
{:_I explorer ;I Mame ‘ Data
EHI Advanced Ehj[Delaull] [walue not set)
CheckedValue 000000000 [0)

000000000 ()
"update, hipHE1 076"
[RA0000001 [2147483643)

"Software'\MicrosoftyWwindowshCurentversion'E kplorer'tidvanced"

"Femember each folder's view settings"
"'checkbox

Un:heckedValue 000000001 (1]

"ClassichiewState'

| |

‘ My ComputerHKEY_LOCAL_MACHINENSOFTWARE Microsoft\indows\Curentversion\explorer\Advanced\FolderClassicViewSt 2

What this means is that every entry in this sub-tree points to another key in the registry where the
actual value is stored, via a path constructed from HKeyRoot \ RegPat h\ Val ueNamne. The attributes
of the leaf determine the text to be shown, the type of the option (checkbox or radio button), the
value when checked or unchecked, the default value, and even the file name and topic ID for any

available help.

Given all this, arranging a custom SHSet Set t i ngs() function is simply a matter of reading and
writing some data from and to the registry.

Adding Custom Options to the Standard Dialog
Since there seemed to be a perfect correspondence between the layout of the registry sub-tree and the
structure of the Folder Options dialog, I immediately suspected that adding a new key in the registry
would cause a new, custom option to appear in the standard dialog. To prove it, there was only one
thing to do: add a new key to that registry sub-tree!

133

Chapter 5

I started by defining a ' Registiy Editor
new key called Begistry Edit View Help
. - explarer - | Data
M,/Set ting under B Advanced [alue nat set]
Fol der. Then, I defined =3 Folder 000000001 (1)
all the values that I'd seen (0 ClassicVienGtate 28] HKeyRaot OwBO00000T [2147453649)
@ D.ontF'rettyF’ath @HegPath "SoftwaretMicrosoftwindowshCurentersion\E xploreradvanced
the Other leaves have: 0 Hidden E"jText "Thiz iz & new setting af minel"
St
0 SHOWALL UncheckedVaIue DKDDDDD.DDD (@
{2 HideFileE st E"]ValueName "MySetting
{7 MapNetDr/Btn
a 1 tir:
{17 ShowsttibCol J
{27 ShowFullPath
{11 ShowlnfoTip
I'_—'I-D_ “Wisual

{11 DragFullwin

i {13 FortSmaath =
B I;l_l .

| 2

| My ComputersHEEY_LOCAL _MACHINENSOFT'WARE \Microsoft\windows\CurrentersionhexploreriddvancediFalder\MyS etting v

After saving the changes to the registry, I opened the Folder Options dialog expectantly, but nothing
new appeared. In fact, though, there's an obvious reason for this: the code behind the dialog adds a
new item only if it is able to read its stored value. As I mentioned earlier, this value is in another area
of the registry — it's where HKeyRoot , RegPat h and Val ueName point.

The extra step required is the creation of a new value called MySet t i ng under this key:

HKEY_CURRENT_USER
\ Sof t war e
\' M crosoft
\ W ndows
\ Current Ver si on
\ Expl orer
\ Advanced

It should be set to the default value you expect for
the option. When I saved the changes and reopened
the Folder Options dialog, the new setting appeared,
as this screenshot demonstrates:

134

Folder Options HE

General Wiew | Filz Types |

i~ Folder vie

You can make all pour folders look. the same.

Like Current Folder I Feset All Folders

Advanced settings:
|_71 Files and Folders

|»

n
Remember each falder's view settings

[0 Display the full path in title bar

[0 Hide file extenzsions for known file types

O Show Map Metwark Drive buttan in toolbar

[0 Show file attributes in Detail Yiew

Show pop-up description for folder and desktop items.
O allow all uppercase names

(3 Hidden files
) Donat show hidden or system files
O Do not show hidden files hd|
Festore Defaults
Ok | Cancel | Apply |

Browsing for Folders

When Custom Options Are Helpful

Adding new, custom options to the Folder Options dialog is not just a trick to impress colleagues —
rather, it could represent a very convenient way of allowing your users to customize your programs.
I don't suggest that you should use this dialog for all the settings an application can have, but it's
well worth considering for those options that revolve around the user interface and the folders. In
my opinion, the module that could best exploit this feature is a namespace extension.

The choice of the registry path to use is completely up to you, but it would seem to make sense to
store your settings away from the standard ones. An excellent choice could be to use an application-
specific registry key.

Summary

Folders are an extensive topic that this chapter has attempted to cover in detail. You've seen how to
browse for specific folders and how to work with them, enumerating their contents and setting
preferences. In particular, this chapter showed you:

How to make best use of SHBr owseFor Fol der ()

a

O How to enumerate the content of any folder

Q The functions to deal with special system folders
a

Which folder settings are available for reading, and how to set them programmatically

Along the way, we've built some potentially useful functions to extend the set of tools provided by the
API. Examples of such helper routines are SHEnun¥ol der Cont ent () and SHPat hToPi dl Ex() .
Moreover, I also revealed how the shell stores the folder settings, and addressed an undocumented
way of adding new options to the standard Folder Options dialog.

135

Chapter 5

Further Reading

Complementary to this chapter is my article The Windows 98 Shell that appeared in MIND, in August
1998. It discusses how to take advantage of the scriptable objects of the Windows 9x shell, a topic
that will be covered in detail later in this book. That article also shows how to build an ActiveX
control that browses for folders. A similar subject was discussed in the August 1998 issue of MS]J,
where ADSI (Active Directory Service Interface) and namespace extensions combine to arrange a
'web view' for a folder.

I picked up some tips on how to go about writing the code that I presented in this chapter from
Knowledge Base articles such as:

O Knowledge Base Article ID Q179378: Browse for Folders from the Current Directory
O Knowledge Base Article ID Q132750: Convert a File Path to an ITEMIDLIST

A quick but useful definition of the role played by the memory allocator can be found in the Ask Dr
Gui column of MSDN News, Sept/Oct 97. The book Programming the Windows 95 User Interface by
Nancy Cluts (Microsoft Press, available on the MSDN Library CDs) is still the only source I know to
provide some code that allows you to form an idea about PIDLs.

As for PIDLs and folder content, there's a good article in Jeff Prosise's Wicked Code column in the

December 1997 issue MS]J, in which he illustrates how to get the handle of the context menu for a
given file object.

136

"

The Shortest Path to Shortcuts

The Windows shell allows you to store references to any object you might come across anywhere in
the system. When you drag-and-drop executables from one folder to another, for example, the mouse
cursor automatically changes its shape to offer a third choice in addition to those of copying and
moving the file. %

[#

Unless you specify otherwise, executables are not copied or moved. Instead, each time you attempt
such an operation, what actually gets copied or moved is a reference to their physical location. What
actually gets created is not a copy of the file, but a link to its original location.

All these are samples of shortcuts. Things of this kind have been around for a while in older versions
of Windows — the icons in Program Manager, for example, were a sort of 'early version' of shortcuts.
Don't be confused, however — they aren't the same, and the main difference lies in the fact that a
shortcut is a general mechanism that can point to file objects: not just executables, and not just files.

Shortcuts are everywhere in the Windows 9x and Windows NT shell. You can find them in any
folder, but most of all you find them in the special system folders. If you want your application to do
impressive things like adding items to the Favorit es or SendTo folders, or even to the Start menu,
then creating shortcuts is the way to go. They are an important piece of the shell jigsaw that we need
to discuss thoroughly.

In this chapter, we're going to cover:

Exactly what shortcuts are
How the system stores and reloads them
How you can create or delete shortcuts

0000

Examples of useful functions that you can code for shortcuts

Chapter 6

The examples we'll examine along the way assume a certain familiarity with topics that might be
considered at the margin of shell programming, but which will demonstrate more clearly the
flexibility of shortcuts. In this chapter, for instance, we'll be using hotkey controls and drag-and-drop
as built-in features of the sample applications.

What are Shortcuts?

A shortcut represents a link to a particular file object, and is implemented as a tiny binary file with a
. I nk extension. When I say, "tiny," I really mean it — the size of a shortcut file rarely reaches 1 KB.
Not all shortcuts have exactly the same size, but they do possess a fixed set of attributes: the target
file object, a description, an hotkey, an icon, and more. We'll examine all of these shortly.

Shortcuts pervade the whole of the Windows shell, and may be perceived as a service that the shell
provides you with. From the software point of view, shortcuts are implemented through a COM
server that exposes the | Shel | Li nk interface and is identified by the mnemonic

CLSI D_Shel I Li nk. By means of this interface, you're allowed to set the various attributes of a
shortcut, and call the methods that save it to or load it from disk.

The Shortcut File Type

When all is said and done, a shortcut is a file, but it's a kind of file that the shell handles in a
particular way. The shell knows that a file of type 'shortcut' is a reference to something else, so that
when you double-click it (or click it — it depends on your Active Desktop settings, as shown in
Chapter 5!) you're returned the object being pointed to, not the file you clicked on.

Creating Shortcuts

Although shortcuts are often associated with executable programs, this is by no means a rule — you
can create shortcuts to directories and non-executable files. From a software perspective, there's
absolutely no difference. However it's also possible to create shortcuts to non-file system objects (such
as printers); in this case there is a small difference, and you should use a different method for this
purpose.

To create a new . | nk file, you have two choices. The first one relies on the shell DDE interface,
which is inherited directly from the old Program Manager. We won't be covering it here, but more
details on shell DDE and full documentation of the syntax are available in the Internet Client SDK
and the MSDN Library. If you used to program using DDE but haven't been back to it recently, it
may interest you to know that there have been changes since Windows 3.x, and there are some
relatively new features in the DDE interface.

Using the IShellLink Interface

The second and recommended way of creating shortcuts is by means of the | Shel | Li nk COM
interface, and it's a surprisingly painless process.

140

The Shortest Path to Shortcuts

The steps involved are:

Q Creating the appropriate COM server
Q Getting a pointer to the | Shel | Li nk interface

Q Setting some attributes through the methods of | Shel | Li nk
Q Getting a pointer to the | Per si st Fi | e interface
Q Saving the shortcut to a file using methods of | Per si stFi |l e

Creating the server is just a matter of calling CoCr eat el nst ance(), making sure to have initialized
the COM libraries properly (with Col ni ti al i ze()) beforehand:

I Shel | Li nk* pShel | Li nk = NULL;
HRESULT hr = CoCreat el nstance(CLSI D_Shel I Li nk, NULL, CLSCTX_ | NPROC_SERVER,
11 D_I Shel I Li nk, reinterpret_cast <LPVO D*>(&sShel I Li nk));
i f (FAILED(hr))
return hr;

The CLSID is defined in the shl obj . h header file, and the above call returns a pointer to the

I Shel I Li nk interface, which is the key to handling shortcuts. The following table presents a list of
all its methods, with brief descriptions of each. I'll point out some possible pitfalls a little later on, in
the course of writing a sample program.

Method Description

Get Argunent s()
Set Argunment s()

Returns/sets the command-line arguments.

Get Description()
Set Descri ption()

Get Hot key()
Set Hot key()

Returns/sets the description string.
Returns/sets the hot key for the shortcut.

Getl conLocation()
Setl conLocation()

Returns/sets the path and index of the icon.

Get | DLi st () Returns/sets the PIDL of the linked object. Use these

Set | DLi st () methods instead of Get Pat h() and Set Pat h() if you're
working with non-file system objects.

Get Pat h() Returns/sets the path and filename of the linked object.

Set Pat h()

Get ShowCrrd () Returns/sets the SW XXX flag of the linked object.

Set ShowCrrd ()

Get Wor ki ngDi rectory()
Set Wor ki ngDi rectory()

Set Rel ati vePat h()

Resol ve()

Returns/sets the working directory.

Sets a relative path to the linked object.

Retrieves the file object pointed to by the shortcut.

141

Chapter 6

Once you have a pointer to | Shel | Li nk, you can start configuring the shortcut by setting the target
object (a file, a directory, or a PIDL to a non-file object), and a list of optional attributes. You can set
a description, a hotkey to access the file quickly, a specific icon, a working directory, command-line
arguments, and a value that denotes how the window (if any) should be created. Here's a typical code
fragment:

pShel | Li nk- >Set Pat h(pszTar get) ;

pShel | Li nk- >Set Descri pti on(pszDesc);

pShel | Li nk- >Set Hot key(wHot Key) ;

pShel I Li nk->Set | conLocat i on(pszl conPat h, w conl ndex) ;

At this point, the object only exists in memory. To make it persistent, we need to store it in a file. For
this reason, the COM server we're working with (the one identified by CLSI D_Shel | Li nk)
implements the | Per si st Fi | e interface together with | Shel | Li nk. The former is an interface that
comprises methods to read from and write to disk, and therefore serves the purpose of providing
callers with a common programming interface to load and save files.

| Persi stFile* pPF;

pShel I Li nk->Querylnterface(lID_| PersistFile, reinterpret_cast<LPVO D*>(&pPF));
Mul ti Byt eToW deChar (CP_ACP, 0, szLnkFile, -1, wszLnkFile, MAX PATH);

pPF- >Save(wszLnkFil e, TRUE);

| Persi stFile'stwo most important methods, Load() and Save(), both require Unicode strings,
and therefore we need to convert the buffer containing the filename to wide characters.

A Global Function for Shortcuts

We can already put this information together to form a new shell helper function that creates
shortcuts — remarkably, the Windows shell API doesn't provide a simple and direct function to create
(or resolve) a shortcut. In another feat of imagination, I'm going to call ours

SHCr eat eShort cut Ex() .

In fact, although the Win32 API doesn't have one, the Windows CE SDK does include a function called
SHCr eat eShor t cut (), with the following prototype:

BOOL SHCreat eShort cut (LPTSTR szShortcut, LPTSTR szTarget);

As input, our function will take the name of the target . | nk file, and a structure that will contain all
the attributes requested for the shortcut:

struct SHORTCUTSTRUCT

{
LPTSTR pszTar get ;
LPTSTR pszDesc;
WORD wHot Key;
LPTSTR pszl conPat h;
WORD W conl ndex;

IE

typedef SHORTCUTSTRUCT* LPSHORTCUTSTRUCT;

142

The Shortest Path to Shortcuts

Here's the source code for the function, which we'll be using in a sample program that we'll create
and discuss later on:

HRESULT SHCr eat eShort cut EX(LPCTSTR szLnkFi | e, LPSHORTCUTSTRUCT | pss)

WCHAR wszLnkFi | e[MAX_PATH] = {0};
| Shel I Li nk* pShel I Li nk = NULL;
| Persi stFile* pPF = NULL;

/] Validate SHORTCUTSTRUCT poi nter
if(lpss == NULL)
return E_FAIL;

/Il Create the COM server assuming Colnitialize() has already been called
HRESULT hr = CoCreat el nstance(CLSI D_Shel | Li nk, NULL,
CLSCTX_| NPROC_SERVER, |1 D_I Shel | Li nk,
reinterpret_cast<LPVO D*>(&pShel | Li nk));
i f (FAILED(hr))
return hr;

/1] Set attributes

pShel I Li nk- >Set Pat h(| pss->pszTar get) ;

pShel I Li nk- >Set Descri pti on(| pss->pszDesc);

pShel | Li nk- >Set Hot key(| pss- >wHot Key) ;

pShel | Li nk- >Set | conLocat i on(| pss->pszl conPat h, | pss->w conl ndex) ;

/1l Get the IPersistFile interface to save
hr = pShel | Li nk->Queryl nterface(

I1D | PersistFile, reinterpret_cast<LPVO D*>(&pPF));
i f (FAILED(hr))

pShel | Li nk- >Rel ease();
return hr;

}

/'l Save to a LNK file (Unicode nane)
Mul ti Byt eToW deChar (CP_ACP, MB_PRECOMPOSED,

szLnkFile, -1, wszLnkFile, MAX PATH);
hr = pPF->Save(wszLnkFile, TRUE);

/1 dean up

pPF- >Rel ease();

pShel I Li nk- >Rel ease() ;
return hr;

Shell Scriptable Objects

A better possibility for working with shortcuts is offered by shell scriptable objects. These were
introduced with Internet Explorer 4.0, and are a standard part of Windows 98. In a nutshell, they are
Automation servers that expose a programming interface for creating and resolving shortcuts. (They
also do many other interesting things...)

Most interestingly, these components can be used from desktop applications, HTML pages, and also

throughout the Windows Scripting Host (WSH). We'll be covering these objects and WSH in detail in
Chapter 12.

143

Chapter 6

Giving Shortcuts the Right Name

Since version 4.71 of the shell, a new function called SHGet NewLi nkl nf o() has been available to
programmers. Despite what you might expect, though, this function doesn't actually create a shortcut.
Instead, it is useful when the time comes to arrange a correct name for a shortcut:

BOOL SHGet NewLi nkl nf o(LPCTSTR pszLi nkTo,
LPCTSTR pszDir,
LPTSTR pszNane,
BOOL* pf Must Copy,
Ul NT uFl ags) ;

The function takes either a pointer to the path name, or the PIDL of the target object; this is stored in
pszLi nkTo. Whether it gets considered as a PIDL or a path name depends upon the value in
uFl ags. The destination folder is pszDi r.

This routine will suggest the name for the shortcut file you're about to create. This name is returned
in pszName, which assumes a buffer of MAX_PATH characters. When you create shortcuts to existing
shortcuts, the shell doesn't create a new link, but simply copies and modifies the target. The

pf Must Copy flag serves the purpose of returning a Boolean value that denotes whether the shell will
create a shortcut file from scratch, or proceed with a copy. TRUE means that pszLi nkTo is an
existing shortcut, in which case the shell will make a copy and modify it appropriately. A value of
FALSE means that a completely new shortcut will be created. Finally, the available flags are:

Flag Description

SHGNLI _PI DL If set, the pszLi nkTo argument will be considered as a PIDL,
otherwise as a string.

SHGNLI _NOUNI QUE If set, the shell will first determine the shortcut name and then

check for possible collisions. If the name collides with others in
the same folder, it gets updated iteratively until a unique name is
found.

SHGNLI _PREFI XNAME If set, the name will always be prefixed by 'Shortcut to'.

In practice, SHGet NewLi nkl nf o() endeavors to provide a consistent name for the shortcut to the
given target. This means, for example, that it will have a . pi f extension if it points to a DOS
executable and a . | nk extension otherwise. Another check the function performs regards the target
drive's support for long filenames. If the drive doesn't support long names, then it will return a name
in 8.3 format.

As for any other function that's available only from version 4.71 onwards, it's a good idea not to link this
Sfunction through the shel | 32. 1 i b import library. Instead, you should consider loading it dynamically
by calling LoadLi brary("shel 1 32.dl1") and Get ProcAddress().

Deleting Shortcuts

Deleting shortcuts is as easy as deleting a file. More importantly, you don't have to worry about the
destiny of the file being pointed to, because all you delete is the reference. The object being pointed
to remains completely unaffected.

144

The Shortest Path to Shortcuts

Resolving Shortcuts

Creating shortcuts is only half the job. It's completely plausible that sooner or later, you (and not just
the system) will need to read the contents of a shortcut file. While resolving shortcuts is not that
different from reading a file, the operation is usually referred as 'resolving' rather than 'reading'.

There are reasons for this difference in nomenclature. A shortcut points to a file object, but this is just
a link — it's not embedded. When you create your shortcut, the object is supposed to exist, but no
such assumption can be made when the time comes to read it. When you need to access the
referenced object, there is nothing to guarantee that it hasn't been deleted, moved, or renamed in the
meantime.

Reading a shortcut simply means that you will try to access the object specified in the . | nk file.
Resolving a shortcut means that the system will try to understand where the referenced object has been
moved to, or how it has been renamed.

How Explorer Resolves Shortcuts

We could say that, to begin with, each resolution of a shortcut is a reading. However, if Explorer
doesn't find a valid file object at the location specified in the . | nk file, then it will perform a
recursive search on all the drives and directories in the disk until it finds a file with the same size,
creation date and attributes as the one pointed to by the shortcut. If that search fails, Explorer will
display a dialog box like this one:

Mizzing Shortcut

Windows iz searching for Fits. Ta locate the file
yoursell, click Browse.

2

Cancel |

This dialog can be suppressed by setting the appropriate flag when calling
| Shel I Li nk: : Resol ve() . Of course, if you have deleted the referenced object, it's impossible for
Explorer to find it, even if it's still in the Recycle Bin.

A Function for Resolving Shortcuts

The shell API also lacks a function to resolve shortcuts, so once again we'll be writing our own. The
steps involved are:

Creating the necessary COM server

Getting a pointer to the | Per si st Fi | e interface

Loading the shortcut from the . | nk file using methods of | Per si st Fi | e
Getting a pointer to the | Shel | Li nk interface

Resolving the shortcut

[y W iy Wy |

145

Chapter

6

The core of the whole operation is the call to Resol ve() . This method has the following syntax:

HRESULT | Shel | Li nk: : Resol ve(HWND hwnd, DWORD f Fl ags) ;

The first parameter is the handle of the parent window for any dialog box the function should need to
show. More interesting from our point of view is the dwF| ags argument, which can be a
combination of the following values:

Flag

Description

SLR_NO_UI The function won't display any dialog box, even if it fails to locate the

SLR_ANY_MATCH Try to resolve the link, and display a dialog box if it fails.
SLR_UPDATE If this flag is set, and the referenced object has been moved or renamed,

file pointed to. In this case, the function returns after 3 seconds by
default; this timeout can be customized by specifying the number of
desired milliseconds in the high-order word of the argument.

then the shortcut is updated to point to the new location. This behavior
is not the default.

Notice here that updating the shortcut to have it point to the new location (if any) of the file object is
not automatic. It must be requested explicitly by passing the SLR_UPDATE flag to
| Shel I Li nk: : Resol ve().

Here's the complete source code for our SHResol veShor t cut () function. Like its sister routine
SHCr eat eShor t cut Ex(), it will be used extensively in our sample program to illustrate shortcut
programming.

HRESULT SHResol veShort cut (LPCTSTR szLnkFil e, LPSHORTCUTSTRUCT | pss)

{

146

WCHAR wszLnkFi | e[MAX_PATH] = {0};
| Shel | Li nk* pShel | Li nk = NULL;
| PersistFile* pPF = NULL;

I/l Create the appropriate COM server
HRESULT hr = CoCreat el nstance(CLSI D_Shel | Li nk, NULL,
CLSCTX_| NPROC_SERVER, 11 D_I Shel | Li nk,
reinterpret_cast <LPVO D*>(&pShel | Li nk));
i f (FAILED(hr))
return hr;

/] Get the IPersistFile interface to load the LNK file
hr = pShel | Li nk->Queryl nterface(

11D | PersistFile, reinterpret_cast<LPVO D*>(&PF));
i f (FAILED(hr))

pShel | Li nk- >Rel ease();
return hr;

The Shortest Path to Shortcuts

/! Load the shortcut (Unicode nane)
Mul ti Byt eToW deChar (CP_ACP, 0, szlLnkFile, -1, wszLnkFile, MAX PATH);
hr = pPF->Load(wszLnkFil e, STGV READ);
i f (FAILED(hr))
{

pPF- >Rel ease();
pShel I Li nk- >Rel ease() ;
return hr;

}

/'l Resolve the |ink
hr = pShel | Li nk- >Resol ve(NULL, SLR_ANY_MNATCH) ;
i f (FAI LED(hr))

pPF->Rel ease() ;
pShel I Li nk- >Rel ease() ;
return hr;

}

/'l Extract the information to fill |pss
if(lpss !'= NULL)

TCHAR szPat h[MAX_PATH = {0};
TCHAR szDesc[MAX_PATH] = {0};
TCHAR szl con[MAX_PATH] = {0};

WORD w = 0;
WORD W con = O;
W N32_FI ND_DATA wf d;

pShel | Li nk- >Get Pat h(szPat h, MAX_ PATH, &wfd, SLGP_SHORTPATH);
pShel | Li nk- >Get Descri pti on(szDesc, MAX_PATH);
pShel I Li nk- >Get Hot key(&w) ;
pShel I Li nk->Get | conLocat i on(
szl con, MAX PATH, reinterpret_cast<int*>(& con));

| pss->pszTarget = szPat h;

| pss->pszDesc = szDesc;

| pss->pszl conPat h = szl con;
| pss->wHot Key = w,

| pss->w conl ndex = w con;

}

pPF- >Rel ease();
pShel | Li nk- >Rel ease();
return hr;

To load the file, we use the Load() method of | Per si st Fi | e, which takes two arguments. The
first one is the Unicode version of the . | nk file name to work with, while the second parameter
denotes the access mode with which the file should be opened.

Shortcuts and Special Folders

In most cases, if you need to create a shortcut programmatically, you need to create it in a special
folder. However, this is not a complication — it's just a matter of specifying the right path to the
folder. The sample program that we'll discuss in the next section allows you to create shortcuts in
many of the 'usual' special folders: My Docunent s, Deskt op, St art Menu, Progr ans, SendTo
and Favorites. As we saw in Chapter 5, the SHGet Speci al Fol der Pat h() function can discover
the path to a non-virtual folder.

147

Chapter 6

The Sample Program: Shortcut Manager

The application you can see in
the figure below was generated
by the Wrox AppWizard, and
is intended to work as a simple
console to create and resolve

IDC_SHORTCUT

Shortcut Manager

IDC_BROWSE

Shartcut |

Target | Description

| Hatkes]

[~ Ressive |—— IDC-RESOLVE

. . . — 1 IDC_VIEW
shortcuts. Its dialog window is -
divided in two parts: the upper
for resolving shortcuts, and the e Shate [IDC_TARGET
lower to create new ones. Taget T B IDC_BROWSETARGET
IDC_DESCRIPTION P
IDC_HOTKEY otk - - P
IDC_SPECIAL — — e =D eskton =] o IDC_LINKFILE
Creste IDC_CREATE

The user interface will let you select . | nk files to open, and it will work as a drop target too — that is,
you can drag-and-drop shortcuts from wherever you like, and have it resolve them.

Each shortcut that is resolved by the program will be reported in the view. The example we'll
develop here will only show target, description and hotkey information, but enhancing this aspect
should not pose you problems if you choose to do so.

Selecting a Shortcut

The first potential pitfall we have to consider arises when you try to arrange an Open dialog to select
a shortcut to resolve. The trouble is that by default, the Open dialog dereferences shortcuts, so you'll
never be returned the names of any . | nk files! To work around this, you must specify the
OFN_NODEREFERENCELI NKS flag to the Get OpenFi | eName() function, as shown below in the
handler function that deals with otk the browse buttons on the application dialog:

voi d OnBrowse(HWND hDl g,
{

TCHAR szFi | e[MAX_PATH|

OPENFI LENAME of n;

WPARAM wi D)

= {0};

Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;
of n. 1 Struct Si ze = si zeof (OPENFI LENAME) ;

i f (W D == | DC_SHORTCUT)

ofn.lpstrFilter =

__TEXT(" Shortcuts\0*. | nk\0");

of n. Fl ags = OFN_NODEREFERENCEL| NKS;

}

el se
ofn.lpstrFilter =

TEXT("AL fil

es\ 0%. ¥\ 0") ;

148

of n. nMaxFi |l e = MAX_PATH,
ofn.IpstrinitialDir = __ TEXT("c:\\");
ofn.IpstrFile = szFile;

The Shortest Path to Shortcuts

i f(!GetOpenFil eName(&ofn))

return;
el se

Set Dl gl t enText (hDi g, WM D, ofn.IpstrFile);
return;

}

By this technique, if you double click on a . | nk file, Explorer will stop there and return the name of
that file instead of going down to the referenced file.

Shell Drag-and-Drop

All right, I admit it: even though we're in the land of shell programming, this is not a strictly related
topic. Just in case you haven't seen it before, though, it is worth a look. The Visual C++ Resource
Editor allows you to assign a drop-target attribute (by turning on the W5_EX_ACCEPTFI LES bit) to
literally any window. However, it's then completely up to you to figure out how and when you can
handle drop events. We want to limit drag-and-drop to the list view, but if we assign it the attribute,
then we're faced with having to subclass the window in order to detect drop-related events.

Instead, we're going to use a simpler approach: the whole dialog will be drop-enabled, but when it
catches a WM_DROPFI LES message, it will verify that the event occurred within the list view. If not, it
will ignore the event. The functions that handle drag-and-drop from the shell are all defined in

shel | api . h, and go by the names of Dr agQuer yPoi nt (), DragQuer yFi |l e() and

Dr agFi ni sh() . I'll have more to say on this subject later on.

Displaying the Results

This program has a report-style list view in its user interface, and to make using it a little easier, I've
created a couple of helper functions to assist with adding columns and strings to such views. Keep
them in mind, because we'll be using them again later on.

The first function is called MakeReport Vi ew(), and is meant to transform any list view window
into a report-style list view with the columns you specify. Its prototype requires you to pass in the
handle of the list view, an array of strings with name and width of each column, and the total number
of columns. To make the prototype as compact as possible, I've assumed that the array you pass
contains names in the even entries (0, 2, 4, and so forth) and numbers in the odd positions.

The array is actually an array of pointers to strings — namely, an array of 32-bit values. Provided that
you're aware of this, you can use an array like the following:

LPTSTR psz[] = {"Target", reinterpret_cast <TCHAR*>(170),
"Description", reinterpret_cast <TCHAR*>(170),
" Hot key", reinterpret_cast <TCHAR*>(100)};

MakeReport Vi ew(hwndLi st, psz, 3);

MakeReport Vi ew() always treats the entries as name/width pairs, so the number of columns should
always be equal to half the size of the array.

voi d MakeReport Vi ew(HWAND hwndLi st, LPTSTR* psz, int i NunOf Col s)
{
RECT rc;
DWORD dwStyl e = Get W ndowsSt yl e(hwndLi st) ;
Set W ndowLong(hwndLi st, GAL_STYLE, dwStyle | LVS_REPORT);
Get d i ent Rect (hwndLi st, &rc);

149

Chapter 6

// Handle pairs of entries. Array size is assuned to be 2 * i NunOf Col s
for(int i =0; i <2* iNumdCols ; i =i + 2)
{
LV_COLUW | vc;
Zer oMenory(& vec, sizeof (LV_COLUW));
| ve. mask = LVCF_TEXT | LVCF_W DTH,
I ve. pszText = psz[i];
if(reinterpret_cast<int>(psz[i + 1]) == 0)
lvec.cx = rc.right / i NunCf Col s;
el se
Ivc.cx = reinterpret_cast<int>(psz[i + 1]);

Li st Vi ew | nsert Col um(hwndList, i, & vc);
}

return;

The companion routine for MakeReport Vi ew() is AddSt ri ngToReport Vi ew(), which adds a
new row to the specified list view. Due to the low-level programming interface, filling all the columns
of a report-style list view requires you to go through several steps. You should add the new item
specifying the text for the first column (the main one), and then iterate on the remaining columns to
set the text in those. All these steps are executed by AddSt ri ngToReport Vi ew() ; you just pass a
null-separated string that contains all the necessary substrings, and indicate how many there are in

i NunOf Col s.

voi d AddStringToReportVi em(HWAD hwndLi st, LPTSTR psz, int i NunmOf Col s)
{

LV_ITEM | vi ;

ZeroMenory(& vi, sizeof (LV_ITEM);

| vi.mask = LVI F_TEXT;

I vi.pszText = psz;

I vi.cchTextMax = | strlen(psz);

lvi.iltem= 0;

Li stView I nsertlten{hwndList, & vi);

/[l Cher columms
for(int i =21 ; i <iNumXCols ; i++)
{
psz += Istrlen(psz) + 1;
Li st Vi ew_Set |t eniText (hwndLi st, 0, i, psz);

}

return;

In this example, the list view will have three columns: Target, Description, and Hotkey. The first two
of these are straightforward, but the third makes use of a common control that you may not have used
before, so it's worth just a little more explanation.

150

The Hotkey Common Control

Windows 95 introduced a new common control that lets you choose a key combination 'graphically’

(see the figure):

The Shortest Path to Shortcuts

To use the control, you hit the key
combination you want, and it interprets the
code and converts it into text. Clearly, this
control is perfect for creating a more pleasant
user interface around shortcut creation.

Microsoft Word Properties HE
General Shortcut |
L‘!.i@ Microsaft Word
7}
Target type: Application
Target location: Office
Target: ID:\Mlefice\foice\W’\NW’DHD.EKE
Start in: I
Shartcut key: |Ctr| + A+
Bun: I Mormal window j
Find T arget | Change lcon |
ak I Cancel | Apply |

When it comes to resolving shortcuts, on the other hand, all you have is the number (a WORD to be
precise) that gets returned by | Shel | Li nk: : Get Hot key() . It's up to you to translate it into a well-
formed string.

The word that identifies a hotkey is split into two bytes. The high-order byte is the modifier (Alt, Ctrl,
Shift, or a combination of the three), while the low-order byte is the code of the key you hit. Note that
if you press A, for example, the code is 65 (upper case letter) and not 97 (lower case).

To arrange a Hot keyToSt ri ng() routine, then, we just need to check the bits of the high byte
against some known constants. Here's another function to join the ranks of those that make up our

project:

voi d Hot keyToSt ri ng(WORD wHot Key,

{

BYTE bKey
BYTE bMbd

LOBYTE(wHot Key) ;
H BYTE(wHot Key) ;

i f (bMbd & HOTKEYF_CONTROL)
I strepy(pszBuf, _ TEXT("Ctrl"));

i f(bMod & HOTKEYF_SHI FT)
if(lstrlen(pszBuf))
| strcat (pszBuf, _ TEXT(" + Shift"));
el se
| strcepy(pszBuf, _ TEXT("Shift"));

i f(bMbd & HOTKEYF_ALT)
if(lstrlen(pszBuf))
| strcat (pszBuf, _ TEXT(" + Alt"));
el se
| strcpy(pszBuf, _ TEXT("At"));

LPTSTR pszBuf)

151

Chapter 6

TCHAR s[2] = {0};
wsprintf(s, __TEXT("%"), bKey);
if(lstrlen(pszBuf))

I strcat (pszBuf, _ TEXT(" + "));
| strcat (pszBuf, s);

}

el se
| strcpy(pszBuf, s);

As input, the Hot keyToSt ri ng() function takes the hotkey and a buffer to fill with the resulting
string. It checks the modifier and builds the first part of the string — say, Ctrl + Alt. Then, it completes
the job by concatenating the character of the key pressed — say, Ctrl + Alt+ X. The next picture shows
how the application looks when it has resolved a shortcut:

Shoitcut Manager [x|
s IE SWNDOWSNDesktopibiciosoft Woord. Ink J Resalve

Target | Description | Huotken |
FSPROGRA™TAMICROS~1NOF... Chil + Al +x

- Create Shortout

Target: |

Description:

Hatkey: None

LNE fle: |Desklop 1] | ke

Create |

Collecting Arguments for Creation

The portion of the dialog that provides shortcut creation wouldn't be noteworthy if it weren't for a
little subtlety. Open an existing shortcut (one of the ones you have on the desktop is fine) and try to
assign it a new hotkey. You'll find that in some cases, the hotkey control corrects the key you pressed.
Try it with A, and it will become Ctrl + Alt + A

"Just a feature," you might say, but it's an important feature, because if you try to assign a hotkey that's
not in the form Cirl + Alt + ... programmatically, the hotkey will never be recognized. If you think
about it for a moment, this behavior isn't that strange — Ctrl + Alt + ... shouldn't conflict with other
possible accelerators. However, it took me a considerable amount of time to figure out what was
wrong with the Alt+ Z combination of my first few examples!

Giving Rules to the Hotkey

To instruct a hotkey control to replace some wrong or invalid key combination automatically, you
must use key rules. Despite the important-sounding name, this just reduces to sending a simple
message to the hotkey window.

152

The Shortest Path to Shortcuts

To force it to accept only Ctrl + Alt prefixed keys, you must:

SendMessage(hwndHot key, HKM SETRULES,
HKCOVB_NONE | HKCOMB_S | HKCOVB_A | HKCOMB_C,
HOTKEYF_CONTRCOL | HOTKEYF_ALT);

The 'rule' can be rephrased like this:

Q Invalid key combinations are all those that have one of the modifiers listed in wPar am
Q Replace each invalid key combination with those specified in | Par am

If your hotkey combination begins with
nothing (HKCOVB_NONE), Shift

(HKCOMVB_S), Alt (HKCOVB_A) or Ctrl Shorcut. | | Reshe |
(HKCOMB_C), then discard them and [Target [Desoription [Hetkey |

replace with Ctrl + Alt. The following
picture shows the program when it's
about to create a shortcut:

i~ Create Shaortcut

e C:\Program Files\Accessores\Mzpaint. exe |
Description: Microzoft Paint
Hotf ey Chil + Alt + P

LMK file: Start Menu j IF'a\nt ik

Create |

The Source Code

Let's now have a look at the remaining source code for this chapter's sample program. To compile it
correctly, make sure that you include shl obj . h, resource. h and conmdl| g. h, and that you're
linking against condl g32. i b and ol €32. | i b. Also, because we're using COM, you'll need to
bracket the call to Di al ogBox() in W nMai n() with calls to Col ni ti ali ze(NULL) and
CoUninitialize().

DoCreateShortcut()

This function is invoked when the user clicks on the Create button. It collects parameters from the
other controls and arranges a call to SHCr eat eShor t cut Ex() . The combo box with the names of
some special folders uses the same technique as we employed in Chapter 5.

voi d DoCreat eShort cut (HWND hDl g)
{
SHORTCUTSTRUCT ss;
Zer oMenor y(&ss, si zeof (SHORTCUTSTRUCT)) ;
TCHAR szTar get [MAX_PATH] = {0};
TCHAR szDesc[MAX_PATH = {0};

153

Chapter 6

/1 Get the hotkey
ss. wHot Key = static_cast <WORD>(SendDl gl t emMvessage(
hD g, | DC_HOTKEY, HKM GETHOTKEY, 0, 0));

// Get target and description

Get Dl gl t enText (hDl g, | DC_TARCET, szTarget, MAX PATH);
Get DI gl t enText (hDI g, | DC_DESCRI PTI ON, szDesc, NMAX_PATH);
Ss. pszTarget = szTarget;

Ss. pszDesc = szDesc;

// Determine the shortcut file nane

/'l Get the target folder & final backslash

HWAD hwndCbho = Get Dl glten(hDi g, | DC_SPECI AL);

int i = ComboBox_GCet Cur Sel (hwndCho) ;

DWORD nFol der = ConboBox_GCet | t enDat a(hwndCho, i);

TCHAR szPat h[MAX_PATH] = {0};
SHGet Speci al Fol der Pat h(hDl g, szPath, nFol der, FALSE);
if(szPath[lstrlen(szPath) - 1] != "\\")

I strcat (szPath, _ TEXT("\\"));

TCHAR szLnkFi | e[MAX_PATH = {0};

Get Dl gl t enText (hDi g, | DC_LNKFI LE, szLnkFile, MAX PATH);
| strcat (szPath, szLnkFile);

I strcat (szPath, _ TEXT(".Ink"));

/] Create
SHCr eat eShort cut Ex(szPat h, &ss);

/1 Update U
Set DIl gl t enText (hDI g, | DC_SHORTCUT, szPath);
return;

DoResolveShortcut()

This function gets called in response to a click on the Resolve button, although it also takes an
additional parameter pszFi | e that can be used to denote the file to resolve. If this parameter is
NULL, then the function works on the file name specified in the Shortcut edit box. The reason for this
argument is that it makes it easier to resolve any files dropped onto the program's window.

DoResol veShort cut () first resolves the shortcut calling our SHResol veShor t cut (), and then
updates the user interface of the program, adding a new row to the report list view.

voi d DoResol veShort cut (HWND hDl g, LPTSTR pszFil e)
{
TCHAR szLnkFi | e[l MAX_PATH] = {0};
i f(pszFile == NULL)
Get DI gl t enText (hDI g, | DC_SHORTCUT, szLnkFile, MAX_PATH);
el se
| strepy(szLnkFile, pszFile);

/'l Resolve the shortcut
SHORTCUTSTRUCT ss;
HRESULT hr = SHResol veShortcut (szLnkFile, &ss);
i f (FAILED(hr))
return;

154

The Shortest Path to Shortcuts

NN NN NN
/1 Update U

/Il Create the string for the listview
TCHAR pszBuf[1024] = {0};
LPTSTR psz = pszBuf;

| strcpy(psz, ss.pszTarget);
I strcat (psz, __TEXT("\0"));
psz += Istrlen(psz) + 1;

| strcpy(psz, ss.pszDesc);
I'strcat (psz, _ TEXT("\0"));
psz += Istrlen(psz) + 1,

/1l Try to get the text version of the hotkey
TCHAR szKey[30] = {0};
Hot keyToSt ri ng(ss. wHot Key, szKey);

| strcpy(psz, szKey);
I strcat(psz, _ _TEXT("\0"));

// Add a newitemto the report list view (3 col ums)
HWAD hwndLi st = GetDi glten(hD g, |1 DC VIEW;

AddSt ri ngToReport Vi ew(hwndLi st, pszBuf, 3);

return;

HandleFileDrop()

Called in response to WM_DROPFI LES, this function defines what the program must do when the user
drops files on its client area. Accepted data must be of type CF_HDROP, which is the interchange
format used by the shell to move files around when you drag-and-drop files from the Explorer
window or from the desktop. Any window with the W6_EX_ACCEPTFI| LES style set (we discussed
this earlier), is sensitive only to drag-and-drop operations that involve data in this format. In other
words, our program will accept drag-and-drop only if the source is the Windows shell, or another
program that transfers data in the CF_HDROP format.

CF_HDROP is a clipboard format intended to exchange data items that are basically file names — you
can look at the Visual C++ help files for more information about clipboard formats and the internal
structure of CF_HDROP data. What's important for us is that there are a number of functions capable
of reading data held in this format, through a type of memory handle called an HDROP.

When you drop files from the shell, the target window receives a WM_DROPFI| LES message in which
one of the arguments is the HDROP handle. Our Handl eFi | eDr op() function first checks the
window onto which the drop occurred, and if this window is the list view, then it proceeds with
extracting and resolving the various file names. You can drop any file onto the list view, but only
shortcuts are handled correctly.

voi d Handl eFi | eDr op(HWND hDl g, HDROP hbDr op)
{

/1 Check the wi ndow bei ng dropped on

PO NT pt;

Dr agQuer yPoi nt (hDrop, &pt);

Client ToScreen(hDl g, &pt);

HWD hwndDr op = W ndowFr onPoi nt (pt);

155

Chapter 6

i f(hwndDrop != GetDiglten(hD g, | DC VIEW)

Msg(__TEXT("Sorry, you have to drop over the list view control!"));
return;

}

/1 Now check the files
int i NumOFiles = DragQueryFil e(hDrop, -1, NULL, 0);
for(int i =0 ; i <iNumXFiles; i++)
{
TCHAR szFi | eNane[MAX_PATH] = {0};
DragQueryFil e(hDrop, i, szFileName, MAX PATH);
DoResol veShort cut (hDl g, szFil eNane);
}

Dr agFi ni sh(hDr op) ;

Dr agQuer yPoi nt () lets you know the client coordinates of the point where the drop occurred,
while Dr agQuer yFi | e() extracts all the files packed in the HDROP handle, one after another. You
can also use this function to discover how many files have been dropped. Finally, Dr agFi ni sh()
must be called when you've finished with the HDROP handle.

APP_DIgProc()
This is the window procedure of the application's main window, and because there are few more than
we've had to deal with in previous examples, it's worth a look at the handlers that need to be added
to the AppWizard code:

BOOL CALLBACK APP_DI gProc(HWND hDi g, U NT ui Msg, WPARAM wPar am LPARAM | Par am

{

156

swi t ch(ui Msg)

case WM I NI TDI ALCG:
OnlnitDi al og(hDl g);
br eak;

case WM DROPFI LES:
Handl eFi | eDrop(hDl g, reinterpret_cast <HDROP>(wParan));
br eak;

case VW _COVVAND:
swi t ch(wPar am

case | DC_RESOLVE:
DoResol veShort cut (hDi g, NULL);
return FALSE;

case | DC_CREATE:
DoCr eat eShort cut (hDl g);
return FALSE;

case | DC_BROWSE:
OnBrowse(hDl g, | DC_SHORTCUT) ;
return FALSE;

The Shortest Path to Shortcuts

case | DC_BROASETARCET:
OnBrowse(hDl g, | DC_TARCET) ;
return FALSE;

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}
br eak;
}
return FALSE;
}
OninitDialog()

There are a few more things to be initialized on the dialog in this project, as well. While dealing with
the combo box should be a familiar process by now, we also need to set up the list view control, and
to program the hotkey control to use the Ctrl + Alt + ... form:

voi d OnlnitDi al og(HWND hDl g)

{

/1 Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmall));
SendMessage(hDl g, WM SETI CON, TRUE, reinterpret_cast<LPARAM>(g_hl conLarge));

/1 Initialize the report view
HWAD hwndLi st = GetDi gltenm(hD g, | DC VIEW;

LPTSTR psz[] = {"Target", rei nterpret_cast <TCHAR*>(170),
"Description", reinterpret_cast <TCHAR*>(170),
" Hot key", reinterpret_cast <TCHAR*>(100)};

MakeReport Vi ew(hwndLi st, psz, 3);

/'l Special folders avail abl e
HWD hwndCho = Get Dl gltem(hDl g, | DC_SPECIAL);

int i = ConboBox_AddString(hwndCho, "Desktop");
ConboBox_Set | t enDat a(hwndCbo, i, CSI DL_DESKTCP);

i = ComboBox_AddStri ng(hwndCho, "Favorites");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_FAVORI TES);
i = ConmboBox_AddStri ng(hwndCbo, "Prograns");
ConboBox_Set | t enDat a(hwndCho, i, CSI DL_PROGRAMS);

i = ComboBox_AddStri ng(hwndCbo, "My Documents");
ConmboBox_Set | t enDat a(hwndCbo, i, CSIDL_PERSONAL) ;

i = ConmboBox_AddStri ng(hwndCbo, "SendTo");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_SENDTO);

i = ComboBox_AddStri ng(hwndCbo, "Start Menu");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_STARTMENU) ;

ConboBox_Set Cur Sel (hwndCho, 0);

/1 Initialize the hotkey control to prefix everything with Ctrl + At
SendDl gl t emvessage(hDl g, | DC_HOTKEY, HKM SETRULES,
HKCOVB_NONE | HKCOMB_S | HKCOVB_A | HKCOMB_C,
HOTKEYF_CONTRCOL | HOTKEYF_ALT);

Set Dl gl tenText (hDi g, | DC_TARGET, _ TEXT("C\\"));

157

Chapter 6

Creating Shortcuts in System Folders

The sample program, which you should now be able to compile and run, makes it easy to create
shortcuts in system folders — all you have to do is choose a folder name from a combo box and press
a button. If you need to do this silently from within one of your own programs, then once you know
which folder you're dealing with, all that remains is to format a string with the full path name.

Here's a simple function that does exactly this. As arguments, it takes the name of the . | nk file to be
created, the ID of the special folder (one of the CSI DL_XXX constants you saw earlier), and the name
of the file being pointed to. The code is an evolution of the SHCr eat eShor t cut Ex() function that
I presented above.

HRESULT SHCr eat eSyst enthort cut (LPCTSTR szLnkFile, int nFol der, LPCTSTR szFile)

{

158

WCHAR wszLnkFi | e[MAX_PATH = {0};
TCHAR szPat h[MAX_PATH = {0};

I Shel | Li nk* pShel | Li nk = NULL;
| PersistFile* pPF = NULL;

/'l Create the proper COM server
HRESULT hr = CoCreat el nstance(CLSI D_Shel | Li nk, NULL,
CLSCTX_| NPROC_SERVER, |1 D_I Shel I Li nk,
reinterpret_cast <LPVO D*>(&pShel | Li nk));
i f (FAILED(hr))
return hr;

/] Set attributes
pShel | Li nk- >Set Pat h(szFil e);

/1 Get the IPersistFile interface to save
hr = pShel I Li nk->Queryl nterface(

I1D IPersistFile, reinterpret_cast<LPVO D*>(&PF));
i f (FAILED(hr))

pShel | Li nk- >Rel ease();
return hr;

/Il Prepare the name of the shortcut
SHCet Speci al Fol der Pat h(NULL, szPath, nFol der, FALSE);
if(szPath[lstrlen(szPath) - 1] !'= "\\")
I strcat (szPath, _ TEXT("\\"));
| strcat (szPath, szLnkFile);

/1 Save to a LNK file (Unicode nane)

Ml ti Byt eToW deChar (CP_ACP, MB_PRECOMPCSED, szPath, -1, wszLnkFile, MAX_PATH);
hr = pPF->Save(wszLnkFile, TRUE);

/1 Cdean up

pPF- >Rel ease();

pShel I Li nk- >Rel ease();
return hr;

The Shortest Path to Shortcuts

With the help of the above function, creating shortcuts on the Desktop, in the Start menu, in

ProgramkFi | es, or in Favori t es is really easy. To prove it, the code needed to add a new item in
the Start menu that points to Notepad is now just:

SHCr eat eSyst enthort cut (
__TEXT("Notepad. | nk"), CSIDL_STARTMENU, _ TEXT("c:\\w ndows\\ not epad. exe"));

Obviously, the c: \ wi ndows\ path should be replaced with the actual path to your own Windows
directory. Also notice that under NT, not epad. exe is stored in the Syst emdirectory.

You can create shortcuts to directories and non-executable files as well. In fact, to refer to any file
system object, just pass the path to | Shel | Li nk: : Set Pat h(), or call
I Shel I Li nk:: Set | DLi st () passing the PIDL.

The SendTo Folder

The SendTo folder isn't as notable for shortcuts as it is for a couple of non-shortcut objects it hosts. If
you install Internet Explorer 4.0 on Windows 95 or Windows NT 4.0, or if you have Windows 98,
then it's likely that your SendTo folder will contain references to a mail recipient and to the desktop.

Using this mechanism, you can send a given file directly from the shell to your outbox as attachment
in a new message, or as a shortcut to the desktop.

[N Exploring - SendTo [_[O]x]
J File Edt View Go Favortes Took Help |
T N [4 B2 = | X
Back Farpand Up Cut Capy Paste Unda Delete Propertie
| tadress [0 ©:¥INDOWS\SendT o =
Al Folders x

COEEE A

17 ShelMew 3 Floppy (4] Desktop as Fax Recipient My Briefcase
+-Z3 spool Shortcut

Start Menu —

Subscriptions E
] Susbekup Dlutank Web
H o utlood el
% ?g:zm = Express Publizhi...
1 | »
|6 objects) [1,08KE [Disk fra: | /=] My Computer y

The screenshot shows a couple of items that don't have the typical overlaid arrow. What are they?
Well, Desktop as Shortcut is an empty . DeskLi nk file with a length of 0 bytes. If you search the
registry for this extension, you'll find that there's a COM object behind it.

£ Registry Editor

ﬂ Hame | Data
=l [Defaul) "CLEIDYSESERE 61 -CH0F-11CF-942C-00A0CI04S0CE 1

f 1 |

|M_l,l Computer\HKEY_CLASSES_ROOT" DeskLink 7

Knowing that it's a COM object is great news, but what kind of COM object? What interfaces does it
implement? In fact, it's a shell extension; more precisely, it's a drop handler. We'll cover shell
extensions in Chapter 15; for now, this just demonstrates that the SendTo folder doesn't only host
shortcuts. The . DeskLi nk extension is purely indicative, and could have been any other string.

159

Chapter 6

The Recent Folder

The Recent folder collects recently opened documents. The contents of this directory can be
verified by clicking on the Documents item in the Start menu, and its physical location is under the
Windows directory. Curiously, however, there isn't a 1:1 correspondence between the shortcuts it
contains and the items displayed through the menu.

The shell API exposes a function called SHAddToRecent Docs() solely for the purpose of letting
programmers store links to their documents in this folder.

voi d SHAddToRecent Docs(Ul NT uFl ags, LPCVA D pv);

The first argument qualifies the type of the second: PIDL or pointer to path name. Accordingly, it can
take the value SHARD_PATH or SHARD_PI DL. If you use this function, you'll succeed in adding a
reference to your document in the menu. The same isn't true if you simply create a new shortcut in
the folder — in other words, creating a shortcut is necessary but not sufficient.

SHAddToRecent Docs() is clearly doing something more.

Ultimately, SHAddToRecent Docs() adds the item to the global MRU (Most Recently Used) list that
the Start menu uses; simply adding the file to the Recent folder, on the other hand, does not. The
function also handles duplicate shortcuts in the folder, and deals with the ordering of the menu for
you. For all these reasons, you should stick to using SHAddToRecent Docs() in case the method of
implementation changes at some point in the future.

Summary

This chapter covered shortcuts, a primary topic for any book or article that attempts to discuss the
Windows shell. Shortcuts are relatively simple and quick to write, but there is no single function to
create and resolve them. In this chapter, we discussed and then did just this, and also looked at:

The role of shortcuts

How to create and resolve them

Some useful functions to work with shortcuts
Drag-and-drop and hotkey controls (albeit briefly)

Sy Iy Ny

The relationship between shortcuts and system folders

Further Reading

The lack of a direct function for creating or resolving shortcuts has originated many articles.
Although Windows 98 provides some COM facilities to create shortcuts programmatically, the lack of
an equivalent API function is arguably an oversight.

In this chapter, I've presented functions for creating and resolving shortcuts. Another function to
create shortcuts was presented by Ron Burk, in the December 1996 issue of WD]. More recently, a
short piece on shortcut dereferencing, written by Bret Pehrson, appeared in the April 98 edition of
WDJ.

160

Shell Invaders

Like any other Win32 process, the shell has its own memory address space that is completely
unknown to other applications. To enter this space, we have to pass a number of control points, as if
we were crossing the frontier of a country. What's interesting in the land of the Windows shell? Is it a
kind of Garden of Eden? Are there rich gold mines? Or is it a fiscal paradise? Unfortunately, it's none
of these things. Getting inside the shell simply enables our code to carry out tasks that are impossible
to perform from outside. By injecting code into the memory address of a Win32 process, we are able
to control the behavior of that program. We can filter its events, have a look at the flow of messages,
and even force it to do (or not to do) certain actions.

To get this result, we can take a number of different roads. There's the brute-force approach that
exploits some Windows features (or weaknesses) to enter another process's address space and subclass
windows. There are programs that explicitly allow external modules to be hosted and work together.
In this case, what we have to do is write a module (usually a COM in-process server) with the
required interface, and register it wherever the host module requires.

A third road, however, leaves each process running in its own space, but establishes a 'channel'
through which they can communicate. You can imagine a situation in which one program legitimately
does something that can affect the behavior of another one — or rather, one program could do
something that another program should be aware of. In this case, an underlying channel that links the
modules is useful — it's something like this that allows Explorer to know about any changes you might
have made to files or folders.

Chapter 7

In this chapter, you'll be seeing examples of the three models listed above in practice. I'm going to
show you:

How the shell detects changes in the file system

How you can notify the shell of your events

How to get into the shell's address space

How to subclass Explorer's window

As a consequence of all this, how to alter the behavior of the Start button

D000 D

Along the way, I'll be emphasizing the use of two basic Win32 software components: hooks and
notification objects. They are part of the hidden machinery in many of the scenarios we'll be
examining.

Notifying the Shell of Events

You will certainly have noticed that Explorer is very quick at detecting any changes in the file
system. Periodically, it refreshes the current view and reflects any changes that other applications
may have caused. For example, if you open a DOS window and an Explorer window, select the same
directory in both, and then create a directory in the former, the latter will be updated without
intervention shortly afterwards.

It seems that something is telling Explorer that a new folder has been created. Under the hood, the
levers making all this possible are notification objects.

Notification Objects

A notification object is a kernel object that you can synchronize your threads on. The idea is that you
create such an object and assign to it some properties that configure an event. Then, you block your
threads on it, waiting for the event to occur. If you like, you can think of notification objects as highly
specialized events that automatically get signaled when they detect a change in the file system.

By means of a notification object, you can put a directory, a sub-tree, or even a whole drive under
control and watch for several events that relate to files and folders — creation, renaming, deletion,
attribute changes, and so on.

Using Notification Objects

The Win32 SDK defines three functions to work with notification objects. They are:

Q FindFirst ChangeNoti fication()
O Fi ndNext ChangeNoti fication()
Q Fi ndd oseChangeNoti fication()

Despite the misleading name, the first function creates a new change notification object, while the last
one deletes it. Curiously, you don't have to use Cl oseHandl e() to release a notification object, as
you would do with all the other kernel objects.

As stated earlier, behind a notification object lies one of the standard Win32 synchronization objects,
but it has been specialized by adding specific behavior that takes care of file system changes. Behind
the facade, the Fi ndFi r st ChangeNot i fi cati on() and Fi ndNext ChangeNotifi cati on()
functions have the secret task of toggling the signaled state of this hidden kernel object.

164

Shell Invaders

When it first gets created by a call to Fi ndFi r st ChangeNoti fi cati on(), the object is in a non-
signaled state. When it detects an action that meets its filter condition, the state changes to signal any
waiting thread. To continue looking for events, it must be explicitly reset to the initial state, which is
what Fi ndNext ChangeNoti fication() does. Let's have a closer look at the details of the
prototypes.

Synchronization objects include mutexes, semaphores, events and critical sections, amongst others,
and are fully described in the Visual C++ help files. They have different behaviors, but
essentially they are all used to stop and then resume thread execution in order to synchronize
actions. From a high-level perspective, you can look at them as control points that a thread
encounters during execution.

There are two states that synchronization objects can be in: signaled and non-signaled. The
thread is stopped when the object is non-signaled, and resumes when the state is toggled to
signaled.

Creation Parameters
The Fi ndFi r st ChangeNoti fi cati on() function is declared as follows:

HANDLE Fi ndFi r st ChangeNoti fi cati on(LPCTSTR | pPat hNane,
BOOL bwat chSubt r ee,
DWORD dwNotifyFilter);

| pPat hName is a pointer to a buffer containing the name of the directory to watch. The Boolean
value bWat chSubt r ee is quite self-explanatory and specifies whether or not the path should include
the sub-tree below it. More interestingly, dwNot i f yFi | t er lets you set the criteria that will actually
trigger a change notification; by combining the flags available for dwNot i f yFi | t er, you can decide
which types of file system events you want to monitor. The flags available are:

Flag Description

FI LE_NOTI FY_CHANGE_FI LE A file has been created, deleted, or removed.
_NAME

FI LE_NOTI FY_CHANGE_DI R A folder has been created, deleted, or removed.
_NAME

FI LE_NOTI FY_CHANGE Any attribute for a file or folder has changed.
_ATTRI BUTES

FI LE_NOTI FY_CHANGE_SI ZE The size of a file or folder has changed. This is detected
only when any caches have been flushed to disk.

FI LE_NOTI FY_CHANGE_LAST The time of last writing for a file or folder changed. This

_WRITE is detected only when any caches have been flushed to
disk.

FI LE_NOTI FY_CHANGE Any security descriptor for a file or folder changed.

_SECURI TY

165

Chapter 7

Obviously, these events must occur within the watched path. For example, if you issued a call like
this:

HANDLE hNoti fy = Fi ndFirst ChangeNotification(__TEXT("c:\\"), TRUE,
FI LE_NOTI FY_CHANGE_FI LE_NAME | FI LE_NOTI FY_CHANGE DI R_NAME |
FI LE_NOTI FY_CHANGE_ATTRI BUTES | FI LE_NOTI FY_CHANGE_SI ZE) ;

Any new file created on the C drive will awaken a thread waiting on the notification object. If you
specify FALSE as the second argument, then only changes in the root directory of drive C will be
detected.

Calling Fi ndFi r st ChangeNoti fi cati on() causes the returned object to be in a non-signaled
state, meaning that a thread required to synchronize with that object will be stopped.

Watching Directories
Now that you know how to create a change notification object, another question arises: is this
sufficient to do a bit of directory watching? Actually, it's not. As with any other watching activity you
may practice, directory watching requires a bit of patience. Above all, you must be ready to catch the
event at any time. In software terms this means that you need to set up some kind of loop in your
code. Each time you've dealt with one event, you must promptly notify that you're ready for another
one to occur, or for any event that has occurred in the meantime.
Fi ndNext ChangeNoti fi cati on() is the function to use.

BOOL Fi ndNext ChangeNoti fi cati on(HANDLE hChangeHandl e) ;

The following is a code snippet, taken from the sample application that I'll create shortly, which
shows a typical way of using it.

/1 Note that the Boolean guard is actually set outside this thread.
/1 This code snippet, in fact, is pulled froma worker thread.
whi | e(g_bConti nue)

/1 Wait for the change to occur
Wi t For Si ngl eCbj ect (hNotify, | NFIN TE);

/1 A change has occurred, so notify the main wi ndow of the fact.

/1 This gives us a chance to refresh the U of the program

/1 VW EX XXX is a custom nmessage defined by the application for internal use.
Post Message(ci . hwhd, WM EX_CHANGENOTI FI CATI ON, 0, 0);

/'l Get ready for the next change to arrive
Fi ndNext ChangeNot i fi cati on(hNotify);

/1 NB:

/1 At this point the underlying synchronization object wapped by hNotify, is
/1 non-signal ed, so when this thread executes Wit ForSi ngl eCbj ect() again,

/1 it will be stopped until a new change occurs and nekes the state signal ed.

As you can see, there is no event inside the loop that can cause the loop to terminate. The Boolean
guard g_bCont i nue is a global variable set outside the thread executing the above code. In other
words, this code fragment implies the presence of two threads: the main application's thread, and a
worker thread to deal with the notification object (I'll say more on this shortly).

166

Shell Invaders

Since this code is supposed to execute after a call to Fi ndFi r st ChangeNoti fication(), the
thread executing the fragment above will stop on the call to Wai t For Si ngl eObj ect () because the
object will be non-signaled. When an event that satisfies the hNot i f y notification object occurs, the
status of the object changes so that it becomes signaled. Consequently, the thread continues and posts
a custom message to a specified window to give it a chance to refresh the user interface, or do further
processing. Then, it stops again for a new event. After the call to

Fi ndNext ChangeNoti fi cation(), the status of the synchronization object whose handle is
contained in hNot i f y is changed to non-signaled.

When dealing with notification objects, it's advisable that you isolate all the code that will wait for an
event in a separate worker thread. This is to avoid your main program blocking indefinitely. If you
don't want a multithreaded application, you should resort to MsgWai t For Mul ti pl eObj ect s()
instead of WAi t For Si ngl eObj ect () and wait for either a message or an event.

It's quite possible to set multiple notification objects at the same time. For example, you might want
to run separate watches on different directories in the same or different drives. If you need to do so,
Wai t For Mul ti pl eObj ects() can help you to synchronize all the notification objects together.

Stopping Watching
To release a notification object, you must call Fi ndCl oseChangeNoti fi cati on(). The single

argument you pass should be the handle previously created by
Fi ndFi r st ChangeNot i fication():

BOOL Fi ndCl oseChangeNot i fi cati on(HANDLE hChangeHandl e) ;

Putting it all Together

Let's see a sample application that should give you an idea of what Explorer is doing behind the
scenes. The program lets you choose a path and creates a notification object that watches the whole
sub-tree. All the change notification handling is done in a separate thread. Each time an event is
detected, the application's main window is posted a message. For the purposes of this demonstration,
we don't need to do much more than simply add a line containing the current time to a report list
view. In a real-world scenario you might want to do rather more, although as I'll show you in a while,
you can't actually do that much under Windows 9x anyway.

The worker thread receives the path to IDC_EDIT
watch and the handle of the window to

i i Shell Motifications [%]
which it should send messages through

. =28 ! vt f I

a user-defined structure. The program's ! __ insalNotiesimoteet {1 1DOK
user interface is shown in the figure; as — ‘
ever, it's the front-end of an application 125645

generated with the Wrox AppWizard — 125845
I called mine Noti fy. e

167

Chapter 7

When you click the button, a notification object is installed with the same attributes as in the sample
call above: FI LE_NOTI FY_CHANGE_FI LE_NAME, FI LE_NOTI FY_CHANGE_DI R_NAME,

FI LE_NOTI FY_CHANGE_ATTRI BUTES and FI LE_NOTI FY_CHANGE_SI ZE. Here's the code you
need to add to the skeleton provided, starting with the 'global' section:

/1 Data

HI CON g_hl conLar ge;

H CON g_hl conSmal | ;

bool g_bConti nue; /1 Should be set to false in WnMin()
const int WV EX_CHANGENOTI FI CATI ON = W APP + 1;

// Customdata to be passed to the thread
struct CUSTOM NFO

HWAD hwd:;
TCHAR pszDi r [MAX_PATH] ;
}s

typedef CUSTOM NFO* LPCUSTOM NFO

In the code above, I've explicitly declared the WM_EX_CHANGENOT! FI CATI ON message as a
constant. In general, when defining constants to be used as Windows messages you should use

Regi st er W ndowMessage() to make sure that the number is unique throughout the system.
However, in the context of a single application, if you're not broadcasting the message, using an
explicit constant based on WM_APP is safe. WM_APP is the base constant from which custom messages
must be generated so they don't clash with Windows messages. As you can see, the only risk is a
conflict with custom messages from other applications, and that can't occur in this example.

There's a new handler to add to APP_DI gProc() that will be invoked when the notification object
detects a change. You also need to make a small change to the | DCANCEL handler to terminate the
new thread on shutdown:

BOOL CALLBACK APP_DI gProc(HWND hDi g, U NT ui Msg, WPARAM wPar am LPARAM | Par am

{
swi t ch(ui MsQ)

{

case WM I NI TDI ALCG
OnlnitDi al og(hDi g);
br eak;

case WM _EX_CHANGENOTI FI CATI ON:
Updat eVi ew(hDl g) ;
br eak;

case VW _COVVAND:
swi t ch(wPar am
{

case | DOX:
OnOK(hDl g) ;
return FALSE;

case | DCANCEL:
g_bContinue = fal se;
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

168

Shell Invaders

}
return FALSE;

Next, the handler for the Install Notification Object button, which is still called OnOK() because I
didn't change its ID, only the label for the button!

voi d OnOK(HWAD hDl g)
TCHAR szDi r [MAX_PATH = {0};

Get Dl glteniText (hDig, IDC EDIT, szDir, MAX PATH);
SHi nstal | Notifier(hD g, szDir);

OnOK() calls SHI nst al | Noti fier (), afunction that creates a CUSTOM NFO object and passes it
to a thread function called Noti fy():

HANDLE SHI nstal | Noti fi er (HAND hwndParent, LPCTSTR pszDir)

{
DWORD dwi D = 0;
CUSTOM NFO ci ;
Zer oMenory(&ci, si zeof (CUSTOM NFO)) ;
ci . hwhd = hwndParent ;
| strcpy(ci.pszDir, pszDir);
/] Create a new worker thread
g_bConti nue = true;
HANDLE hThread = CreateThread(NULL, O, Notify, &ci, 0, &w D);
return hThread,;

}

Not i fy() itself is where the calls to Fi ndXXXChangeNoti fi cati on() are made, and is the
location of the loop that keeps its eye on the directory tree you've specified:

DWORD W NAPI Noti fy(LPVA D | pv)
{
CUSTOM NFO ci ;
ci.hwhd = static_cast <LPCUSTOM NFO>(| pv) - >hWhd;
I strcpy(ci.pszDir, static_cast<LPCUSTOM NFO>(I| pv)->pszDir);

HANDLE hNoti fy = Fi ndFirst ChangeNoti fication(ci.pszDir, TRUE,
FI LE_NOTI FY_CHANGE_FI LE_NAME | FI LE_NOTI FY_CHANGE DI R_NAME |
FI LE_NOTI FY_CHANGE_ATTRI BUTES | FI LE_NOTI FY_CHANGE_SI ZE) ;

i f(hNotify == I NVALI D_HANDLE_VALUE)

SPB_Syst emvessage(Get Last Error());
return O;

}
whi | e(g_bConti nue)
{
Wi t For Si ngl eObj ect (hNotify, | NFIN TE);

Post Message(ci . hwhd, WM EX_CHANGENOTI FI CATI ON, 0, 0);
Fi ndNext ChangeNoti fi cati on(hNotify);

169

Chapter 7

Fi ndC oseChangeNoti fi cati on(hNotify);
return 1,

}

When the event becomes signaled, a message of type WM_EX_CHANGENOTI FI CATI ON s sent,
resulting in a call to Updat eVi ew() :

voi d Updat eVi ew(HWAD hDl g)

{
TCHAR szTi me[100] = {0};

HWAD hwndLi st = GetDi glten{hD g, | DC LI ST);
Get Ti meFor mat (LOCALE_SYSTEM DEFAULT, 0, NULL, NULL, szTime, 100);
AddStri ngToReport Vi ew(hwndLi st, szTine, 1);

}

You can see that this code uses the AddSt ri ngToReport Vi ew() function that we developed in the
last chapter to send strings to a report view. Its partner function, MakeReport Vi ew() (also
developed in the previous chapter), is called in Onl ni t Di al og() to set up the report view in the
first place:

void OnlnitD al og(HWND hD g)

{
/1 Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmal l));
SendMessage(hD g, WM SETI CON, TRUE, reinterpret_cast<LPARAM>(g_hl conLarge));
LPTSTR psz[] = {__TEXT("Date and Tinme"), reinterpret_cast<LPTSTR>(400)};
MakeReport Vi ew(Get Dl gl ten{hDl g, | DC _LIST), psz, 1);

}

Add a #i ncl ude for r esour ce. h to the top of the source file, and build the application When you
run it, you'll notice that if you copy a file, you get two notifications. You get three notifications for
each deletion. If you remove all the flags except FI LE_NOTI FY_CHANGE_FI LE_NAME, and repeat
the copy, you'll find that the number of notifications is reduced to 1, since we are no longer interested
in attribute or size changes. Curiously, though, there are still two notifications when you delete a file.

To see why this is, try deleting a file while holding down the Shift key — you'll find that there is now
just one notification. The difference is that deleting a file in this fashion destroys the file without
saving it in the Recycle Bin, thus eliminating the file copy step from the normal, two step, 'copy-to-
Recycle-Bin-and-then-delete' action. Simply deleting the file results in a single notification when the
file is actually deleted.

Explorer and Notification Objects

Explorer behaves in roughly the same way as the application I've just created: it sets a notification
object on the folder currently being displayed. Each time it receives a notification that something has
changed, it reloads the folder content to reflect those changes. If you think it over for a while, you'll
realize that the mechanism of the notification objects seems to be tailored precisely to the needs of
Explorer.

170

Shell Invaders

Explorer is not a file system monitoring utility; it needs to know whether something in the folder
currently being viewed has changed, in case that change affects the displayed data: file and sub-folder
names, attributes, sizes, dates, security, etc. Whatever the exact operation, what matters is that
something has occurred. This seems to be a good compromise between the performance concerns of
Explorer and those of the system itself.

Towards a File System Monitoring Utility

As we have seen, the greatest drawback of notification objects is the poor information they provide
about the event that actually occurred. A notification object is like a bell that's connected to a burglar
alarm and a fire alarm: when it rings, you don't know whether your house is being robbed, burned
down, or both! This restriction makes it difficult (if not impossible) to exploit this feature to create,
say, a file system monitoring utility to let us know which files are being manipulated by programs
throughout the system.

Later in the book, I'll consider a different approach to the same problem, which makes use of the
| CopyHook shell extension. I can say in advance, though, that this will still leave us some distance
from that ultimate objective, even if it is a significant step towards it.

What about Windows NT?

So far, I haven't said anything about different operating systems. You might have been led to think
that there are no significant differences between Windows 95, Windows 98, and Windows NT 4.0, but
in fact what we just wished for is a reality under Windows NT 4.0 and higher. The Win32 SDK for
Windows NT exports and documents a function called ReadDi r ect or yChangesW) that has a
prototype similar to Fi ndFi r st ChangeNot i fi cati on(), but with one big difference: it fills a
buffer with specific information about the action that took place, and the actors involved.

More information about ReadDi r ect or yChangesW) , and about notification objects in
general, can be found in Jeff Richter's excellent book, Advanced Windows. (See the Further
Reading section.)

SHChangeNotify()

When things about the system change, Explorer can detect some of them itself (changes to files in
particular), but must be told explicitly about changes carried out by programs.

To make this easy, the shell API defines a function called SHChangeNot i f y() . Its only purpose in
life is to notify Explorer that some system setting has been modified. Conceptually,

SHChangeNot i f y() produces the same effect as notification objects, but it follows a different logic.
In this case, an external application notifies Explorer of some changes it has made. In response to
such notifications, Explorer will refresh its user interface. This is a clear example of what I referred to
earlier as a 'channel’ between applications and the shell.

Calling SHChangeNotify()

The function is defined in shl obj . h with the following prototype:
voi d W NAPI SHChangeNoti f y(LONG wEvent | d,
Ul NT uFl ags,

LPCVO D dwi t entl,
LPCVO D dw t en®) ;

171

Chapter 7

The wEvent | d parameter specifies an event of which the system should be notified. It takes one or
more of a collection of possible values, the most frequently used of which are listed below:

Event Description

SHCNE_ ASSOCCHANGED A file type association has changed; which one is not
specified.

SHCNE_NETSHARE A local folder is being shared via the network. This causes an

icon change. dwl t eml should contain the folder name. A
folder name can be either a fully qualified path name or
PIDL. (See below.)

SHCNE_NETUNSHARE A local folder is no longer shared. This causes an icon
change. dwl t eml should contain the folder name (a fully
qualified path name or PIDL).

SHCNE_SERVERDI SCONNECT The PC has been disconnected from a server. dwl t eml
should contain the name of that server.

SHCNE_UPDATEDI R The content of a given folder has changed, but the changes
don't affect the file system. dwl t eml should contain the
folder name (a full path name or a PIDL).

SHCNE_UPDATEI MAGE An icon in the system image list has changed. dwl t eml
should contain the index of the icon. This causes Explorer to
refresh the user interface to draw the new icon where needed.
All the icons used by Explorer are stored in a global structure
referred to as the 'system image list' or the 'Explorer internal
icon cache'. I showed how to get the handle of this image list
in Chapter 4.

SHCNE_UPDATEI TEM A non-folder item has changed. dwl t enll should contain the
full file name or the PIDL.

This list of events is not complete, and I'll cover the remaining flags later on. For the complete list of
flags right now, you can refer to the MSDN library.

The other three parameters to SHChangeNot i f y() are affected by the event identifier specified by
the wEvent | d argument. The dwl t eml and dwl t enR variables contain event-dependent values.
The uFl ags parameter is used to denote the ¢ype of dwl t eml and dwl t en2. It can indicate a DWORD
number (SHCNF_DWORD), a PIDL (SHCNF_I DLI ST), a string (SHNCF_PATH) or a printer name
(SHCNF_PRI NTER). In addition, uFl ags can indicate whether the function should wait for the
notification to be handled completely. SHCNF_FLUSH is the constant to use if you want to wait;
SHCNF_FLUSHNOWAI T, on the other hand, causes the function to return immediately.

The Role of SHChangeNotify()

What does SHChangeNoti fy() do that makes it complementary to notification objects? Put another
way, when do you absolutely need to use SHChangeNot i f y() ? Basically, this function attempts to
provide the same functionality as notification objects (although it follows a different logic), but it isn't
restricted only to file system objects.

172

Shell Invaders

As we saw in Chapter 5, the Windows shell is composed of file objects, and while most of them map
to a physical entity in the file system, that isn't always the case. File objects such as My Conput er
and Pri nt ers don't have a corresponding directory. Furthermore, even if you have folders linked to
a directory, the items that they contain are not necessarily files. This means that you can add new
items to (or delete items from) such a folder without any impact on the file system. In this scenario,
how can Explorer detect the changes?

There are deeper aspects to this question. Is it plausible to plan a software module that is capable of
monitoring this whole range of possible actions? As we'll see later in this book, a namespace
extension can be used to display pretty much anything through a folder-style interface. The Internet
Client SDK, for example, comes with a sample called RegVi ew that adds a new node to Explorer's
hierarchy, just like an ordinary folder. The one little peculiarity is that what it 'contains' is the
contents of the system registry, which is really just a file or two! How could Explorer, or indeed any
other tool, detect changes here? You could write a piece of software to hook for registry activity, but
what if someone replaces RegVi ew with another namespace extension that does completely different
things?

Once we've gone beyond the context of the traditional file system, we need to change the way in
which notification occurs. It's no longer a matter of Explorer detecting changes itself, but of
applications sending notifications. This is the scenario into which SHChangeNot i fy() fits.

Some of the events defined for use in calls to SHChangeNot i f y() may appear redundant. For
example, an event like SHCNE_CREATE might seem useless — it indicates that a new file has been
created, but Explorer already knows about that, thanks to notification objects. However, if the item is
not a file system object, you absolutely must call SHChangeNot i fy() to let Explorer know about
this change:

SHChangeNot i f y(SHONE_CREATE, SHCNF_I DLI ST, pidl, NULL);

SHChangeNotify()'s Other Events

The rationale for SHChangeNot i f y() now a little clearer, it's time to make amends for the earlier
omissions. Here all the other events you can pass as the wEvent | d argument of the function:

Event Description

SHCNE_ATTRI BUTES Attributes of a file or folder changed. dwl t eml is the file or
folder name (a fully qualified path name or PIDL).

SHCNE_CREATE A file object has been created. dwl t eml is the name of the file
object.

SHCNE_DELETE A file object has been deleted. dwl t eml is the name of the file
object.

SHCNE_DRI VEADD A drive has been added. dwl t eml is the root of the drive in the
form C: \ .

SHCNE_DRI VEADDGUI A drive has been added and a new window is needed. dwl t eml

is the root of the drive in the form C: \ .

Table Continued on Following Page

173

Chapter 7

Event Description

SHCNE_DRI VEREMOVED A drive has been removed. dwl t eml is the root of the drive.

SHCNE_FREESPACE The amount of free space on a drive changed. dwi t eml is the
root of the drive in the form C: \ .

SHCNE_MEDI Al NSERTED Storage media has been inserted into a drive. dwl t eml is the
root of the drive in the form C: \ .

SHCNE_ MEDI AREMOVED Storage media has been removed from a drive. dwl t eml is the
root of the drive in the form C: \ .

SHCNE_MKDI R A folder has been created. dwl t enll is the name of the file
object.

SHCNE_RENAMEFOLDER A folder has been renamed. dwl t eml is the old name and

dwl t en is the new one. These names can be either fully
qualified path names or PIDLs.

SHCNE_RENAMEI TEM A file object has been renamed. dwl t eml is the old name and
dwl t en? is the new one.

SHCNE_RMDI R A file object has been deleted. dwi t eml is the name of the file
object.

Using SHChangeNotify()

SHChangeNot i f y() will be very useful when we begin writing namespace extensions, because it
lets you hide from Explorer the fact that an item or a folder might not be a real file system object. In
Chapter 16, I'll be developing a namespace extension that presents information about the windows
currently in existence on the system as if the windows themselves are the contents of a folder. By
combining that extension with, say, a global hook module that detects whenever a new window is
created and calls SHChangeNot i f y() with the SHCNE_CREATE flag, we will also be able to have
Explorer regularly refreshing the contents of our custom folder.

I'm not going to cover Windows hooks here, though I mentioned them in Chapter 2. You might
want to refer to the MSDN library for more information.

Ordinary applications, on the other hand, rarely need to exploit the services of

SHChangeNoti fy(). An example, though, might be a program that dynamically changes a file type
association — that is, it changes the program that's used to handle documents of a particular kind. This
information is stored in the registry at the following location:

HKEY_LOCAL_MACHI NE
\ Sof t war e
\'M crosoft
\ W ndows
\ Current Ver si on
\ Ext ensi ons

174

Shell Invaders

To inform Explorer of the update, you could call:

SHChangeNot i f y(SHCNE_ASSOCCHANGED, 0, NULL, NULL);

Invading the Shell's Memory Space

If you're a seasoned Win32 programmer, you'll be well aware that every process runs in its own
address space, and that a memory address has a consistent value only within the space in which it
originates. This means, for example, that you can't subclass a window created by another process
because the address of your new window procedure could be pointing absolutely anywhere if you
look at it from another address space. In fact, attempting this kind of thing is prevented by

Set W ndowiong() , which returns zero instead of working if you try it.

It requires a few steps, but having your code programmatically mapped into another application's
process space is definitely possible. Microsoft discourages the practice because the potential for
making errors is higher than it is for other, more common programming techniques, but accessing
another application's address space is safe, provided that you know what you're doing and — above all
— what you have to do! There's nothing prohibited or intrinsically dangerous about breaking process
boundaries. It's just like working with pointers — they can introduce bugs if you handle them badly.

The shell is just another Win32 process, and you can invade its memory space in the same way you
would do with, say, Notepad. (I don't know why, but the unfortunate victim of the foulest
experiments in software genetic manipulation always seems to be Notepad!)

Why do we need to invade the shell? The reasons are the same ones that can lead you to enter any
other Win32 or Winl16 process: the need to alter (or just filter) the behavior of a program. Have you
ever noticed that the copy of Notepad that ships with Windows NT 4.0 has the capability to maintain
some settings across sessions? If you run it and check the 'word wrap' mode, the setting is made
persistent and restored each time you launch it. If you plan to realize something like this under
Windows 95 or Windows 98, you have to customize the standard behavior of Notepad. In other
words, you need to invade its address space with your code.

In the remainder of this chapter, I'll show you three ways to get into Explorer's address space. The
first one relies on traditional SDK techniques such as hooks and subclassing. The second exploits a
little-known shell API function called SHLoadl nPr oc() . Both these techniques work under all
Win32 platforms, except Windows CE. The third option is available only with version 4.71 (or
higher) of the shell, and exploits a feature that Explorer shares with Internet Explorer: browser
helper objects.

The Brute Force Approach

I started to think about subclassing the Explorer window when I realized that there was no way to
create folders other than by going through a couple of menus. Because I don't believe I'm the only
person on Earth not to have found a magical key combination, I endeavored to add a keyboard
accelerator that creates a new folder on the fly. Even in Knowledge Base article Q126449, which
contains the list of keyboard shortcuts for Windows, there's no mention of new folders.

I don't know about you, but I find all that work rather frustrating: right clicking (or clicking the File
menu), then selecting a couple of items, and finally clicking again.

175

Chapter 7

I decided to do something about it. My strategy was to develop a little application to put in the
St ar t Up folder, which installs a system-wide hook for keeping track of the creation of windows
belonging to a certain class. The class in question is that of the Explorer window, Expl or eWCl ass.

In case you're wondering, I found the name of the class by snooping around the stack of existing
windows with Spy++.

Once I've obtained the handle to Explorer's window, I can install a keyboard hook on the specific
thread that created that window. This second hook is responsible for catching keyboard activity, and
creating a folder when a key combination meets the allotted criteria. The task can be split into two
parts:

O Getting inside Explorer
Q Creating a folder in the same way as Explorer does

In Win32, there aren't many ways to have your own code mapped into another process's address
space. If you want your code to work unchanged on both Windows 9x and Windows NT, then you
have just one possibility: system-wide hooks.

Why Hooks?

Even if your eventual goal is not to hook but simply to subclass a window, if the window belongs to
another process, you must install a hook before you do your subclassing work. Regardless of the hook
you use, what matters is that it applies to all the threads in the system.

As mentioned in Chapter 2, where I briefly introduced the concept, using a hook means that you
specify a callback function that the system will invoke when a certain event, relevant to the hook,
occurs. If you want to watch all the threads across a// running processes, your function must
necessarily reside in a DLL, because the system needs to map it into those processes.

Getting inside Explorer

The utility I have in mind will look for a window (specifically, an Explorer window) being created. A
hook procedure of type WH_CBT, which is triggered when the system is about to perform any action
on a window (creation, deletion, activation, and so on), therefore needs to be installed at program
startup:

g_hShel | Hook = Set W ndowsHookEx(WH CBT, Shel |l DIl _Mai nHook, g_hThisD |, 0);
The hook must be removed before exiting:

i f (g_hShel | Hook != NULL)
UnhookW ndowsHook Ex(g_hShel | Hook) ;

Obviously, there's a concern that having a hook throughout the system may affect its performance.
Any system-wide hook will affect performance simply because it exists! It causes the system to do
additional work, and this undoubtedly introduces a proportional reduction in performance. For this
reason, it's highly recommended that you keep system-wide hooks as small as possible. Mine is a
minimal one, and this greatly reduces the risk of significant performance loss. Furthermore, I've
tested the utility under Windows 95 on several machines, with processors ranging from a 486 to a
P166 and achieved good results — far better than I expected, in fact. The code for the hook procedure
looks like this:

176

Shell Invaders

LRESULT CALLBACK Shel | DI'| _Mai nHook(i nt nCode, WPARAM wPar am LPARAM | Par an)

{
TCHAR szd ass[MAX_PATH = {0};

/'l Typical beginning for any hook procedure
i f(nCode < 0)
return Cal | Next HookEx(g_hShel | Hook, nCode, wParam | Paranj;

/! The systemis creating a window. Notice that the hook is invoked

/1 fromw thin the code of both CreateWndow() and Creat eW ndowEx() .
/1l At this point the wi ndow al ready exists and its HMND is a valid one,
/1 even if we're still in the middle of the creation process.

i f(nCode == HCBT_CREATEWAD)

{
// Get the HWND of the w ndow

HWND hwndExpl orer = reinterpret_cast <HAND>(wPar anj ;

// Conpare it to 'ExploreWd ass' and install the keyboard hook
Get O assNane(hwndExpl orer, szC ass, MAX_PATH);
if(!lstrcnpi(szd ass, _ TEXT("Expl oreWd ass")))
I nst al | Keyboar dHook(hwndExpl orer) ;
}

return Cal | Next HookEx(g_hShel | Hook, nCode, wParam | Paran)j;

This code executes each time a window is created. If the window class name matches the Explorer
window class name (which is Expl or eWCl ass) then a keyboard hook is installed. At this point,
we're already inside Explorer's address space. Notice that the keyboard hook can be local to the
Explorer thread that owns the window of class Expl or eWCl ass. There's no need to hook the
keyboard activity throughout the system, because when we're about to create a new folder it's natural
that the input focus is on Explorer (I'll say more about this in the section entitled Writing a Helper
Object).

The next picture shows a diagram that illustrates inter-process window subclassing. Keep this in
mind, as it will help you to understand the forthcoming code.

Explorer Window

WndProc Our Module

292‘81

[
F12

T Global

WH_CBT hook B hook
(DLL)

Keyboard hook
(DLL)

177

Chapter 7

How to Create a New Folder

To have hook code mapped into a process's address space, it's sufficient that a system-wide hook
procedure is invoked from within that process. The problem is now reduced to that of creating a new
folder. Clearly, we would like to get the same result as we do by manual intervention, and so the
easiest way would be to duplicate exactly what Explorer does when you click the New | Folder menu
item.

You may be wondering why I chose not to employ a method that made use of the theory we 've
been discussing up to this point in the book — in other words, why not get the current directory
and create a new one using the Shell API? The reason is that the method has flaws in this
situation.

First, how do you know what folder is currently displayed in Explorer? It's not necessarily the
name returned by Get Cur r ent Di r ect ory () . Second, many special folders don't allow you
to create sub-folders, and you could really cause problems if you tried.

I reasoned that Explorer must create new folders in response to a WM_COMMAND message being sent to
the main window procedure. To investigate, I wrote a program that subclassed the Expl or eWCl ass
window in order to spy on the parameters of each processed WM_COMMAND message. By this means, I
discovered that in order to ask Explorer to create a new folder, you just need to send its window a
message like this:

Post Message(hwndExpl orer, WM COVWAND, 29281, 0);

The magic number 29281 is the ID of the New | Folder menu item. This is unofficial information, and
it may be subject to change in newer versions of the shell, but for now it works well with Windows 9x
and Windows NT 4.0. However, if this number changes in upcoming releases, and unless there are
radical alterations to the structure of the shell, you should simply have to find out the new number.
The number didn't change from shell version 4.00 to 4.71.

The keyboard hook is installed so that the shell creates a new folder in response to a key. I've chosen
the F12 key out of personal preference — there is no particular reason for it, so feel free to employ any
other key you wish. When the keyboard hook procedure detects that F12 has been pressed, it simply
retrieves the Explorer window and posts it a message.

The Sample Program

As I've explained, the sample program necessarily comes in two parts: a DLL and an executable.
First, here's the source code for the DLL that contains both the hooks. It's based on the skeleton DLL
generated by the Wrox AppWizard, and I called my project ExpHook.

Here are the global variables and function declarations to add to ExpHook. h:

/* ___ */
/1 PROTOTYPES section
/* ___ */

HHOOK g_hShel | Hook;
HHOOK g_hKeybHook;
HW\D g_hwndExpl orer;

178

Shell Invaders

voi d I nstall Keyboar dHook(HAND hwnd) ;

voi d API ENTRY Shel | DI | _Hook() ;

voi d API ENTRY Shel | DI | _Unhook();

LRESULT CALLBACK Shel | DI | _KeybHook(int nCode, WPARAM wPar am LPARAM | Par anj ;
LRESULT CALLBACK Shel | DI | _Mai nHook(i nt nCode, WPARAM wPar am LPARAM | Par anj ;

And naturally enough, the implementations go in ExpHook. cpp. These functions are just the
realization of the theory we've discussed to this point:

/l Sets up a hook to detect when Explorer starts
voi d API ENTRY Shel | DI | _Hook()

g_hShel | Hook = Set W ndowsHookEx(WH_CBT, Shel | DI | _Mai nHook, g_hThisDi |, 0);

voi d API ENTRY Shel | DI | _Unhook()

i f (g_hKeybHook != NULL)
UnhookW ndows Hook Ex(g_hKeybHook) ;

i f(g_hShel | Hook != NULL)
UnhookW ndowsHook Ex(g_hShel | Hook) ;

}
/Il Insert the code for Shell DI _MinHook() fromthe listing above

LRESULT CALLBACK Shel | DI'| _KeybHook(i nt nCode, WPARAM wPar am LPARAM | Par am)
{
/'l Typical beginning for any hook procedure
i f(nCode < 0)
return Cal | Next HookEx(g_hKeybHook, nCode, wParam | Param ;

/1 Normally this code executes both when the key is pressed and rel eased.
/1 The information about the transition state is stored in the 2 nost
/1 significant bits of |Param In this way we process the key only once.
i f((lParam & 0x80000000) || (I Param & 0x40000000))

return Cal | Next HookEx(g_hKeybHook, nCode, wParam | Param;

i f (wParam == VK_F12)
/1 CGet the Explorer wi ndow handl e and post the nessage

g_hwndExpl orer = Fi ndW ndow " Expl oreWd ass", NULL);
Post Message(g_hwndExpl orer, WM COWAND, 29281, 0);

}
return Cal | Next HookEx(g_hKeybHook, nCode, wParam | Param;

/1 Install a keyboard hook
voi d I nstall Keyboar dHook(HAND hwnd)

{
g_hwndExpl orer = hwnd;
DWORD dwThread = Get W ndowThr eadPr ocessl| d(g_hwndExpl orer, NULL);
g_hKeybHook = Set W ndowsHookEx(WH_KEYBOARD, Shel | D | _KeybHook,
g_hThisDi I, dwThread);
}

179

Chapter 7

To make the library export the functions we'll need, you should add these lines to the . def file,
which was also generated for you by the Wizard:

EXPORTS
Shel | DI | _Hook @
Shel | DI I _Unhook @3
Shel | D | _KeybHook @
Shel | DI | _Mai nHook @

That's all we need for the DLL, so you can build that and move on to the main program, which will
add an icon to the tray notification area to allow you to uninstall the hook easily, at any time.

Apart from creating a tray icon, the main program restricts itself to installing and uninstalling the
WH_CBT hook. You can use the Wrox AppWizard for the skeleton, although you'll find that because
of the nature of this application, there's rather more customization required than usual. First, create a
dialog-based application called ExpFol d, and add a #i ncl ude for the header that contains the
definitions of our DLL functions:

/* ___ */
/1 I NCLUDE section
/* ___ */

#i ncl ude "ExpFol d. h"
#i ncl ude " ExpHook. h"

Next, you need a couple of new constants: one for the custom message that will be sent when the tray
icon is clicked on, and one for the ID of the icon itself.

// Data
const int WM MYMESSAGE = WM APP + 1; /1 For the tray icon
const int 1CON.ID = 13;

HI CON g_hl conLar ge;
H CON g_hl conSmal | ;
HI NSTANCE g_hl nst ance;

The new global variable will be used to store a handle to this instance of the application, which will
be necessary in a later call to LoadMenu() . In the meantime, here are the changes you need to make
to W nMai n() :

i nt API ENTRY W nMai n(H NSTANCE hl nst ance, H NSTANCE hPrevi ous,
LPTSTR | psz, int iCmd)
{

/'l Save gl obal data

g_hl nstance = hlnstance;

g_hlconSmal | = static_cast <H CON>(Loadl mage(hl nst ance, "APP_I CON',
| MAGE_| CON, Get SystenMetrics(SM CXSM CON),
Get Systemvetri cs(SM_ CXSM CON), 0));

// Create an invisible dialog to get nessages fromthe icon
HWD hDl g = CreateDi al og(hl nstance, "DLG MAIN', NULL, APP_D gProc);

/1 Show the icon in the tray area
Trayl con(hDl g, NI M_ADD);

180

Shell Invaders

/1 Install Explorer's hook
Shel I DI | _Hook() ;

M5G nsg;
whi | e(Get Message(&rsg, NULL, 0, 0))

if(!lsDi al ogMessage(hDl g, &r8Q))

Tr ansl at eMessage(&sQ) ;
Di spat chMessage(&sg) ;

}

/1 Uninstall the hook
Shel | D | _Unhook() ;

/! Renove the icon
Trayl con(hDl g, NI M DELETE);

Dest r oyW ndow(hDl g) ;
Destroyl con(g_hl conSmal |) ;
return 1,

Rather than showing a dialog, this application creates an invisible one by calling Cr eat eDi al og()
instead of Di al ogBox() . The dialog procedure to go with it looks like this:

BOOL CALLBACK APP_DI gProc(HWAD hDi g, U NT ui Msg, WPARAM wPar am LPARAM | Par am

{
swi t ch(ui MsQ)

{
case WV _COWVIVAND:
swi t ch(wPar am

{

case | DCANCEL:
Post Qui t Message(0) ;
return FALSE;

}

br eak;

case W MYMESSAGE:
i f (wParam == | CON_I D)

swi tch(l Param

{
case VW _RBUTTONUP:

Cont ext Menu(hDl g) ;
br eak;
}
}

br eak;

return FALSE;

181

Chapter 7
The Trayl con() function is called by W nMai n() after the dialog has been set up. It displays an
icon in (and later removes it from) the taskbar tray:

/1 Shows an icon in the tray area
BOOL Trayl con(HWND hWwhd, DWORD nsgQ)

{
NOTI FYI CONDATA ni d;
Zer oMenor y(&ni d, si zeof (NOTI FYl CONDATA)) ;
ni d. cbSi ze = si zeof (NOTI FYI CONDATA) ;
ni d. hWhd = hWd;
nid.ulD = | CON_I D
nid.uFlags = NIF_TIP | NIF_ICON | N F_MESSAGE;
ni d. uCal | backMessage = WM MYMESSAGE;
ni d. hlcon = g_hl conSmal | ;
I strcpyn(nid.szTip, _ TEXT("Explorer's Hook"), 64);
return Shell _Notifylcon(nsg, &nid);
}

Finally, Cont ext Menu() is called when the user clicks on the icon in the tray. To make this work,
you'll need to add a menu resource called | DR_MENU to your project; the menu should contain a
single item called Close, whose ID is | DCANCEL.

/1 Shows up the context menu for the icon
voi d Cont ext Menu(HWAND hwnd)

{
PO NT pt;
Get Cur sor Pos(&pt) ;

HVENU hmenu = LoadMenu(g_hl nstance, MAKEI NTRESOURCE(| DR_MENV)) ;
HVENU hmmuPopup = Get SubMenu(hnenu, 0);

Set MenuDef aul t | t en{ hmmuPopup, | DOK, FALSE);

Set For egr oundW ndow(hwnd) ;

Tr ackPopupMenu(hmuPopup, TPM LEFTALIGN, pt.x, pt.y, O, hwnd, NULL);
Set For egr oundW ndow(hwnd) ;

Dest r oyMenu(hmuPopup) ;

Dest r oyMenu(hnenu) ;

}

The Program in Action

Once you've compiled the program (you'll need to #i ncl ude "resource. h" and link to
exphook. | i b), you will have . exe and . dl | files. You can then create a shortcut to the
executable, and copy it to the St ar t up folder.

e Explorer's Hook
o, 18:30

The program can be removed by right-clicking its tray-icon and selecting Close. Once it is installed,
it hooks each Explorer window that's created and installs a keyboard hook in that thread. The
keyboard procedure looks for F12 and then posts a message to the window.

Invited into the Shell's Memory Space

There are basically two ways to inject external code into the shell's address space. There's invasion

(which we've already seen), and invitation (which is much friendlier, if only we can find a way to do
it). In the former case, the host program is completely unaware of what's going on. With the latter, on
the other hand, everything happens under its direct control.

182

Shell Invaders

The Windows shell does offer a means to get into its memory space by invitation rather than invasion
— the shell API provides an often-underestimated function called SHLoadl nProc() that is defined
in shl obj . h, and is surprisingly powerful. I hadn't given it a great deal of thought myself until I saw
an article that appeared in Windows Developer's Journal. (See Further Reading.) Before that time, I
had only browsed its declaration and documentation without going any further.

Let me say, however, that the documentation is poor, and that even once you've read it you're still
miles away from even suspecting the real power of this function. To demonstrate just what it's capable
of, the example we're going to create in this section is a DLL that will enable us to retrieve and
replace the ubiquitous Windows Start button. Before we can begin that task, though, a little more
explanation is in order.

SHLoadInProc()

In a nutshell, SHLoad!| nPr oc() loads one of your modules into the shell's address space. This is
exactly the kind of thing we tried so hard to achieve in the previous section. SHLoadl nProc() loads
the module and then leaves it alone to do whatever it wants. Here's how the documentation (in the
Internet Client SDK) available at the time of writing describes it:

W NSHELLAPI HRESULT W NAPI SHLoadl nPr oc(
REFCLSID rclsid
)

Creates an instance of the specified object class from within the context of the shell's process.
Returns NOERROR if successful, or an OLE-defined error result otherwise.

relsid
CLSID of the object class to be created.

Now, I'm the first in line to state that the documentation is absolutely correct. The trouble is, there's
no mention at all about the structure of this 'object class'. Is there some interface that it must
implement? Is there some special policy it must follow? Does a COM server with no specific interface
to implement really make sense? If no particular interface is required, how can the object start
working?

All these are questions that arise almost immediately, but they have no answer in the documentation,
which is as concise as ever. Be honest: at this point, do you have a clear understanding of what's
needed to put this function to work?

A Minimal COM Object

Let me try to make things clearer. To begin, SHLoadl nProc() is a quick and effective way to get
our code inside the shell's address space, and this code should be a COM object. To exploit the
function, however, we don't necessarily need a fully-fledged COM object — we can get by with
something halfway between that and an ordinary DLL. It must fulfill the criteria for a COM server
(and therefore needs to register itself and have a CLSID), but in practice it will look more like an old-
fashioned DLL than an in process COM object server.

183

Chapter 7

How a COM Object is Made

An in-process COM object is a DLL, which means that it has a DI | Mai n() function. More
importantly, a COM object exports four other global functions that are the handles by which any
container works with any COM in-process object. These functions are:

O DiIGetdasshject()

Q DI CanUnl oadNow()

O DI RegisterServer()

Q Dl UnregisterServer()

The last two of these are for automatic registration and unregistration, so provided that you promise
to do this manually, you can avoid implementing them. Our COM object is now reduced to a bare
DLL with two global, exported functions: DI | Get Cl assObj ect () and DI | CanUnl oadNow() .

The Role of DIIGetClassObject()

Any client of a COM object must first load the library that contains it, and then get a pointer to the
interface it requires through DI | Get Cl assObj ect () :

STDAPI DI | Get O assObj ect (REFCLSID rclsid, REFIID riid, LPVOD* ppv);

Details aside, the important point is that this function always gets called, and shortly afterwards the
class object is loaded. In other words, the code we place here always gets executed. More interestingly
still, it executes in the shell's context (that is, its address space).

Meeting the Client's Expectations

Typically, the module that loads a class object will call DI | Get Cl assObj ect () asking for the

| Cl assFact ory interface. Our client — in this case, Explorer — will expect some interface pointer to
be returned via DI | Get Cl assObj ect (). Since we don't implement this interface, how can we cope
with such expectations?

It's enough for us to state explicitly that the required class is not available, which simply involves
returning the appropriate error code:

STDAPI Dl | Get Gl assObj ect (REFCLSID rclsid, REFIID riid, LPVOD* ppv)
{

}

return CLASS E CLASSNOTAVAI LABLE;

The above is a possible implementation for DI | Get Cl assObj ect () that makes sense for those
circumstances in which there's no specific interface to support.

Using the Shell's Address Space

Besides returning an error code, the function can do whatever it wants with any of the objects that
populate the shell's address space. When DI | Get Cl assObj ect () is called, we're already in the
shell's context, and that's what will enable us to subclass the Start button. I'll begin that
demonstration very soon, but not before we take a little time to discuss DI | CanUnl oadNow() .

184

Shell Invaders

The Role of DIICanUnloadNow()
A module that loaded a COM object through DI | Get Cl assObj ect () calls DI | CanUnl oadNow()
to make sure that the DLL can be safely unloaded and freed. Explorer performs this check
periodically, although the period itself can range from ten seconds to ten minutes. I'll be expanding
on this point later on, when I cover shell extensions in Chapter 15.

If DI | CanUnl oadNow() returns S_OK, then the DLL that hosts it will be unloaded. If it always
returns S_FALSE, or if the DLL doesn't export a function with this name, the library will be released
when the host application calls CoUni niti alize() to close the COM library. Because the host
application in this case is Explorer, it might be some time before this happens!

Source Code for the COM Object

What follows is the minimal source code for a 'fake’ COM object to be used in conjunction with
SHLoadl nProc(), and we can use it as the seed for an example that will grow to become the Start
button-subclassing application I keep promising! In Visual C++, create a new Win32 Dynamic-Link
Library called St art (I chose the Simple DLL option), and add this code to st art. cpp:

#include "start.h"
HI NSTANCE g_hl nst ance;
BOOL API ENTRY DI | Mai n(H NSTANCE hl nst ance,
DWORD ul _reason_for_call,

LPVO D | pReser ved
)

{
g_hl nstance = hhbdul e;
return TRUE;
}
/* ___ */

/1 Dl GetC assOhj ect
/1 Main function for a COMin-proc object like this

STDAPI DI | Get Cl assObj ect (REFCLSID rclsid, REFIID riid, LPVOD* ppv)

/1 Do sonething here
return CLASS_E_CLASSNOTAVAI LABLE;

/* ___ */
/1 DI CanUnl oadNow
/1 Confirmthe unload for a COMlibrary

STDAPI DI | CanUnl oadNow()
{

}

return S_OK;

185

Chapter 7

The st art . h header file that gets #i ncl ude'd in the above file defines the CLSID of our 'fake'
COM object and incorporates some #i ncl ude directives of its own:

#i ncl ude <wi ndows. h>
#i ncl ude <wi ndowsx. h>
#i ncl ude <obj base. h>
#i ncl ude <shl obj . h>

DEFI NE_GUI D(CLSI D_NewSt art, 0x20051998, 0x0020,
0x0005, 0x19, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);

So that the DLL exports the functions we need it to, you should also create a short st art . def file:

LI BRARY START

EXPORTS
Dl | CanUnl oadNow @ PRI VATE
D | Get d assCbject @ PRI VATE

To conclude this section, here's an idea of the kind of code that a sample program would use to load
this COM object into Explorer's address space via SHLoadl nProc() :

voi d DoGol nsi deExpl orer ()

{
const CLSID clsid = {0x20051998, 0x0020, 0x0005,

{0x19, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} };
SHLoadl nProc(cl sid);

Registering the COM Object

There are essentially two ways in which you can register COM objects: by inserting code through
DI | Regi st er Server (), or manually — best done by means of a registration script. Let's take a
look at both the approaches, starting with the simpler one: a registration script.

What follows is the content of a script REG file that is automatically handled by the Registry Editor.
It adds two keys that register the CLSID under the CLSI D node of HKEY_CLASSES_ROOT, and store
the name of the executable that implements it.

REGEDI T4

[HKEY_CLASSES_ROOT\ CLSI D\ { 20051998- 0020- 0005- 1998- 000000000000}]

@ "Start Button"

[HKEY_CLASSES_ROOT\ CLSI D\ { 20051998- 0020- 0005- 1998- 000000000000} \ I nPr ocSer ver 32]
@ "C \\Chap0O7\\ Source\\Start\\start.dlI"

"Thr eadi nghvbdel " = "Apart ment"

You should, of course, ensure that the path is replaced with the actual directory you're using. In
practice, a key needs to be added under CLSI D with the name of the CLSID enclosed in brackets:

HKEY_CLASSES_ROOT
\CLSID
\ {20051998- 0020- 0005- 1998- 000000000000}

186

Shell Invaders

Furthermore, we need to add another key under this one called | nPr ocSer ver 32, whose default

value points to the actual name of the server. The value Thr eadi ngModel specifies the threading

model required. To register this server, it suffices that you double-click the REG file from Explorer,
or import it using the Registry Editor.

A neater approach is to code all this in the DI | Regi st er Server () function; doing so requires us
to program using the Win32 registry API. As I'll show you in Chapter 10, version 4.71 of the shell
contains a new set of high-level functions for dealing with the registry, and we could employ them
here, but then the code would work only on shell version 4.71 or higher. The following code makes
use of the traditional Win32 registry API:

STDAPI Dl | Regi st er Server ()

{
TCHAR szSubKey[MAX_PATH = {0};
TCHAR szCLSI O MAX_PATH = {0};
TCHAR szMdul e[MAX_PATH] = {0};
HKEY hKey;
DWORD dwbDi sp;

/1 Set the CLSID
I'strcpy(szCLSID, _ TEXT("{20051998-0020-0005-1998-000000000000}"));

/'l Cet the nodul e nane
Get Mbdul eFi | eName(g_hl nst ance, szMdul e, MAX_PATH);

[/l HKCR: CLSID\{...}

wsprintf(szSubkKey, _ TEXT("CLSID\\%"), szCLSID);

LRESULT | Result = RegCreat eKeyEx(HKEY_CLASSES ROOT, szSubKey, 0, NULL,
REG_OPTI ON_NON_VOLATI LE, KEY_WRI TE, NULL, &hKey, &dwDi sp);

i f(lResult == NCERROR)

TCHAR szDat a[MAX_PATH = {0};

wsprintf(szData, _ TEXT("Start Button"), szModule);

| Result = RegSet Val ueEx(hKey, NULL, 0, REG SZ,
reinterpret_cast<LPBYTE>(szData), |strlen(szData) + 1);

RegC oseKey(hKey) ;

}

/1 HKCR CLSID({...}\InProcServer32
wsprintf(szSubKey, _ TEXT("CLSID\\%\\InProcServer32"), szCLSID);
| Result = RegCreat eKeyEx(HKEY_CLASSES ROOT, szSubKey, 0, NULL,
REG_OPTI ON_NON_VOLATI LE, KEY_WRI TE, NULL, &hKey, &dwDi sp);
i f(lResult == NOERROR)
{
| Result = RegSet Val ueEx(hKey, NULL, 0, REG SZ,
rei nterpret_cast<LPBYTE>(szMddul e), |strlen(szMdule) + 1);
TCHAR szDat a[MAX_PATH = {0};
| strcpy(szData, _ TEXT("Apartnent"));
| Result = RegSet Val ueEx(hKey, __ TEXT(" Thr eadi nghbdel "), 0, REG SZ,
rei nterpret_cast<LPBYTE>(szData), |strlen(szData) + 1);
RegC oseKey(hKey) ;
}

return S_OK;

187

Chapter 7

A COM object that exposes DI | Regi st er Server () via its DEF file may be registered via a call to
the system utility r egsvr 32. exe:

regsvr32. exe <full _server_nane>

Deregistering the Object

The REG script doesn't allow you to deregister settings, so if this is the method you've chosen, the
only way to do it is through manual deletion with the help of the Registry Editor. If you have the
Windows Scripting Host (WSH) installed (more on this in Chapter 13) then an alternative solution
would be to write a small VBScript or JavaScript function that uses the WSH registry object to delete
keys and values. Because using a scripting language is more flexible and versatile than using REG
files, you can bet that this will become a popular approach in the future.

Speaking of scripting languages, it's worth noting that a COM object written with ATL may use RGS
files to provide registration and deregistration. RGS scripts look rather like an enhanced version of
the Registry Editor's REG files, and when I begin writing COM objects with ATL, I will examine the
features of RGS scripts in case you haven't had cause to manipulate them before.

Returning to the discussion at hand and our API functions, to make a COM object self-deregistering,
you can use code like this:

STDAPI Dl | Unr egi st er Server ()

{
TCHAR szSubKey[MAX_PATH] = {0};
TCHAR szCLSI D] MAX_PATH] = {0};
TCHAR szMdul e[MAX_PATH] = {0};
HKEY hKey;
DWORD dwDi sp;

/] Set the CLSID
| strepy(szCLSI D, _ TEXT("{20051998-0020- 0005- 1998- 000000000000} ")) ;

/1 Open HKCR
LRESULT | Result = RegCreat eKeyEx(HKEY_CLASSES ROOT, "", 0, NULL,
REG_OPTI ON_NON_VOLATI LE, KEY_WRI TE, NULL, &hKey, &dwDi sp);
i f(l Result == NCERROR)
{
wsprintf(szSubKey, __ TEXT("CLSID\\%\\InProcServer32"), szCLSID);
RegDel et eKey(hKey, szSubkKey);
wsprintf(szSubKey, _ TEXT("CLSID\\%"), szCLSID);
RegDel et eKey(hKey, szSubKey);
Regd oseKey(hKey) ;

}

return S_OK;
}

In this function, we open the HKEY_CLASSES_ROOT node and delete the keys, starting with the
innermost. The RegDel et eKey() function works slightly differently under Windows 9x and
Windows NT. The former allows you to delete keys even if they contain sub-keys, but recursive
deletion isn't supported under NT, and the function fails if the given key isn't empty. Notice that by
‘empty' I mean 'without sub-keys', regardless of whether values are present. Since the code shown
above deletes the innermost key first, it works unchanged on both platforms.

188

Shell Invaders

A COM object exposing DI | Unr egi st er Server () may be deregistered via a call to the system

utility r egsvr 32. exe:

regsvr32.exe /u <full_server_nane>

A Brand New Start Button

To demonstrate the power of SHLoadl nProc(), I'm going to show you how to expand the code of
DI | Get Cl assObj ect () so that it creates a brand new Start button, with a different bitmap and a

different menu. We'll reach this result by following these steps:

Getting the handle of the Start button
Replacing its bitmap

oo0oo

Creating a customized menu to display

You will then be able to control both the Windows key
and the Cirl+Esc key combination. You can neutralize
them, leaving them to display the standard Start menu,
or associate them with the new, customized menu. The
screenshot shows the desired outcome:

L

E- Windows Explarer. Ink

s
Q‘_ﬁ Microzaft Outlook. Ink

I@ Microsoft Word. Ink

5 Launch Internet E xplorer Browser. Ink

Subclassing the button window to change the menu and the cursor

C++ E.0.nk

H Restore Previous Settings

[fstat | (A 21 @ 3y 7 oo |

The first thing to do is create a main function that will be called from within
DI | Get Cl assObj ect (). This procedure will be our point of departure into the unexplored

territory of the shell.

STDAPI DI | Get Gl assObj ect (REFCLSID rclsid, REFIID riid,

Instal | Handl er () ;
return CLASS_E_CLASSNOTAVAI LABLE;

/1 Instal | Handl er
/'l Replace the Start button and install the hooks

voi d I nstall Handl er ()
if(g_blnstalled)

int irc = MessageBox(HWND_DESKTOPR,

LPVA D* ppv)

__TEXT("The extension is installed. Wuld you like to uninstall?"),

__TEXT("Start"), MB_| CONQUESTI ON | MB_YESNO |

if(irc == | DYES)
Uni nstal | Handl er () ;
return;

MB_SETFOREGROUND) ;

189

Chapter 7

/! Rermenber whether the handler is installed
g_blnstall ed = TRUE;

// Set a new Start button
Set NewSt art But t on(TRUE) ;

When we've finished with it and want to restore the standard behavior, we call the uninstaller:

voi d Uninstal | Handl er ()

{
// Restore the Start settings
Set NewSt art But t on(FALSE) ;
/1 The handl er is now uninstalled
g_blnstal |l ed = FALSE;
}

The presence of the handler is now the critical factor when Explorer calls DI | CanUnl oadNow() to
discover whether our library can be unloaded. The last thing we need to do in this section, then, is to
make sure that nothing nasty happens while the handler is installed:

STDAPI DI | CanUnl oadNow()

return (g_blnstalled ? S FALSE : S K);

Given that we can now go through the motions of installing and uninstalling a handler for the Start
button, let's see how to accomplish the various steps required to complete our task.

Getting the Button Handle

The results are striking because we're altering such a familiar component of the Windows interface,
but in fact we've already done the hardest part of the job, which was to get inside the shell's address
space. What remains are simply Win32 programming techniques applied to some shell objects.
Remember, what's really important here is that our minimal COM object (which I've placed in
start.dl|)is working in the same environment as Explorer.

The Start button is an ordinary window of *. Microsoft Spy++ - [Windows 1]
class But t on, as the following Spy-++ id Spy Tree Search Miew Messages Window Help =1
screenshot demonstrates: Dl%l @l EI il] || X-l Mlﬁ- | ?ﬂl
[000006C0 " tacltips_class3z2 =]
=+ 00000674 " Shell_Traywnd

[®w} 00000672 " Button
5.1 0000067C " TrayNotifywnd

. M 00000680 "9.34" Trayclockwlass
E- [0000068C " ReBarwindow3z2

EH:I 00000&AC "' METaskSwiwWiClass

. [M 000006BO " SysTabControl32
E-C7 00000644 ™ SysPager

[00000648 " Toolbarwindow32 =
4 | 3
For Help, press F1 MLUM A

190

Shell Invaders

Locating the button among the enormous stack of windows is as easy as using the Spy++ finder tool:
just drag the finder over the desired window, and it will be selected in the list of windows. The finder
tool is available via the Search | Find Window... menu item.

If you want to retrieve the handle for a child window programmatically, you should use

Fi ndW ndowEx () rather than Fi ndW ndow(), the difference being that the former lets you specify
the root window from which the search should begin. In this case, we know that the Start button is a
child of the taskbar, which is the only window of class Shel | _Tr ayWhd anywhere in the system.

hwndTray = Fi ndW ndowEx(NULL, NULL, "Shell _Traywhd", NULL);
hwndStart = Fi ndW ndowEx(hwndTray, NULL, "Button", NULL);

The above fragment first retrieves a handle to the taskbar window, and then a handle to the first child
of class But t on.

Despite appearances, all the other 'buttons' you see on the taskbar aren't buttons. In fact, they
aren't windows at all — they're simply the button-like tabs of a tab control. I'll say more about
this in Chapter 9.

Replacing the Bitmap

Looking once again at the screenshot from Spy++, you'll notice that the Start button has no caption.
This means that the famous word Start (which is localized for non-English versions of Windows) is
just a bitmap. However, you won't find any trace of this bitmap in shel 1 32. dl |, or

expl orer. exe, or indeed any other system module. The bitmap is built dynamically by merging
the Windows logo bitmap with a text string read from the resources. Both resources are stored in
expl orer. exe.

Start

The Windows logo is the bitmap with an ID of 143, while @ C:\Copy of Explorer. exe M=l B3
the Start string evaluates to an entry in the string table with =123 Copy of Explorer
an ID of 578. (0 Accelerator

=4 Bitmap

=k 143 [English [U.5.]

49 [Englizh [U.5.]]

150 [English (U.5.]]

151 [English U.5.]]

162 [English [L1.5.]]

183 [English (U.5.]]

157 [English U.5.]]
.| 161 [English [U.5.]]

[#-[Z0 Dialog

-2 leon

-2 Menu

I'_—'la String T able

. LEB% Sting Table [English L1.5.)]

D Wersion

The composite bitmap is created in a memory device context by copying the Windows logo and
drawing the text.

191

Chapter 7

Reverse Engineering Explorer's Resources

If you look at Explorer's resources, you'll find that many of the bitmaps that populate the various
configuration dialogs (for instance, the bitmap that's displayed in the Taskbar Properties dialog) are
created dynamically in order to save space. In fact, the expl or er . exe file only contains some
constituent bitmaps; not the final, displayed result.

If you want to browse through some application resources on your own, here are some suggestions on
how to go about it:

Q Create a copy of the file you want to look into. This is necessary because the file could be in use.

Q Open it with Visual C++, making sure to specify Resources in the Open as combo box.

Q The IDE will warn you that under Windows 9x, you can't update the resources. Don't worry about
it!

Once your display has changed to the tree of all the resources, saving them as separate files is easy
too. Just right-click the desired resource and select Export.... This feature is available only for the
resources that map to a file, such as bitmaps, icons and cursors, and for custom resources like AVI
files. Curiously, you can't save a dialog template to a text file. (See Further Reading.)

Styles of the Start Button
The Start button has the BS_BI TMAP style that means its surface is covered by a bitmap instead of
the more usual text. (You can confirm this by right clicking on the window in the Spy++ list, then
selecting Properties... | Styles). Getting the handle to this bitmap is as easy as calling:

g_hbntart = reinterpret_cast <HBl TMAP>(SendMessage(hwndSt art ,
BM GETI MAGE, | MVAGE_BI TMAP, 0));

Replacing the bitmap is no more difficult. First we use Loadl mage() to load a new bitmap image
from the resources of our application. Next, SendMessage() allows us to assign the bitmap to a
button with the BS_BI TMAP style. The | Par amparameter refers to the handle returned by

Loadl mage() .

HBI TMAP hbm = rei nt er pret_cast <HBl TMAP>(Loadl nage(g_hl nst ance,
MAKEI NTRESOURCE(| DB_NEWSTART) , | MAGE_BI TMAP, 0, 0, LR DEFAULTSIZE));
SendMessage(hwndSt art, BM SETI MAGE,
| MAGE_BI TMAP, reinterpret_cast <LPARAM>(hbm)) ;

Here's the bitmap I used in the sample. Its ID is | DB_NEWSTART, which is defined in r esour ce. h:

#A Start

For this demonstration, I chose a bitmap that simulates a hyperlink, and for simplicity I also hard-
coded the bitmap into the module's resources. The bitmap is the same size as the actual Start button
bitmap (48 x 16). You can use whatever bitmap you like, but I recommend that you stick to this size.

Simply changing the bitmap does not necessarily result in an immediate refresh of the button

interface. The button needs to redraw its non-client area in order to reflect the changes we've made.
We can force that action by calling Set W ndowPos() , like this:

192

Shell Invaders

Set W ndowPos(hwndStart, NuLL, 0, 0, 0, O,
SWP_NOSI ZE | SWP_NCZORDER | SWP_NOVOVE | SWP_DRAWFRANE) ;

To see the effects of the things we've done so far, we need to implement Set NewSt art Butt on(),
which strings together all the snippets of code that we looked at earlier in this section in order to do

its job. Here's how it goes:

voi d Set NewSt art But t on(BOOL f New)

{
/Il Get the handle to the Start button
HWD hwndTray = Fi ndW ndowEx(NULL, NULL, "Shell _Traywhd", NULL);
HWAD hwndStart = Fi ndW ndowEx(hwndTray, NULL, "Button", NULL);
/1 Change the bitmap
g_hbnStart = NewStartBitmap(hwndStart, fNew);

}

Getting a handle to the button is a trivial affair, but replacing the bitmap in a way the allows the
process to be reversed requires a little more logic, which is why I moved the code off into a helper
function called NewSt ar t Bi t map() :

HBI TMVAP NewSt ar t Bi t map(HWND hwndSt art, BOOL f New)

{
i f(!fNew)
if(g_hbnStart)
SendMessage(hwndSt art, BM SETI MAGE, | MAGE_BI TMAP,
rei nterpret_cast <LPARAM>(g_hbnSttart));
/!l Refresh the button to reflect the change
Set W ndowPos(hwndSt art, NuULL, 0, 0, 0, O,
SWP_NOCSI ZE | SWP_NOZORDER | SWP_NOMOVE | SWP_DRAWFRANE) ;
return NULL;
}
/] Save the current bitmap
g_hbnStart = reinterpret_cast <HBl TMAP>(
SendMessage(hwndSt art, BM GETI MAGE, | MAGE BI TMAP, 0));
/'l Load and set the new bitnmap
HBI TMAP hbm = rei nt er pret _cast <HBlI TMAP>(Loadl nage(g_hl nst ance,
MAKEI NTRESOURCE(| DB_NEWSTART) , | MAGE_BI TVAP, 0, 0, LR DEFAULTSI ZE));
SendMessage(hwndSt art, BM SETI MAGE, | MAGE_BI TMAP,
rei nterpret_cast <LPARAM>(hbm)) ;
/!l Refresh the button to reflect the change
Set W ndowPos(hwndStart, NuLL, 0, 0, 0, O,
SWP_NCSI ZE | SWP_NOZORDER | SWP_NOMOVE | SWP_DRAWFRAME) ;
return g_hbnttart;
}

You now have all the code you need to build a working DLL. Once it has been registered, you should
be able to use a function like DoGol nsi deExpl or er () that I presented earlier to invoke
SHLoadl nProc() and have your 'fake’ COM object loaded into Explorer's address space.

193

Chapter 7

Subclassing the Window

Changing the Start button bitmap is a great result, but more can be achieved. My next goal is to
change the behavior of the button, which means:

O Setting a hand-shaped cursor instead of the ordinary arrow
O Removing the context menu
O Customizing the tooltip text

By far the most impressive thing that I'll demonstrate, though, is to make clicking on the Start button
produce a different menu.

A Hand-Shaped Cursor

Since we've made the button look like an HTML hyperlink, it would be nice to change the shape of
the cursor to the pointing finger that usually appears on HTML links. I got hold of this cursor from
Internet Explorer's resources by using the same technique as I discussed above for Explorer, and
called it | DC_HAND.

Every time Windows needs to display a cursor for a window, it sends a WM_SETCURSOR message. If
the application doesn't process it, then Windows sets up the predefined cursor for that class. The
cursor for a class is defined when you register the class using Regi st er Cl ass() or

Regi st er Cl assEx() —it's one of the fields of a WNDCLASS (or WNDCLASSEX) structure. For system
controls (like buttons), the predefined cursor is the standard arrow; the only exceptions to this are
edit controls.

If we're going to start processing messages sent by the system that were intended for the Start button,
we do now need to subclass it. We can begin the operation by adding code to

Set NewSt ar t But t on() that will install (and uninstall) a custom window procedure called

NewSt art Proc():

voi d Set NewSt art Butt on(BOOL f New)

{
I/l Get the handle to the Start button
HWD hwndTray = Fi ndW ndowEx(NULL, NULL, "Shell_TrayWhd", NULL);
HWD hwndStart = Fi ndW ndowex(hwndTray, NULL, "Button", NULL);
/1 Change the bitnap
g_hbnStart = NewStartBitmap(hwndStart, fNew);
/1 Subcl ass the button
i f(fNew)
i f(!g_bSubcl assed)
g_pfnStartProc = Subcl assW ndow hwndSt art, NewStartProc);
g_bSubcl assed = TRUE;
}
}
el se
if(g_pfnStartProc != NULL)
Subcl assW ndowm hwndSt art, g_pfnStartProc);
g_bSubcl assed = FALSE;
}
}

194

Shell Invaders

To have a different cursor appear when the mouse pointer is over the area of the window, you just
need now to specify it in response to the WM_SETCURSOR message when it's received by the window
procedure we're writing to subclass the Start button:

LRESULT CALLBACK NewSt art Proc(
HWAD hwnd, Ul NT uMsg, WPARAM wPar am LPARAM | Par am

{
swi t ch(uMsg)
case VWM SETCURSOR:
Set Cur sor (LoadCur sor (g_hl nst ance, MAKElI NTRESOURCE(| DC_HAND))) ;
return O;
}
return Cal | WndowProc(g_pfnStartProc, hwnd, uMsg, wParam | Paranj;
}

It's extremely important that you return from the window procedure after dealing with the
WM_SETCURSOR message. If you don't, Windows will end up executing the default code for the
message and restore the arrow cursor!

Removing the Standard Context Menu

Hiding the standard context menu is even simpler. All you need to do is return 0 whenever you
receive a WM_CONTEXTMENU message:

swi tch(uMsg)

case WM _SETCURSOR:
Set Cur sor (LoadCur sor (g_hl nst ance, MAKEI NTRESOURCE(| DC_HAND))) ;
return O;
case VW _CONTEXTMENU:
/] Create your own pop-up nenu here!
return O;

Of course, there's nothing to prevent you from displaying your own pop-up menu in place of the
standard one — just replace the comment in the above snippet with code of your own.

Customizing the Tooltip

Another possible form of customization might involve tooltips — you could consider changing the
default message, Click here to begin. If you've ever worked with tooltips in Win32 programs, though,
you'll know that they are hard nuts to crack. There's no easy way to detect which tooltips are
currently active, and even if you catch the TTN_SHOWnotification (a notification message sent when a
tooltip window is about to be displayed), you can't cancel the tip.

The Start button tooltip is handled away from the code for the button itself. At startup, the taskbar
creates a tooltip window and sets up some tools. Therefore, to get the handle of the window used for
displaying the Start button's tooltip, a possible approach is to walk all the windows created by the
current thread by using the EnuniThr eadW ndows () function. The chances are that there's only one
tooltip window: the right one. The following code shows how to get the tooltip window and the tool
that relate to the Start button. (A tool here is the area in which you want the tip to appear — the client
area in the case of the Start button.)

195

Chapter 7

voi d RenoveTool ti p(HWD hwndSt art)

EnunmThr eadW ndows(Get Current Threadl d(), EnumThr eadWhdPr oc,
rei nterpret_cast <LPARAM>(hwndStart));

/1 This thread created just one tooltip window Al the w ndows that bel ong
// to the thread are enunerated in order to find the tooltip. This

/1 callback receives the handle of all the windows the thread created. The
/1 1Paramis the handle (hwndStart) of the Start button.

BOOL CALLBACK EnuniThr eadWhdPr oc(HWAD hwnd, LPARAM | Par am

{
TCHAR szd ass[MAX_PATH] = {0};
Get d assNane(hwnd, szd ass, NAX_PATH);
if(0 == Istrcnpi (szCO ass, TOOLTI PS_CLASS))
{
// Tooltip wi ndow found, so try to |l ocate the tool
int i Nunf Tool s = SendMessage(hwnd, TTM GETTOOLCOUNT, 0, 0);
for(int i =0 ; i < iNumOTools ; i++)
{
/] Get information about the ith tool
TOOLI NFO ti ;
ti.chSize = sizeof (TOOLI NFO);
SendMessage(hwnd, TTM ENUMIOCLS, i, reinterpret_cast<LPARAM>(&ti));
if(ti.uld == static_cast<U NT>(| Param)
/1 Tool for the Start button found.
ti.lpszText = _ TEXT("Buy this book!");
SendMessage(hwnd, TTM UPDATETI PTEXT, O,
reinterpret_cast <LPARAM>(&ti));
}
}
return FALSE;
}
return TRUE;
}

Once we have the tooltip window handle, we use the programming interface of tooltips to enumerate
the various tools. A tool is a rectangular region that originates a tip if the mouse hovers over it for a
while, and is described by a TOOLI NFO structure. During the enumeration of the tools, the tool for
the Start button is found by comparing the ul d field of TOOLI NFO with the handle of the Start
button. It can then be removed, or better still, the text can be replaced through the

TTM_UPDATETI PTEXT message.

There are a couple of aspects of this code that I deduced by trial and error. First, the current thread
creates just one tooltip window. Second, the tool that relates to the Start button has the

TTF_I DI SHWND flag set. This means that the tool relates to the client area of a window, and not to a
generic rectangle. Third, the ul d member of the TOOLI NFO structure contains the HAND of that
window. This is actually not surprising at all, since it's common practice to assign the

TTF_I DI SHWND flag when you want to define a tooltip for an entire window. Knowing these things
greatly simplifies our work, since we can easily identify (and even remove) the tool for the Start
button. TOOLTI PS_CLASS is a window class name provided by the common control library — these
controls (believe it or not!) display tooltips.

196

Shell Invaders

If it's your intention to change the tooltip text, remember that this change is not tied to the
module being run. It will continue to appear even when the module that installed it has been
unloaded. The only way to restore the old tip is by changing the tool back to its previous settings.

A New Menu

The default Start menu appears when the user clicks on the button. More precisely, it is shown when
the button receives the BM_SETSTATE message with the wPar amargument set to TRUE.
BM_SETSTATE is a button-specific message that's used to ask the button to draw in 'pressed' or
'released' mode; a wPar amvalue of TRUE means that the button is required to be pressed, while a
value of FALSE means it should be released. If your goal is simply to hide the standard menu, just
process the BM_SETSTATE message and return 0.

When you hit the Windows key or press Ctrl-EsC, you cause a BM_SETSTATE message to be sent
to the button. By acting on the handler for that message, you have trapped those key combinations
too.

Correct Behavior

Suppose that you have your own menu to display. You might try to show it by processing the
WM_LBUTTONDOWN message:

Tr ackPopupMenu(hmmuPopup, uFl ags, ix, iy, 0, hwnd, NULL);

Provided that you specify the correct coordinates, the menu will appear near the button. However,
the button will not be drawn 'pressed'.

To fix this, you need to send BM_SETSTATE messages to 'press' and 'release' the button. However, if
you send the button itself such a message, it ends up being handled by the original window
procedure, which we've just replaced. As a result, the standard Start menu appears!

The trouble is that the Start button is a child window of the taskbar. Each time you click on it (or
send a BM_SETSTATE message), Windows automatically notifies the parent window of the event. For
buttons, this means a BN_CLI CKED message. By handling this BN_CL| CKED message, the taskbar (not
the button) displays the standard menu.

We want the button to provide the menu, but need a way to draw it 'pressed'. How can we obtain this
behavior? What we need is an 'independent' function to draw the button with that look, and the
solution is to resort to the original button procedure — the one that just draws the button in the normal
way, without doing anything else or causing anything else to happen. The address of this function
may be found in the WNDCLASS structure retrieved by Get Cl assl nfo():

swi tch(uMsg)

{

case WM SETCURSOR:
Set Cur sor (LoadCur sor (g_hl nst ance, MAKEI NTRESOURCE(| DC_HAND))) ;
return O;

case VW _CONTEXTMENU:
return O;

197

Chapter 7

case WM _LBUTTONDOAN:

{
VWNDCLASS wc;
Get d assl nfo(NULL, "Button", &wc);
Cal | W ndowPr oc(we. | pf nWhdProc, hwnd, BM SETSTATE, TRUE, 0);
/1 Call TrackPopupMenu() here
Cal | W ndowPr oc(we. | pf nWhdProc, hwnd, BM SETSTATE, FALSE, 0);
return O;

}

The code above ensures that our Start button behaves correctly and appears 'pressed’ when the menu
is up. This line:

Cal | W ndowProc(we. | pf nWwhdProc, hwnd, BM SETSTATE, TRUE, 0);

now works as if it's an external function that takes the Start button handle as an argument.

In case you're wondering, there is an alternative way to do all this: I could have subclassed the
taskbar window and intercepted the BN_CL| CKED message. However, I prefer the approach
detailed here, as it minimizes the number of subclassed windows.

How to Trap Ctrl-Esc and the Windows Key

When pressed, both Cirl-Esc and the Windows key send a BM_SETSTATE message (with wPar amset to
TRUE) to the Start button, causing it to display the Start menu. By subclassing the Start button, we
can decide to ignore that event:

case BM SETSTATE:
return O;

Or we could choose to display our own menu instead:

case BM SETSTATE:
case WM _LBUTTONDOAN:
{

}

Creating Owner-Drawn Menus

TrackPopupMenu() is fine for displaying a menu at a certain screen position, but Start has two
additional features that differentiate it from ordinary menus. Firstly, it is an owner-drawn menu, and
secondly, it must appear at rigorously defined positions that depend on the edge of the taskbar and
the absolute location of the Start button.

If the taskbar is docked at the bottom of the screen, the menu must be displayed above the Start

button; if it's at the top, the menu should go below it. Therefore, to determine the correct coordinates
for the menu, we first need to know the position of the system taskbar.

198

Shell Invaders

Determining the Menu's Screen Position

TrackPopupMenu() needs a position expressed in (x, y) screen coordinates. Interestingly, you can
tell the function how to interpret each coordinate, and how to align the menu accordingly. For
example, if you specify the TPM_BOTTOMALI| GN flag, then the y-coordinate is intended to be the
bottom of the menu. If you set TPM_RI GHTALI GN, the x-coordinate is where the right edge of the
menu will lie.

The position of a pop-up menu depends on these three pieces of information: x- and y-coordinates,
and alignment flags. I packed them into a custom structure called STARTMENUPCS, and defined a
helper function that checks the position of the taskbar and fills the structure accordingly:

struct STARTMENUPCS

et

int ix;

int iy;

Ul NT uFl ags;
b

typedef STARTMENUPCS* LPSTARTMENUPCS;

voi d CGet St art MenuPosi ti on(LPSTARTMENUPCS | psnp)

{

/1 CGet the taskbar's edge and position

APPBARDATA abd;

abd. cbSi ze = si zeof (APPBARDATA) ;

SHAppBar Message(ABM_GETTASKBARPGCS, &abd) ;

swi t ch(abd. uEdge)

{

case ABE_BOTTOM
| psmp->i x = 0;
| psmp->iy = abd.rc.top;
| psnp- >uFl ags = TPM LEFTALI GN | TPM BOTTOVALI GN,
br eak;

case ABE TOP:
| psnp->i x = 0;
| psnp->iy = abd.rc. bottom
| psnp- >uFl ags = TPM LEFTALI GN | TPM TOPALI G\;
br eak;

case ABE_LEFT:
| psmp->i x = abd.rc.right;
| psmp->iy = 0;
| psnp- >uFl ags = TPM LEFTALI GN | TPM TOPALI G\;
br eak;

case ABE _RI GHT:
| psnp->ix = abd.rc.left;
| psnp->iy = 0;
| psnp- >uFl ags = TPM Rl GHTALI GN | TPM TOPALI G\;
br eak;

}

}

SHAppBar Message() is an API function defined in shel | api . h that can return the edge and the
position of the system taskbar. It can also serve other purposes that I'll look at in Chapter 9.

199

Chapter 7

The Get St art MenuPosi ti on() function allows us to display the Start menu in the correct
position relative to the taskbar. The code to display the pop-up menu may then look like this:

case WM _LBUTTONDOMN:

0, hwnd, NULL);

{
WADCLASS wc;
Get d assl nfo(NULL, _ TEXT("Button"), &wc);
Cal | W ndowProc(we. | pf nWhdProc, hwnd, BM SETSTATE, TRUE, O0);
STARTMENUPCS snp;
Get St art MenuPosi ti on(&snp);
HVENU hmenu = LoadMenu(g_hl nstance, MAKEI NTRESOURCE(| DR_MENU)) ;
HVENU hmmuPopup = Get SubMenu(hnenu, 0);
Tr ackPopupMenu(hmuPopup, snp. uFl ags, snp.ix, snp.iy,
Cal | W ndowPr oc(we. | pf nWhdProc, hwnd, BM SETSTATE, FALSE, 0);
return O;
}

Each menu item you select sends a WW_COMMAND message to the hwnd window, which is none other
than the button itself! Thus, our subclassing procedure is also handling the user's selections, which I'll

process further in a moment.

Loading a New Menu

I created a very simple, predefined menu to be used as a replacement
for the standard menu called | DR_MENU (as above). You could do this
yourself, loading and displaying it through Tr ackPopupMenu(), but
you'll soon realize that it is rather uninspiring. What you'll get, in fact,
is a traditional, text-based menu:

Text Editor
Registry E ditar

Calculator

Exxit

The Windows Start menu, on the other hand, is an owner-drawn menu, in which each item is drawn
separately by a user-defined procedure. Unfortunately, Visual C++'s resource editor doesn't allow
you to create owner-drawn menus in a 'visual' fashion, so you have to do everything

programmatically.

If the menu you want to draw already exists (if it's stored in the module's resources, say), then your
first step should be to walk through all the items and assign each one the special MF_ OANERDRAW
attribute. This flag qualifies it as an item whose contents must be drawn by a user-defined procedure.
Here's a piece of code that takes a pop-up menu and sets the owner-drawn style for each item:

/1 Maxi mum size allowed item nanes in an owner-drawn nenu
const int |ITEMSIZE = 100;

struct MENUSTRUCT
TCHAR szText [| TEMBI ZE] ;
int iltem D
TCHAR szFi | e[MAX_PATH] ;

typedef MENUSTRUCT* LPMENUSTRUCT;

200

Shell Invaders

voi d MakePopupOaner Dr aw{ HWAND hwnd, HMVENU hrmuPopup)

/1 lterate over all popup itens
for(int i =0 ; i < GetMenultenCount(hmuPopup) ; i++)
{

/'l Saves sone data for the owner-draw functions

LPMENUSTRUCT | pnms = d obal Al |l ocPtr (GHND, si zeof (MENUSTRUCT)) ;

int iltem D = static_cast<int>(Get Menul t em D(hruPopup, i));

Get MenuSt ri ng(hmuPopup, iltem D, | pns->szText, | TEVMSI ZE, M~_BYCOWAND) ;
| pms->iltem D = iltem D

U NT ui State = Get MenuSt at e(hmuPopup, iltem D, M-_BYCOMVAND) ;
Modi f yMenu(hmuPopup, iltem D, ui State | MF_BYCOMWAND | M-_OWNERDRAW
iltem D, reinterpret_cast<LPCTSTR>(| pns));

When you assign the owner-drawn style to a menu item, you might want to store some per-item
information, such as the string to be displayed. In our case, this is done through the custom structure
MENUSTRUCT, a pointer to which is passed as the final parameter to Modi f yMenu() . This memory
buffer is then passed to the functions that actually draw the items. This memory must be freed by a
similar routine that should be called when you have finished with the menu.

Owner-Drawn Separators

If we're really going to produce a menu that's akin to the standard Windows Start menu, we'll also
need to make owner-drawn separators. That's because the Start menu contains a continuous vertical
band at one edge that can't be broken by separators, effectively reducing the horizontal area available
for items and separators. By default, a separator is drawn as an inset line that runs from edge to edge.
This means that we need to consider separators as items to be drawn as well.

Collecting Menu Items Dynamically

For this example, I decided not to load the new menu from project resources. The Start menu is a
semi-dynamic menu, in the sense that the menu items are partially determined at runtime. If you
create shortcuts in the St art Menu special folder (see Chapter 6), you can cause a new item to
appear on the menu. I will define a similar mechanism for this custom handler.

I created a directory (hard-coded to C: \ My St ar t Menu) to be filled with the shortcuts to add to the
menu. Apart from these dynamic items, my Start menu will always contain a 'fixed' command to
restore the previous settings and the original menu. A click on a shortcut will call the target file, while
a click on the fixed item causes the handler to uninstall.

The following function, Get MenuHandl e(), creates the menu to be displayed by the new Start
button. It scans the C: \ My St ar t Menu directory searching for LNK files, resolves them, and adds the
relevant icon and name to the menu.

HVENU Get MenuHandl e(LPTSTR szPat h)

{
LPMENUSTRUCT | prrs;
int iltemD = 1;

/'l These globals are a reninder that the menu drawing is starting now

g_bAl readyDr awn = FALSE; /1 Not al ready drawn
g_bFirstTime = TRUE; /1l First time we enter

201

Chapter 7

202

// Creates an enpty nenu
HVENU hnenu = Cr eat ePopupMenu();

/1 Filter string for *.lnk

TCHAR szDi r [MAX_PATH = {0};

| strcpy(szDir, szPath);

if(szDir[lstrlen(szDir) - 1] !'="\\")
Istrcat (szDir, _ TEXT("\\"));

TCHAR szBuf [MAX_PATH = {0};
wsprintf(szBuf, _ TEXT("%*.Ink"), szDr);

/1l Search for .Ink files
W N32_FI ND_DATA wf d;
HANDLE h = FindFirstFile(szBuf, &wfd);
while(h !'= I NVALI D_HANDLE_VALUE)
{
/'l Resol ve the shortcut
SHORTCUTSTRUCT ss;
Zer oMenor y(&ss, si zeof (SHORTCUTSTRUCT)) ;
wsprintf(szBuf, _ TEXT("%\\%"), szDir, wfd.cFileNane);
SHResol veShort cut (szBuf, &ss);

/'l Prepare per-itemdata using |ID, description and target file
| pms = reinterpret_cast <LPMENUSTRUCT>(
A obal Al l ocPtr (GHND, si zeof (MENUSTRUCT))) ;

I pne->iltem D = iltem D
if(!lstrlen(ss.pszDesc))

I strcpy(l pnms->szText, wfd.cFil eNane);
el se

| strepy(l pns->szText, ss.pszDesc);
I strcpy(l pms->szFile, ss.pszTarget);

/] Add the item
AppendMenu(hmrenu, MF_OANERDRAW
iltem D++, reinterpret_cast <LPTSTR>(| pns));

/1 Next file
i f (! Fi ndNext Fi | e(h, &wfd))

Fi ndd ose(h);
br eak;

}

/1 Add the separator and the 'Restore' item
AppendMenu(hmenu, MF_OANERDRAW | MF_SEPARATOR, 0, NULL);

| pms = reinterpret_cast <LPMENUSTRUCT>(

G obal Al l ocPt r (GHND, si zeof (MENUSTRUCT))) ;
I pns->iltem D = I D FILE EXIT;
| strepy(l pns->szText, _ TEXT("Restore Previous Settings"));
I strcpy(l pns->szFile, "");
AppendMenu(hmenu, M-_OANERDRAW | D FILE EXI T,

reinterpret_cast <LPTSTR>(| pns));

return hmenu;

Shell Invaders

As you can see, this function introduces two new global, Boolean variables. g_bAl r eadyDr awn is
used to remember whether the bitmap has already been drawn in the vertical band, because we need
to do this only once. g_bFi r st Ti me, on the other hand, is used to remember whether this is the first
time items have been drawn in the menu. If this variable is TRUE, the top edge of the menu item
rectangle is saved, in order to determine the height of the menu. You'll see these values being
changed in later functions.

Items are drawn from top to bottom, and the last item in this implementation is determined by ID —
it's my fixed item that will uninstall the handler. It relies on the existence in the DLL's resources of
an appropriate 32 x 32-pixel icon with the identifier | D_FI LE_EXI T. The other thing that this code
relies on is the function called SHResol veShort cut () that we put together in the previous chapter.

Setting the Measurements

Owner-drawn resources cause two messages to be sent to their parent's window procedure. In this
case, these messages will reach our new Start button procedure. They are:

Q WM MEASUREI TEM
a WM DRAW TEM

The first of these is intended to obtain the width and height (in pixels) of a single menu item, which
we must do by filling in a structure that comes with the message. The second requires you to do any
painting work that needs to be done. Here's a typical example of a function for handling the
WM_MEASUREI TEMmessage:

/'l These are absolute constants (expressed in pixels) that define

/1 nmeasurenents for the items to draw

const int DEFBI TMAPSI ZE = 32; // 32 x 32 is the area reserved for bitmaps
const int DEFBANDSI ZE = 25; /1 Wdth of the vertical band

const int DEFSEPSI ZE = 6; /1 Height of the area reserved for separators
const int DEFBORDERSIZE = 2; // Gap between itemtext and edge of the menu

voi d Measureltem HWND hwnd, LPMEASURElI TEMSTRUCT | pmi s)
{
S| ZE si ze;
int iltemMD = | pms->iten D
LPMENUSTRUCT | prs = rei nterpret_cast <LPMENUSTRUCT>(| pmi s->i t enDat a) ;

/! Calculate the size of the itemstring

HDC hdc = Get DC(hwnd) ;

Get Text Ext ent Poi nt 32(hdc, | pms->szText, |strlen(lpns->szText), &size);
Rel easeDC(hwnd, hdc);

/1 Set width and height for the item
| pm s->i tenN dth = DEFBlI TMAPS| ZE + DEFBANDS| ZE + si ze. cX;

/'l A separator has a zero ID
if(iltem D

| pm s->i t enHei ght
el se

| pm s->i t enHei ght = DEFSEPSI ZE;

DEFBI TVAPSI ZE;

203

Chapter 7

The | Par amargument of a WWM_MEASUREI TEMmessage points to a MEASUREI TEMSTRUCT structure,
the i t enHei ght and i t enW dt h fields of which must be filled with the actual size of the item. In
the code above, the height is set to 32 pixels, while the width depends on the length of the text, the
space reserved for bitmaps (icons), and the band that runs up the edge of the menu (the 'Windows 98'
banner, for example).

Note that explicit constants are used here so that the appearance of the Start menu will remain the
same whatever the display settings are.

For more information about the structures employed here, and the owner-drawn mechanism, you
should take a look at the official documentation in the MSDN library, or read the suggestions in
the Further Reading section of this chapter.

Drawing the Items

The WM_DRAW TEMmessage is sent each time Windows needs to paint a given menu item. The

| Par amargument of the message points to a DRAW TEMSTRUCT structure that provides all the
information you need to do the work. Basically, we want a menu window with a vertical band on the
left and then, for each item, an icon and a string. The most interesting feature is that the area on the
left will be filled with a bitmap.

Drawing icons and strings is quite straightforward, and can be accomplished by common APIs such
as Drawl con() and Ext Text Qut () . (See Further Reading) When you draw items, you work on a
per-item basis and see only a slice of the menu window. When it comes to drawing a bitmap along
the edge of the menu window, it's a bit different. The drawing procedures are called item by item
when selection changes, but we need to find out a way of drawing the bitmap only once, and the
global variable that remembers we have already drawn it was my solution. However, there's more to
drawing a bitmap than that!

How would you draw the bitmap at all? Using Bi t Bl t () is probably as good a method as any.
Windows paints its owner-drawn menus using top-down logic, so if we pass (0, 0) as the origin of the
destination device context, the bitmap will be aligned with the top of the menu.

If you look at the Start menus of Windows 95, 98 and NT, you'll see that the bitmap is always aligned
with the bottom of the menu. This introduces further complications — what are the correct coordinates
to pass to Bi t Bl t () ? The x coordinate will be 0, or an absolute offset from the left edge. The y
coordinate should be given by the height of the menu window, minus the height of the bitmap we're
using. Because Bi t Bl t () draws from top to bottom, the bitmap will be aligned with the bottom.

There's a fairly simple solution to the problem of finding the height of the menu window. We know
that the DRAW TEMSTRUCT contains the rectangle for the current item, so if we remember the top of
the first element and the bottom of the last one, the height of the window must be the difference
between the two.

So, we know the height of the bitmap, and we know the height of the window. That makes it easy to

determine the correct y-coordinate for Bi t Bl t () to work. Things should now work in the same way
as they do in the standard Start menu. The necessary code is shown on the next page:

204

voi d Draw t en{ LPDRAW TEMSTRUCT | pdi s)

{

TCHAR szl t enf | TEMBI ZE]
TCHAR szFi | e[MAX_PATH]|

= {0};
= {0};

COLORREF cr Text, crBack;
HI CON hlcon = NULL;

Shell Invaders

LPMENUSTRUCT | prs = rei nterpret_cast <LPMENUSTRUCT>(| pdi s->i t enDat a) ;

i nt
i nt

/1

iltem D = | pdis->ten D
i TopEdge = 0;

Save the itemtext and target file

if(lpns)

/1

I strcpy(szltem | pns->szText);
| strcpy(szFile, |pns->szFile);

Manage how to draw

i f(Ipdis->itemAction & (ODA DRAVENTI RE | ODA SELECT))

COLORREF cl r;

RECT rtBand, rtBnp, rtText, rtitem rt;

Sl ZE si ze;

/1 Defines rectangles for further use:

I/ I pdis->rcltemis the menu itemrectangl e

/1 rtBand: portion of the nenu itemarea for vertical band
/1 rtBnp: portion of the menu itemarea for itemicon

I/ rtText: portion of the menu itemarea for itemtext

CopyRect (& t, &(lpdis->rclten));
CopyRect (&t Band, &rt);

rtBand.right = rtBand.|eft + DEFBANDSI ZE;
CopyRect (& tBnmp, &rt);

rtBnp.left = rtBand.right + DEFBORDERSI| ZE;
rtBnp.right = rtBnp.left + DEFBI TMAPSI ZE;
CopyRect (&t Text, &rt);

rtText.left = rtBnp.right + 2 * DEFBORDERSI ZE;
CopyRect (& tltem &rt);

rtitemleft += DEFBANDSI ZE + DEFBORDERSI ZE;

/1 1f it is the first item store the y-coordinate
if(g_bFirstTi nme)

i TopEdge = rtBand.top;
g_bFi rstTi me = FALSE;
}

/1 Draw the band rectangl e and the vertical bitmap
i f(!g_bAl readyDrawn)

/1 Draw the band area in blue
clr = SetBkCol or (I pdi s->hDC, RGB(0, 0, 255));
Ext Text Qut (| pdi s->hDC, 0, O,

ETO CLI PPED | ETO OPAQUE, &rtBand, NULL, O,

Set BkCol or (| pdi s->hDC, clr);

NULL) ;

/1 1f the last item determ ne menu height, |oad bitnmap, and draw

if(iltem D == ID_FILE_ EXIT)

int i MenuHei ght = rtBand. bottom - i TopEdge;

205

Chapter 7

HBI TMAP hbm = LoadBi t map(g_hl nst ance, MAKElI NTRESOURCE(| DB_LOGO)) ;
Dr awBi t map(| pdi s->hDC, 0, i MenuHei ght, hbn);

Del et eObj ect (hbm) ;

g_bAl readyDrawn = TRUE;

}

/1 Everything so far is unaffected by selection state. Now need to
/1 draw icon and text with respect to this and hence backgnd col or
if(lpdis->tentate & ODS_SELECTED)

cr Text
cr Back

Set Text Col or (| pdi s- >hDC, Get SysCol or (COLOR_HI GHLI GHTTEXT)) ;
Set BkCol or (| pdi s- >hDC, Get SysCol or (COLOR_HI GHLI GHT)) ;

}

// Clear the area with the correct background col or
Ext Text Qut (| pdi s->hDC, rtText.left, rtText.left,
ETO CLI PPED | ETO OPAQUE, &rtltem NULL, O, NULL);

/] Get icon to draw. Load it fromresources if it is the last item
/[l Otherwi se, deternmine systemicon for the shortcut's target file.
if(iltemD == ID FILE EXIT)

hl con = Loadl con(g_hl nstance, MAKElI NTRESOURCE(iltem D));
el se

SHFI LEI NFO sfi ;

Zer oMenory(&sfi, sizeof (SHFI LEI NFO));

SHCGet Fi |l el nfo(szFile, 0, &sfi, sizeof(SHFILE NFO), SHGFI _|I CON);
hl con = sfi.hlcon;

}
// Draw the icon (transparence is autonatic)
i f(hlcon)
Drawi con(| pdi s->hDC, rtBnp.left, rtBnp.top, hlcon);
Destroyl con(hl con);
}
// Draw the text (one line centered vertically)
if(liltem D)
/l 1t's a separator
rt.top++;
rt.bottom= rt.top + DEFBORDERSI ZE;
rt.left = rt.left + DEFBANDSI ZE + DEFBORDERSI ZE;
Dr awEdge(| pdi s->hDC, &rt, EDGE_ETCHED, BF_RECT);
}
el se
{
/'l Get the size of the text according to the font
Get Text Ext ent Poi nt 32(| pdi s->hDC, szltem Istrlen(szltem, &size);
// Center it vertically
int iy = ((Ipdis->cltembottom- |pdis->cltemtop) - size.cy) / 2;
iy = lpdis->rcltemtop + (iy >=0? iy : 0);
rtText.top = iy;
Dr awText (| pdi s->hDC, szltem Istrlen(szltem,
&t Text, DT_LEFT | DT_EXPANDTABS);
}

206

Shell Invaders

The large but relatively straightforward function above deals with drawing text and icons, but it
passes off the drawing of the bitmap with the vertical logo (which it expects to find in a 25 pixel wide
resource called | DB_LOGO) to the next routine, Dr awBi t map() :

voi d DrawBi t map(HDC hdc, int x, int iHeight, HBI TMAP hbm

{
/1 This function cal cul ates the y-coordinate based on the hei ght
/1 of the area to cover. The bitnmap will be aligned with the bottom
Bl TMAP bm

/] Creates a nenory device context and selects the bitmap in it
HDC hdcMem = Cr eat eConpat i bl eDC(hdc) ;
HBI TMAP hA dBm = stati c_cast <HBI TMAP>(Sel ect Obj ect (hdcMem hbm));

/] Oobtains information about the bitmap
Get Obj ect (hbm si zeof (Bl TMAP), &bn);

/! Determ ne the y-coordinate
int y = iHeight - bm brHei ght;
y =(y <0?20:y);

/'l Transfer the bitmap frommenory DC to the nenu DC
BitBlt(hdc, x, y, bmbnmNdth, bm bnHei ght, hdcMem 0, 0, SRCCOPY);

/! Free the nenory DC
Sel ect Obj ect (hdcMem hQd dBm) ;
Del et eDC(hdcMem) ;

Finally, you need to amend our button-subclassing window procedure so that it correctly constructs
our custom menu, and so that it can process the WM_MEASUREI TEMand WM_DRAW TEMmessages:

swi tch(uMsg)

case WM SETCURSOR:
Set Cur sor (LoadCur sor (g_hl nst ance, MAKElI NTRESOURCE(| DC_HANDY))) ;
return O;
case WM MEASUREI TEM
Measur el t em(HAND_DESKTOP, rei nt er pret _cast <LPMEASUREI TEMSTRUCT>(| Par am)) ;
br eak;
case VW _DRAW TEM
Drawl t en(rei nt er pret _cast <LPDRAW TEMSTRUCT>(| Par am)) ;
br eak;
case VW _CONTEXTMENU:
return O;
case BM SETSTATE:
case VW _LBUTTONDOWN:
{
WADCLASS wc;
Get d assl nf o(NULL, "Button", &wc);
Cal | WndowPr oc(we. | pf nwhdProc, hwnd, BM SETSTATE, TRUE, O0);

STARTMENUPCS snp;

Get St art MenuPosi ti on(&snp) ;

HVENU hmmuPopup = Get MenuHandl e("c:\\ nmySt art Menu") ;

int i Cd = TrackPopupMenu(hmuPopup,
snp. uFl ags | TPM_RETURNCMD | TPM_NONOTI FY,
snp.ix, snp.iy, 0, hwnd, NULL);

207

Chapter 7

/! Handl e the user's nouse clicks
Handl eResul t s(hmuPopup, i Cnd);

/1 Free nenory
Dest r oyMenu(hmuPopup) ;

Cal | W ndowPr oc(we. | pf nWhdProc, hwnd, BM SETSTATE, FALSE, 0);
return O;

Executing Commands

The menu is now complete and operational, with only the slight drawback that none of the items we
add to it actually does anything! From the listing above, you can see that the answer will have
something to do with the Handl eResul t s() function, but a question arises as to what kinds of item
we expect on the menu. Will they just be application commands, or shortcuts to documents and
programs?

Of course, this ultimately depends on your requirements. I've chosen to read the contents of a
directory on disk and arrange a menu dynamically. (This is exactly what the shell does when you add
shortcuts to the Start or Programs menus.) As mentioned earlier, the assumption is that the handler
will find shortcuts to file objects, which it then resolves and appends to the menu. Finally, it adds a
separator and a standard 'quit' item.

A shortcut's description becomes the menu item's text. If the shortcut hasn't got a description (a
common situation), then the file name is used. When the item is clicked, the module simply calls the
file pointed to by the shortcut:

voi d Handl eResul t s(HVENU hnenu, int i Crd)

{
MENUI TEM NFO i i ;

LPMENUSTRUCT | pns;

if(iomd <= 0)
return;

if(icm == | D_FILE_EXIT)

Uni nst al | Handl er () ;
return;

}

mi.cbhSize = sizeof (MENUI TEM NFO) ;

mi.fMsk = M| M DATA;

Get Menul t em nf o(hmenu, i Crd, FALSE, &mi);

| pms = reinterpret_cast <LPMENUSTRUCT>(mii.dw tenDat a);

Shel | Execut e(NULL, _ TEXT("open"), |pnms->szFile, NULL, NULL, SW SHOW ;

If the item clicked on was Restore Previous Settings then Uni nst al | Handl er () is called and the
function exits. For any other selection, the path to the file to be executed is extracted from the item
data, and then the Shel | Execut e() API function, which we will examine in detail in the next
chapter, is used to execute the file. Our custom Start menu is complete!

208

Shell Invaders

Browser Helper Objects

SHLoadl nProc() is the lever that allows your programs to insert COM objects into the shell. I've
used a minimal COM object for this purpose, but you can, of course, use normal COM objects as
well. The point is that you don't have to be an expert COM programmer to exploit this function.
What you are required to build is something that presents itselfas a COM object: it must have a
CLSID, it must be registered, and it must implement the minimum functions of any COM server. You
aren't required to implement any interfaces, but nothing prevents you from doing so if you need to.

Browser helper objects, on the other hand, are fully qualified, in-process COM servers that Internet
Explorer (and Explorer too, if you're running shell version 4.71) loads whenever a new instance of
itself is created. Note that these objects always need an instance of a browser to be open in order to
come into play, as I'll explain in the Activation Mechanism section, shortly.

With SHLoadl nProc(), it's your program that decides when and if it should head off into
Explorer's address space. The big difference with browser helper objects is that it's the browser
(Explorer or Internet Explorer) that automatically loads all the modules that are registered in a
particular area of the registry.

As their name implies, browser helper objects affect only a specific part of Explorer — the
browser, which lets you browse for files and folders.

You can now choose between two complementary methods — it's down to you to decide which of the
two options best suits your specific needs. In order to assist you in your choice, I shall examine the
relative merits of the two approaches. The main points of difference are:

Backward compatibility
Activation mechanism
Registration

Structure of the COM object
Communication with the host

Usage

(M miy miy miy

It is important to keep in mind that both options are valid means of loading a COM object into the
shell's memory space, and I shall evaluate them in those terms. Technically speaking, the two are
completely different: SHLoadl nProc() is a function, while a browser helper object is a COM
object.

Backward Compatibility

While SHLoadl nProc() is supported from shell version 4.00 onwards, browser helper objects are
specific to shell 4.71 — they were introduced with Internet Explorer 4.0. Both work well on all Win32
platforms, with the exception of Windows CE.

Remember that shell version 4.71 means that you must have Internet Explorer 4.0 or higher and
Active Desktop. Both are included in Windows 98.

209

Chapter 7

Activation Mechanism

The two methods are quite different from this point of view. SHLoadl nProc() allows your
application to load a COM object into the shell's context programmatically. Browser helper objects,
on the other hand, are registered objects that are loaded into memory by Internet Explorer and
Explorer each time a new instance is started. You can't control when browser helper objects are
loaded into memory.

To have helper objects in action, you must open an instance of Explorer or Internet Explorer.
Furthermore, an instance of the helper is associated with every instance of Explorer or Internet
Explorer — the helper will be unloaded as soon as the instance with which it is associated is closed.

Registration

SHLoadl nProc() can load any COM object that is correctly registered as such. A browser helper
object must also be registered in a specific registry path so that Explorer and Internet Explorer can
see it. (See the Registering Helper Objects section for more information on this.)

Structure of the COM Object

As shown above, SHLoadl nProc() can manage and successfully load any COM object — even fake
objects that don't implement interfaces. A browser helper object must have a well-defined format,
which is verified by the browser (both IE and Explorer). There's just one rule: implement the

| Obj ect Wt hSit e interface.

Communication with the Host

Objects loaded via SHLoadl nProc() don't receive a pointer to the | Unknown interface of the shell.
This might constitute a significant limitation, but if your goal is simply 'subclassing' shell objects, then
you don't need that pointer. By 'subclassing' I mean any technique that allows you to modify and
filter the behavior of an object (the Start button, for example) using brute force, in such a way that
the object is 'unaware' of your actions.

Having a reference to the objects of the host environment, on the other hand, allows contact with
them through their public programming interface, which is a much neater (and almost certainly safer)
approach. This also opens up a new range of exploitable functionality, of which event handling is the
most useful. A helper object loaded by the browser can retrieve a pointer to | WebBr owser 2, and
handle all the events that the browser fires. (See Further Reading.) This communication is supported by
the | Obj ect Wt hSi t e interface.

Usage

SHLoadl nProc() has the advantage that it can be used to load a variety of objects, including 'fake'
objects as shown earlier. In principle, you can use SHLoadl nPr oc() to load helper objects too.
Unfortunately, though, it doesn't allow you to communicate with the shell through the latter's

I Unknown interface, so in this respect browser helper objects are more versatile, although they can't
be loaded programmatically. SHLoadl nPr oc() works only with Explorer, whereas helper objects
work with both Internet Explorer and Explorer, but SHLoadl nProc() doesn't require an instance of
Explorer or Internet Explorer to be open.

210

Shell Invaders

I took the fake COM module that I developed earlier and tried registering it as a helper object, and it
worked fine! In this scenario, the 'minimal' COM object works in the same way and for the same
reasons as it does with SHLoadl nPr oc() : it exports DI | Get Cl assObj ect (), which is always
invoked.

Registering Helper Objects
A browser helper object is a COM module that must register itself under the following path:

HKEY_LOCAL_MACHI NE
\ Sof t war e
\' M crosoft
\ W ndows
\ Curr ent Ver si on
\ Expl orer
\ Browser Hel per Objects

The CLSIDs of all the enabled modules are listed under the Browser Helper Objects key. Explorer
(and Internet Explorer) loads them one after another. Remember that a new instance of the browser
is also created when you open the Recycle Bin or the Pri nt er s folder, which means that the helper
objects get called very frequently — or at least, more frequently than you might expect. (Look out for
dialog boxes or modal windows...) The list of the helpers is never cached, and always re-read from
disk, so it only takes a second to get rid of modules that are no longer useful — you just have to
remove the corresponding CLSID line in the registry. Happily, removing an object from this sub-tree
doesn't affect the server's global registration status. Other applications will find it the same as they
did before.

The 10bjectWithSite Interface

With SHLoadl nProc(), a module gets loaded into Explorer's address space, but there is no COM-
based connection to it. In other words, it doesn't receive the | Unknown pointer of the browser, and it
can't access the object model. Helper objects fix this by implementing the | Obj ect Wt hSite
interface.

When the browser loads one of the COM servers listed in the registry, it queries for the
| Obj ect W t hSi t e interface. If it is found, the module is passed a pointer to the browser's
I Unknown interface via the Set Si t e() method.

The | Obj ect Wt hSi t e interface includes just two methods in addition to the | Unknown triplet:
SetSite() and GetSite().

HRESULT | Cbj ect WthSite:: Set Site(l Unknown* pUnkSite);
HRESULT | Obj ect WthSite:: GetSite(REFIID riid, void** ppvSite);

Set Si t e() is called by the browser and may be considered to be a kind of entry point. Get Si t e()
works much like Queryl nterface(), and returns a pointer to the specified interface on the site last
set by Set Site().

Writing a Helper Object

If you plan to write a browser helper object, ATL can provide considerable assistance. Once you've
created a skeleton DLL with the ATL COM AppWizard, you can add a new simple object with the
Object Wizard and derive it from | Obj ect W t hSi t el npl . All that remains then is to fill the body
of Set Si t e() with the helper's logic.

211

Chapter 7

To demonstrate this, I'll rewrite the tool that creates a new folder when a specific key is pressed as a
helper object. Browser helper objects are more applicable to creating small utilities that enhance
Explorer than to generic extensions to shell objects, and so a browser helper object seems to be the
ideal means to add new accelerators to Explorer. We no longer need an application to inject code
into Explorer's context; instead, we have to create a COM object that implements

| Obj ect WthSite.

There are two points to consider:

O Finding the handle of Explorer's window
O The keyboard hook to detect the accelerator

My previous solution was based on a global hook on window creation. When the hook procedure
detected the creation of a window of a certain class (Expl or eWCl ass), it installed a local hook on
keyboard activity. When F12 was pressed, Explorer's window received the command message that
caused it to create a new folder. A helper object, on the other hand, is loaded when an Explorer
window already exists. However, Fi ndW ndow() is not necessarily the right function for finding the
handle of Explorer's window, because it returns the handle of the top level window of the specified
class. Consequently, if multiple copies of Explorer are running at the same time, we can't be sure it is
our window.

If multiple copies of Explorer are running at the same time, each of them runs in its own thread. For
browser helper objects, a better approach to finding the handle of Explorer's window is to enumerate
the windows owned by the current thread, like this:

EnumThr eadW ndows(Get Current Threadl d(), WhdEnunPr oc,
rei nterpret_cast <LPARAM>(&m hwndExpl orer));
i f(!lsWndow(mhwndExpl orer))
return E_FAIL;

EnuniThr eadW ndows () is an API function that enumerates all the windows created by the
specified thread. Each window is then processed by the callback function passed as the second

argument, which in this case is WidEnunPr oc() :

BOOL CALLBACK CNewkol der: : WhdEnunPr oc(HAND hwnd, LPARAM | Par am

{
TCHAR szd assNanme[MAX_PATH] = {0};
Get d assNane(hwnd, szCd assNane, MAX_PATH);
if(!lstrcnpi(szC assName, _ TEXT("Expl oreWd ass")))
HWD* phWhd = reinterpret_cast <HWND*>(| Par anj ;
*phwid = hwnd;
return FALSE;
}
return TRUE;
}

The third parameter of EnuniThr eadW ndows() is a 32-bit value that can be used by the caller in
whatever way it sees fit. In this case, we need a way to get the handle of the Explorer window (if
there is one) returned, and for this reason we use the third parameter to pass a pointer to an HAND
variable. When WhdEnumPr oc() finds a window of type Expl or eWCl ass, it copies a handle to it to
the pointer, and then stops the enumeration process by returning FALSE.

212

Despite appearances, Explorer's window is actually
composed of a whole stack of windows; the figure
should give you a better idea of its layout. Refer to
Spy++ for the exact window classes and styles.

Shell Invaders

I .
mm

Address ‘ ‘

All Folders l:l l:l l:l

Listview
TreeView

Status bar

Each keypress is processed differently according to which window has the input focus. By installing a
local keyboard hook, we can process each key before it enters the traditional channels for distribution

among the windows.

An ATL COM Object

Let's have a look at the source code for the browser helper object. Here, the ATL COM AppWizard
has been used to generate the skeleton of the code, and a new Simple Object called NewFol der has
been added. The code for the header file newf ol der . h looks like this:

#i fndef _ NEWFOLDER H_
#define __ NEWFOLDER H_

#i ncl ude "resource. h" /1 main synbols

LECEEEEEEEEE b r i rrr ey

/1 Constants
const int NEWOLDERVSG
const int NEWOLDERKEY

29281; /1 WV COWAND to send
VK_F12; /'l Key to detect

FEEEEEEEE b r bbb rrd

/1 CNewfFol der
cl ass ATL_NO VTABLE CNewfol der

publ i ¢ CCon(bj ect Root Ex<COoniSi ngl eThr eadMbdel >,
publ i ¢ CConCoCl ass<CNewkol der, &CLSI D _Newrol der >,

public | ObjectWthSitel npl <CNewol der >,

public | Dispatchl npl <I NewFol der, & | D | NewFol der, &LIBlI D _OBIJFOLDERLi b>

{
publi c:
CNewfFol der ()
m bSubcl assed = fal se;

}
~CNewfol der () ;

DECLARE_REG STRY_RESOURCE! D(| DR_NEWFOLDER)

DECLARE_PROTECT_FI NAL_CONSTRUCT()

213

Chapter 7

BEG N_COM _MAP(CNewFol der)
COM | NTERFACE_ENTRY(| NewFol der)
OOM_| NTERFACE_ENTRY(| Di spat ch)

COM_| NTERFACE_ENTRY_| MPL(| Obj ect Wt hSi t e)
END_COM_MAP()

/11 NewFol der
public:
STDVETHOD(Subcl assExpl or er) (bool bSubcl ass);

I/l IbjectWthSite
public:
STDMVETHOD(Set Si t e) (| Unknown* pUnkSite);

private:
bool m bSubcl assed;
HWD m_hwndExpl orer;

/'l Call back functions
static BOOL CALLBACK WhdEnunProc(HWND, LPARAM ;
static LRESULT CALLBACK KeyboardProc(int, WPARAM LPARAM ;
static LRESULT CALLBACK Newkxpl or er WidPr oc(HAND, Ul NT, WPARAM LPARAM ;

}s
#endif //__NEWFOLDER H_

I've derived NewFol der from the standard implementation that ATL provides for
| Obj ect Wt hSi t e. The only change we need to make to it is an override for Set Si t e(), which is
the key function for a helper object.

The code below figures out which is Explorer's window and installs the keyboard hook. Even though
it's not strictly necessary for this sample, I've subclassed Explorer's window so that the code is ready
for further enhancements.

#i ncl ude "stdafx. h"
#i ncl ude " vj Fol der. h"
#i ncl ude " NewFol der. h"

/| These constants are used inside the static nenbers of the class
stati ¢ WNDPROC g_pf nExpl or er WidPr oc = NULL;

stati c HHOOK g_hHook = NULL;

static HWD g_hwndExpl orer;

NN NN NNy
/| CNewFol der

CNewFol der : : ~CNewfol der ()
i f (m_bSubcl assed)

Subcl assExpl orer (fal se);
m bSubcl assed = fal se;

214

¥ e e eeiiiea-
/] SetSite

/1 Called by Explorer/|Explorer to get in touch
[[F®ccococoocoocooooooooooo00000000000000000000000D00000000000000000000 00

STDMETHODI MP CNewfol der : : Set Si t e(| Unknown* pUnkSite)

HRESULT hr = Subcl assExpl orer(true);
i f (SUCCEEDED(hr))
m bSubcl assed = true;

return S_OK;

/'l Subcl assExpl orer
/'l Subcl ass the Explorer wi ndow and install the keyboard hook

STDMETHODI MP CNewfol der : : Subcl assExpl or er (bool bSubcl ass)
{

/1l Get the HWND of the Explorer's w ndow

EnuniThr eadW ndows (Get Current Threadl d(), WhdEnunPr oc,

reinterpret_cast <LPARAM>(&m hwndExpl orer));

if(!lsWndow(m hwndExpl orer))
return E_FAIL;

el se
g_hwndExpl orer = m hwndExpl orer;

/] Subcl ass Explorer's w ndow
i f (bSubcl ass && ! m bSubcl assed)

Shell Invaders

*/

*/

*/

*/

g_pf nExpl or er WidProc = reinterpret_cast <WDPROC>(Set W ndowLong(

m_hwndExpl orer, GA._WNDPRCC,

rei nterpret_cast <LONG(NewExpl or er WidProc)));

/'l Set a keyboard hook to detect F12
g_hHook = Set W ndowsHookEx(

WH_KEYBOARD, KeyboardProc, NULL, GetCurrentThreadl d());

}

/'l Unsubcl ass Expl orer's w ndow
i f(!bSubcl ass & & m bSubcl assed)

Set W ndowLong(m hwndExpl orer, GAL_WADPROC,

rei nterpret_cast <LONG(g_pf nExpl or er WAdPr oc)) ;

/1 Renpbve the hook
UnhookW ndows Hook Ex(g_hHook) ;

}

return S_OK;

/1 WhdEnunPr oc
/1 Static menber to enunerate thread w ndows

/'l Insert this code as given in the above di scussion.

215

Chapter 7

/1 NewExpl or er WidPr oc
/] Static menmber to replace Explorer's wndproc
/* __ */
LRESULT CALLBACK CNewfrol der : : NewExpl or er WhdPr oc(
HWAD hwnd, U NT uMsg, WPARAM wPar am LPARAM | Par am

/1 This does nothing, so just call into the standard procedure
return Cal | WndowPr oc(g_pf nExpl or er WhidProc, hwnd, uMsg, wParam | Paran;

/| Keyboar dProc

// Static menmber to handl e keys
/* __ */

LRESULT CALLBACK CNewfol der: : Keyboar dProc(
i nt nCode, WPARAM wParam LPARAM | Par an)

[/ Typical start-off for any hook
i f(nCode < 0)
return Cal | Next HookEx(g_hHook, nCode, wParam | Paran;

/'l Process the key only once
i f((lParam & 0x80000000) || (I Param & 0x40000000))
return Cal | Next HookEx(g_hHook, nCode, wParam | Paran;

i f (wPar am == NEWFOLDERKEY)
Post Message(g_hwndExpl orer, WM COMWAND, NEWFOLDERMSG, 0);

return Cal | Next HookEx(g_hHook, nCode, wParam | Paran;

Another thing you might wish to do when writing a helper object is to make it completely self-
registering. In order to register the browser helper object correctly, you need to add the following
code to the RGS script:

HKLM
SOFTWARE
{
M cr osof t
W ndows
{
Cur r ent Ver si on
Expl or er
{
' Browser Hel per Objects’
{ BAF8DE53- 65F4- 11D2- BCOO- BOFB0O5C10627}
}
}
}
}
}
}
}

Shell Invaders

A problem with browser helper objects is that while they aren't completely undocumented, they
are certainly under-documented. In the Further Reading section, I'll point out a good article that
includes useful code.

That completes the code for this project; you should now be able to build the project, registering the
browser helper object in the process. Any new instances of Explorer that you invoke after installing
the object will have the keyboard hook, and pressing F72 will once again produce a new folder in the
directory being displayed.

Helper Objects under Windows NT

Browser helper objects work the in the same way under Windows NT as they do under Windows 9x.
The registration process is identical, as is the design logic that you should follow. There's just one
pitfall to avoid: Unicode. Under Windows NT, helper objects really need to be Unicode modules. If
they aren't, the code will still work after a fashion, but some strings in Explorer's user interface will
be truncated!

Fortunately, because we're using ATL, recompiling for Unicode is just a matter of choosing the
appropriate setting from the Active Configuration combo box on the Build menu. For browser helper
objects, then, you need to create and deploy two different versions: ANSI for Windows 9x, and
Unicode for Windows NT.

Glossary of Techniques for Entering the Shell

I've now explored three ways to access the shell's address space. Below is a table that summarizes the
techniques, and allows you to cross-reference them.

Structure of the
code

Communication
with the host

Required
knowledge

Based on global
hooks

Through
subclassing

Win32
programming

object registration

A COM object
with no specific
interface

Through
subclassing

Win32
programming and
minimal COM
competence

Parameter Brute force SHLoadInProc() Helper Object
Backward Shell 4.00 Shell 4.00 Shell 4.71

compatibility

Activation Programmatically Programmatically Loaded automatically by
mechanism the shell

Registry impact None Ordinary COM Ordinary COM object

registration plus specific
registration for helpers
A COM object

implementing
| Obj ect WthSite

Through the site's
| Unknown interface

Win32 programming and
good knowledge of COM

217

Chapter 7

Summary

In this chapter, I've examined various ways of invading the shell's territory and modifying the
behavior and the look of the shell. I started with notification objects, which enable Explorer to
become aware of changes in the file system, and then touched upon shell notifications, which are a
more general way to achieve the same result. (In fact, they are quite different, but they share the same
goal.)

Next, I covered the topic of interprocess communication, talked about subclassing and hooking, and
demonstrated a utility that adds a keyboard accelerator to Explorer and allows you to create new
folders by pressing a single key. I showed you how a single shell API can be used to take your code
straight into the shell's context. Later on I looked at how to replace the Start button, and scratched
the surface of many Win32 programming topics, including owner-drawn controls, tooltips and button
styles. Finally, I introduced browser helper objects — a new way to enhance the behavior of both
Explorer and Internet Explorer. In summary, I demonstrated:

How to get file system notifications

How to get into the shell's address space

How to subclass the Start button

How to implement a fully customized menu

The differences between SHLoadl nPr oc() and Browser Helper Objects

DOo0oO

Further Reading

I've covered many topics in this chapter, so I'll revisit them in order and address additional sources of
information. First, notification objects, of which an example may be found in the Wicked Code column
of the October 1996 edition of MS]J. The author, Jeff Prosise, shows how to build an MFC class that
works in roughly the same way as Explorer's tree view — that is, it loads and displays drives and
folders. This class uses notification objects to detect changes.

Notification objects are also covered in Jeff Richter's Advanced Windows book (Microsoft Press, ISBN
1-57231-548-2). Additionally, you'll find information about file monitoring under Windows NT, an
explanation of the whys and wherefores of separate address spaces in Win32, and three examples of
how to break process boundaries.

When it comes to fundamental techniques like subclassing, owner-drawing, and hooks, I'd
recommend Petzold's Programming Windows 95 book (Microsoft Press, ISBN 1-55615-676-6). If you're
more oriented towards MFC programming, then Mike Blaszczak's Professional MFC with Visual C++
(Wrox Press, ISBN 1-861000-14-6) is a good choice. (I'd also recommend my first Win32 book, but
unfortunately it only exists in Italian! If you're interested, the title is Progettare applicazioni per Win32
(McGraw-Hill, 88386-0444-4.)

218

Shell Invaders

Earlier in the chapter, I mentioned an article that stimulated my curiosity in SHLoadl nProc() . It
was written by Eric Heimburg, and appeared in the February 1998 edition of WD]J under the title
Monitoring System Events by Subclassing the Shell. Similarly, I heard about browser helper objects from
an article published in the May 1998 issue of MIND. Scott Roberts' piece Controlling Internet Explorer
4.0 with Browser Helper Objects shows how to build an ATL-based COM server that will be loaded each
time a new instance of (Internet) Explorer executes. Specifically, the sample provided displays a log
window to trace all the events fired. Other related material, more oriented to Internet Explorer and
its object model, are my article Hooking the IE 4.0 Object Model, which appeared in the December 1997
edition of MIND, and Scott Roberts' Keeping an Eye on your Browser by Monitoring IE 4.0 Events, which
appeared in MS]J, June 1998.

To conclude, here are a few Knowledge Base articles that I found useful:
Q Knowledge Base Article Q142276: Icon Handlers in Start Menu Don't Match Those in Explorer

Q Knowledge Base Article Q160976: Controlling the Currently Running Instance of IE3 via DDE
Q Knowledge Base Article Q176792: Connecting to a Running Instance of Internet Explorer

219

%

Program Executors

With the advent of Windows 95, the concept of a 'document' gained importance. Behind this word
there are more than just bare ASCII text files, and I'm not just talking about more complex Word or
Excel files. By 'document’, I mean a more general object that is part of the system's namespace, and
for which there is (or may be) a program that can 'open', 'print', 'explore’, or 'find' it. In other words,
a document is an item upon which a program can execute verbs — command strings such as, "Open,"
"Print," and "Explore."

The ability to be executed is no longer a privilege only of the small category of files with extensions
like . exe, . com . pi f or. bat. From Windows 95 on, allfiles with an associated set of verbs have
become executable.

A direct consequence of this is that today there is less and less sense in having a function that only
executes programs. Programs are just files, and running them is just an action that you perform on a
file. When it comes to finding a way to spawn an external program, we now have a range of choices,
but as I will show, the correct choices are fairly obvious. There has been some evolution, but
essentially we're moving from one single function — W nExec() — to another —

Shel | Execut eEx() — through a couple of intermediate stages.

In this chapter, I will present the various options that you have for starting applications, creating
processes and opening documents. In particular, I'll cover:

The differences between W nExec() and Cr eat eProcess()
How Shel | Execut e() and Shel | Execut eEx() supersede the other functions

Verbs, documents and policies

0oo0Oo

How to customize the execution process via hooking

Chapter 8

I'll also present some quick code examples that illustrate things such as:

How to detect the default browser

How to run programs and wait for them to terminate
How to display the Properties dialog box for a file
How to display the Find dialog box

000D DO

How to prevent users from accessing certain folders or running certain applications

To begin, let's see how and why Cr eat ePr ocess() is far superior to dear old W nExec() .

From WinExec() to CreateProcess()

Under Windows 3.1, W nExec() was the only way to run an external program. It has the world's
simplest prototype — one of very few that you can remember on the fly, without even a quick glance
at the online help. You want to launch another program? All you need to do is specify its name, and
the attribute that you want the new window to have:

U NT W nExec(LPCSTR | pCndLi ne, Ul NT uCndShow) ;

The | pCrdLi ne parameter is a pointer to a NULL-terminated string that contains the command line
of the application that you want to start: the program name and any arguments you want it to receive.
uCnmdShow is one of the well-known SW_ constants that determine whether the resulting window
should be iconic, maximized, hidden, visible, etc.

The major drawback of W nExec() is that you can't detect whether the newly started process has
terminated, when many of the real-world uses of this functionality require exactly that sort of
synchronization. What W nExec() returns is a value that's an error code if it's less than 32, and
something related to the task otherwise. While it's possible to find a way of establishing a minimum
level of communication between caller and callee, doing so is an unofficial, unnatural, and potentially
unsafe road to follow. See Further Reading for more information on these topics.

Externally, W nExec() has changed little in the process of being ported from Winl6 to Win32, but
internally it now calls Cr eat ePr ocess() to help with its duties. This latter function should be the
first one you consider when you need to create a new process.

A Comparison of WinExec() with CreateProcess()

A good measure of the differing powers of W nExec() and Cr eat eProcess() can be obtained by
comparing their respective prototypes. You've already seen the one for W nExec(), so let's now take
a look at that of Cr eat eProcess():

BOOL Creat eProcess(

LPCTSTR | pAppl i cati onNaneg, /1 Pointer to name of executabl e nodul e
LPTSTR | pConmandLi ne, /] Pointer to command |ine string
LPSECURI TY_ATTRI BUTES | pPA, // Pointer to process security attributes
LPSECURI TY_ATTRI BUTES | pTA, // Pointer to thread security attributes
BOOL bl nherit Handl es, // Handl e inheritance flag
DWORD dwCr eat i onFl ags, /] Creation flags

LPVA D | pEnvi ronnent , // Pointer to new environnent bl ock
LPCTSTR | pCurrentDir, // Pointer to current directory nane
LPSTARTUPI NFO | pSt art upl nf o, /] Pointer to STARTUPI NFO

LPPROCESS_| NFORVATI ON | pPI /1 Pointer to PROCESS | NFORMATI ON

222

Program Executors

As you can see, there are a great many new features here. However, Cr eat eProcess() is well
documented in the MSDN Library (see also the Further Reading section at the end of the chapter), so I
won't be covering it in detail here. Something that is worth doing, though, is examining what a
minimal call to Cr eat eProcess() looks like:

Zer oMenor y(&si, si zeof (STARTUPI NFO)) ;
bResult = CreateProcess(NULL, szPrgNane, NULL, NULL, TRUE,
NORVAL_PRI ORI TY_CLASS, NULL, NULL, &si, &pi);

Whichever way you look at it, it's a lot more complex than W nExec() . However,

Creat eProcess() has at least one interesting practical advantage. While spawning a new process
requires a bit of work, as the above code demonstrates, waiting for it to terminate is really easy and
relatively inexpensive.

BOOL W nExecEx(LPCSTR | pCndLi ne, U NT uCndShow)

{
PROCESS_| NFORVATI ON pi ;

STARTUPI NFO si ;

/]l Create a new process
Zer oMenory(&si, si zeof (STARTUPI NFO)) ;
BOOL b = CreateProcess(NULL, const_cast <LPTSTR>(| pCndLi ne), NULL,
NULL, TRUE, NORMAL_PRI ORI TY_CLASS, NULL, NULL, &si, &pi);
if(!b)
return FALSE;

/1 Block the caller thread
Wi t For Si ngl eObj ect (pi . hProcess, | NFI NI TE);
return TRUE

The above code shows a function that falls somewhere between Cr eat eProcess() and

W nExec(). Once the new process has been created, it blocks the caller thread waiting for the
process handle to become signaled. The process handle hPROCESS, returned by Cr eat ePr ocess()
through the PROCESS_| NFORMATI ON structure, is a kernel object that becomes signaled only when
the handle itself becomes NULL. The handle becomes NULL only when the process has terminated.

If the program that calls the above function has a user interface, it would be better if it first
minimized or hid itself in order to prevent painting problems. When an application is suspended, it
stops responding to the system and rejects all messages. If painting messages are being ignored, the
window won't be able to redraw itself properly if you move it around or overlap it with another
window.

Is CreateProcess() Manna from Heaven?

Apparently, Cr eat ePr ocess() has solved all the problems we identified with W nExec() . We can
run programs, we can synchronize them, and we've gained great control over the entire startup
'process'. Is there anything else we could want? Considering things from the point of view of wanting
to launch applications, the answer is no, but what about documents? More specifically, what about
documents that have benefited from updates to the shell? If you think it over, the things that

Creat eProcess() does, albeit very well, are just a fraction of the whole. Executable programs, in
the traditional sense of the term, are just one type of document.

223

Chapter 8

The evolution of the Windows 9x shell follows a document-centric vision, in which the verb
"Execute" is a synonym of "Use." In general, you and your users will be using documents of all types,
not just programs.

ShellExecute()

Shel | Execut e() was a wrapper for W nExec() that originally appeared in Windows 3.x, and was
the first example of a function that tried to put a kind of document-centric vision of Windows into
practice. It has been ported to Windows 95 and later systems, preserving the same prototype for
compatibility purposes. Under Win32 it became a wrapper for both W nExec() and

Cr eat eProcess() because as I said earlier, W nExec() makes internal use of

Cr eat eProcess() . Its prototype is:

HI NSTANCE Shel | Execut e(HAND hwnd,
LPCTSTR | pOper ati on,
LPCTSTR | pFi | e,
LPCTSTR | pPar anet er s,
LPCTSTR | pDirectory,
I NT nShowCnd) ;

It accepts more arguments than W nExec(), but at first sight it looks less powerful than

Creat eProcess(). What really makes Shel | Execut e() different, though, is that it is capable of
handling file type associations. In other words, when you pass in the name of a non-executable file,
the function scans the registry and searches for an executable program capable of handling
documents of that type. As long as such a handler exists, the function will work.

I'll return to this important concept later in the chapter. In the meantime, let's take a closer look at
the function's prototype.

Parameter Description

hwnd The parent window for any message box that the function should
display.

| pOper ation A string denoting the operation you want to perform on the file. (See
below.)

| pFile The name of the file on which the function is called to operate. It may

be an executable or a document.

| pParanmeters A string containing all the parameters you want to be passed to the
executable. Ignored if | pFi | € is a document file.

| pDirectory A string with the working directory for the executable. Ignored if
| pFi | e is a document file.

nShowCnd The display attributes for the newly created window — one of the SW_
constants. This flag isn't ignored if | pFi | e is a document file. (See 4
Frustrating Documentation Error.)

224

Program Executors

The operations (also called verbs) you can execute on a file vary quite a bit according to the file type.
Common operations include those listed in the following table:

Operation Applies to

Open Programs, documents, folders
Explore Folders

Print Documents

Print to Documents

Find Folders

Note that by, "Common operations," I simply mean that those verbs that are commonly supported by
all types of file for which they make sense. It's a bit odd, for example, to imagine an executable being
printed. Likewise, the 'Applies to' column indicates only the types of documents to which the
command normally applies. There are no fixed and rigorous rules. Provided that you write the
necessary code, there's nothing preventing you from implementing a pri nt operation for
executables that dumps the file header, or a f i nd operation for a certain type of document that
retrieves pieces of information.

The default operation is open, and this is the action that takes place if you set the | pOper ati on
argument to NULL. Accepting the operation name, however, doesn't automatically mean that the
operation will execute. The function needs to figure out which command line to execute in response
to that verb, and this information is stored in the registry. Before we get on to that, though, let's
examine in a bit more detail how each of the 'common' operations works.

The Open Operation

You can call open to open a document, to run a program, or to dereference a shortcut. In doing so,
you may need the other parameters to have specific values:

Shel | Execut e(hwnd, _ TEXT("open"), _ TEXT("c:\\prg.exe"),
__TEXT("/nol ogo"), _ TEXT("d:\\"), SWSHOW;

The above line runs c: \ pr g. exe, passing / nol 0go as its command line and specifyng d: \ as its
working directory. If the document to be opened is not an executable, then both | pPar anet er s and
| pDi rectory are ignored. As I'll show in a moment, the same doesn't hold true for nCnmdShow. The
following code snippet shows how to open a . t Xt file in the program registered for handling them.
(Normally, not epad. exe.):

Shel | Execut e(hwnd, _ TEXT("open"), _ TEXT("c:\\file.txt"),
NULL, NULL, SW SHOW ;

225

Chapter 8

The important thing here is that Shel | Execut e() is capable of opening documents if and only if
there's a program registered to handle them. If no program is registered, then the function will
prompt you for the program to use:

Open With HE|

Click the program you want to uge to open the file
‘Setuplog. xpz'.

If the program you want is nat in the list, click Other.
Description of ' syz' files:

LChoose the program you want to use:

B AM i’
FEPRACKUP

Jtec

@FrCwW

%binder

[Slwekr,

ECdiaIer =

™ Always use this program to open this file

[df I Cancel | Other... I

There are file types for which the concept of 'opening' is ambiguous. For example, suppose you have
a VBScript . vbs file. When we talk of opening this file, are we intending to edit its contents, or to
run it? Within the context of the shell, the second option is appropriate.

The Explore Operation

The expl or e operation applies only to BN Exploring - Windows
folders; it displays the given folder | Els Edt Visw Go Favoites Took Help |
inside Explorer. In the case of folders, | Beldress [3 CvwiNDOWS -]
there's a subtle difference between the
) All Falders x | [Hame |=]
expl or e and open operations. Both o oy T a [43n_dats
let you see the contents of a folder] A3y data (23 &0 Users
through Explorer, but with the latter B0 AllUsers o (3 Application Data
. . -2 Application D ata _1Applog
you get a new, single folder window ’
. ’ o {7 Applog 122 Calibrat
while the former causes the creation of {17 Calibrat (23 Catront
a two-paned window: -] Catraot [Z Command
-2 Command 122 Config
~{0 Canfig Cookies bt
{10 Cookies || | »
|458 object(s] |_§‘ My Computer 4

The expl or e operation is automatically enabled for folders — that is, for documents of type File
Folder. This setting is saved during the Windows installation process. However, if an expl or e

operation makes sense for your documents, you can register it as well. The following code causes the
window in the picture to appear:

Shel | Execut e(hwnd, _ TEXT("explore"), _ TEXT("c:\\w ndows"),
NULL, NULL, SW SHOW ;

226

Program Executors

The Print Operation

The pri nt operation is meant to print documents, but it relies on the information stored in the
registry to identify the program and command line capable of printing the specified document. The
snippet of code here demonstrates how to print a text file:

Shel | Execut e(hwnd, _ TEXT("print"), _ TEXT("c:\\file.txt"),
NULL, NULL, SW SHOW;

In this configuration, the function searches for the program registered to handle text files and sees
whether it supports a command for printing. Normally, this program is not epad. exe and the
command line is:

not epad. exe /p <fil e_nane>

Note that specifying | p is a widely supported way of issuing a print command using the
command line.

By default, the pri nt operation tries to use the default printer. Throughout the Windows shell,

however, users can print documents by dropping the file onto a printer's icon. In this case, the code
that the shell executes looks like this

Shel | Execut e(NULL, _ TEXT("printto"), filenane, NULL, NULL, SW SHOW ;

As you can see, there's another Printing Error
operation called pri ntt o. If this

: This program requires you to print documents with the default printer. Do you want this
18 Supported by the document’ @ printer to become wour default prinker? IF you click Mo, this document will not be prinked.

then the registered command line
is executed. Otherwise, you'll be
prompted by the following dialog:

] w |

Unlike the open and expl or e operations, folders don't have native support for pri nt and
printto.

The pri ntt o operation is intended to allow you to print documents from the shell using non-default
printers. Apart from the file name, there are three additional parameters that you have to pass, and
these are formatted in the | pPar anet er argument. The first is the name of the printer as it appears
in the Pri nt er s folder, while the other two are the name of the driver for it, and the name of the
port. If you're adding support for the pri ntt o command, then the command line will look
something like this:

M/Program exe % %2 %3 %t
Here, the first parameter is the name of the file. Consider also that it's common practice for a
Windows program to specify the printer port with the / pt option. In other words, if you're writing an
application and want it to print its documents on different printers connected on different ports, it's

recommended that you detect this option on the application's command line, via a / pt prefix:

M/Programexe /pt %4 % %3 %t

227

Chapter 8

Once again, however, this is only a convention, not a rule.

Printing to Ports

The additional three command line parameters are required to allow the system to build a device
context (DC) for the required printer. A device context is a kind of logical surface where the
Windows GDI functions send their output, and you need a specific DC for each printer you want to
print to. A printer DC is created using the Cr eat eDC() API function, whose prototype is:

HDC Cr eat eDC(LPCTSTR | pszDri ver, // Driver name (e.g. wspuni.drv)
LPCTSTR | pszDevi ce, /| Device name (e.g. OKlPage 4W
LPCTSTR | pszCQut put , // Do not use; set to NULL

CONST DEVMODE* | pl nitData); // Optional printer data

Interestingly, this function has maintained the same prototype it had in Windows 3.1 despite the fact
that in practice it needs just one argument: | pszDevi ce. Under Win32, printers are identified by
their descriptive names and you don't need to handle information such as the driver name and the
port name explicitly. In Windows 3.1, | pszOut put was a pointer to a string with the name of the
port. (LPT1:, for example.) Under Win32, this information remains important, but for a less direct
reason. The functions use the device name as a search key to find the registry entries where the other
information is kept.

The Find Operation

Apart from the operations mentioned above, there's another one that is completely ignored by the
documentation but hinted at by a recent Knowledge Base article in the MSDN Library (Q183903).
This new operation is f i nd, and it applies to folders. Its effect is to run the Find: All Files system

dialog box, starting from the specified folder:

& Find: All Files !IEI
File Edit “iew Option: Help

WName & Location | Date I Advanced

Fird How I

MHamed: I j o |

LContaining text: I Mew Search |
Look in: |= o [Q

¥ Include subfolders Browze. . |

The important point to take away from this section is that Shel | Execut e() isn't limited to
a finite set of strings as the content of | pOper ati on. By editing the registry, you can add new
verbs and associate them with command lines. We'll see this in action later in the chapter.

228

Program Executors

A Frustrating Documentation Error

I don't use calls to Shel | Execut e() everyday, and I must confess that sometimes I don't read the
documentation from top to bottom. In many cases, I feel confident once I have understood the role of
the function. Over time, the impression formed in my mind that Shel | Execut e() was a highly
specialized version of W nExec(), and so when I wrote calls to it I relied on memory rather than
consulting the documentation. For this reason, I always passed SW _SHOWas the value of the

nCrrd Show argument.

Then, one day, I didlook at the documentation, and discovered that nCndShow should be O if
| pFi | e isn't pointing to an executable. "Why should that be?" I wondered, "Presumably, they're
forcing SW SHOW!to be the only possible value."

To be faithful to the documentation, I replaced SW SHOWwith O wherever applicable, but from then
on I was able only to spawn programs. Shel | Execut e() appeared no longer able to open
documents. It took me a few days to realize what had happened, and the more I tested the function,
the more the system's performance slowed down.

The documentation notwithstanding, the value you pass through nCnmdShow is not ignored if the
target is a file and not an executable. By passing 0, you're actually telling the function to show the
new window with the SW HI DE attribute (which evaluates to 0). After running a bunch of test
applications and discovering this, I summoned up the courage to look at the Task Manager and
counted 23 Notepad, 12 WScript and 3 MSPaint instances running perfectly, but hidden from view!

This is definitely an error in the documentation, but there's still no mention of it on the MSDN.
Happily, I'have found reference to it in WDJ Notes (available from
http://www.wdj.com/utilities.html), and this is a confirmation of my findings.

More Details of the Verbs

All the operations (also known as verbs) I have examined so far have an intuitive implementation. To
open a program, for example, means calling Cr eat ePr ocess() . Exploring or even opening a
folder usually means calling expl or er . exe with some specific flags on the command line, and the
Find dialog also appears due to the magic of an internal shell function — the folder name is merely an
argument that you pass. All this is simple, and somewhat 'static'.

When it comes to opening a generic document, however, things start to get complicated. Earlier in
the chapter, I mentioned VBScript files, so which program knows about those? Does it require a
specific command line? More importantly, how can the shell know about it? This is where the twin
concepts of verbs and file handlers come into play.

Verbs and File Handlers

As I mentioned earlier, a verb is a string that denotes an action that a program is capable of executing
on a particular type of file. The program can be called a 'file handler', since it knows how to deal with
that type of document.

229

http://www.wdj.com/utilities.html

Chapter 8

The association between file types, verbs and handlers can be seen in the system registry, under the
key HKEY_CLASSES_ROOT:

&:" Registry Editor

BReqisty Edit Wiew Help

[il d Mame | Data |
uu [al) [Defaul) “VBSFile"

DOCCODDODD

[My ComputertHKEY_CLASSES_ROOTLVES 7

The figure shows a view of the sub-tree that contains a list of all the file extensions for which it's likely
that a proper handler is correctly registered. The presence of a node — say, . Xyz — is not sufficient to
have that type of file perfectly managed by the system's shell. To demonstrate this point, let's
consider the VBScript files with extension . vbs, which are simply ASCII files that contain VBScript
source code.

A . vbs key under HKEY_CLASSES_ROOT is only the first step. In its Def aul t entry, the node
contains a string that points to another key in the same sub-tree. In this case, it is:

HKEY_CLASSES_ROOT
\ VBSFi | e

The Def aul t entry of thisnode defines the string that Explorer considers as a description of the file
type, and below it is the section that's relevant to us here. It contains all the verbs that are defined,
along with their command lines. In the case of VBScript (and on my home PC), the situation is as
depicted in the figure:

&' Registry Editor

Begistry Edit Wiew Help
-0 vBSFie A [Mame | Data
¢ {21 Defaullcon [Default] "EAWINDOWS WS onipt ewe T B
{1 ScriptEngine
El{:l Shell
; {:l Edit
ElD Open
T Gl
#-(_] Open
B2 Pint =

-0 ShelEx M
| | » 1 |

| My Computer\HEEY_CLASSES_ROOTYWESFilehShellsOpentCommand

all=l

Every 'verb' key has a sub-key called Conmand whose Def aul t entry points to the command line.
It's this string that will determine the actual behavior of the shell. In this case, to open (or run) a
VBScript file, the shell must use a file called wscri pt. exe. (I'll cover wscri pt. exe in Chapter 13,
when I talk about the Windows Scripting Host.) Printing a VBScript file, on the other hand, just
requires a call to Notepad with the conventional / p option:

C: \ W NDOAS\ Not epad. exe /p %

230

Program Executors

As you may have realized by now, these verbs are the main components of the context menu for a
particular type of file:

J File Edt “iew Go Favoites Tools Help |-

J Address IQ PR3 = I
All Folders X || Mame | Sizel Tupe |:i
-9 Msdos B(C] |« [MsDffice File Falder
= [Mstacls File: Folder
:,3 Mave File Folder
“## Recycled Recycle Bin
[Owb File Folder
f L File
. Open P .
o ﬂiéféﬁ:w = a Open with M5-DOS Prompt 11183
aztun, ?
Mstools ffastun, 't
- 'nr.
Msve ffastun, d o Zi
Recycled ffash IQ 0P
T == | s 3N g Add to System Zip ~
4 » »
Fririt Send To 3 i
Cut
Copy
Create Shortcut
Delete
Rename
Froperties

The contents of these verbs are decided by programs and by expert end-users. After all, there's no
rule that tells you how to print a document: it's up to you (or the programs you install) to know the
way to do it, and to save that command line to the registry. From the shell's point of view, all that
matters is that it can find a pri nt key under HKEY_CLASSES_ROOT\ Documnent Type\ Shel | , and
that pri nt has a sub-key called command.

Notice here that pri nt is not a keyword handled by Shel | Execut e(), but simply a word that you
would reasonably want to associate with a command line in the registry that's able to print a given
type of document.

Executing a Verb

Let's see in practice how Shel | Execut e() handles a sample call. This should clarify how to use the
function, and how to edit the registry if you need to do so. The call we're analyzing is:

Shel | Execut e(hwnd, _ TEXT("OCpenWthl E"), _ TEXT("file.txt"),
NULL, NULL, SW SHOW;

The verb here is the rather strange OpenW t hl E, and the intention of the call is that it be applied to
a text file. The verb is no problem for Shel | Execut e(), though, which just follows its normal
process:

Find out the path to the shel | registry key for the document
Search for an OQpenW t hl E key
Read the Command sub-key

Execute the specified command line using Cr eat ePr ocess() , passing the name of the
document as an argument

000 Oo

231

Chapter 8

First of all, let's assume that &' Registry Editor
someone has created the key Fegisty Edit View Help

. PR . i EID ttfile:
shown in this figure: 0 Defaulioon

| Data
"CAPROGRATMMTERMN =1 iexplore. exe" -nohome 1"

» | |
| My ComputersHEEY_CLASSES ROOTttfilehshel\Opentyithl EACommand

w =

The function ends up calling this command line:
" C:\ PROGRA~1\ | NTERN~1\i expl or e. exe" -nohone %
As it does so, it replaces % with the file name, fil e. t xt . Then it's the turn of Cr eat ePr ocess():

Creat eProcess(NULL, const_cast <LPTSTR>(| pCndLi ne), NULL, NULL, TRUE,
NORMAL_PRI ORI TY_CLASS, NULL, NULL, &si, &pi);

Where the | pCdLi ne argument will be:
" C:\ PROGRA~1\ | NTERN~1\i expl ore. exe" -nohone file.txt

Ultimately, as a result of the call, Internet Explorer will open the text file in read-only mode.

Static and Dynamic Verbs

All the keys found in the registry should be considered static verbs, and they are the only sorts of
verbs that we can expect a function like Shel | Execut e() to recognize. However, there are also
dynamic verbs, which are context menu items that are added at runtime under conditions that may
vary on the fly, or on a per-file basis. To handle static verbs, the shell always needs to create a new
process, starting from the command line that you stored in the registry. Dynamic verbs, on the other
hand, are handled by shell extensions that exist in the same process as the shell.

Getting the Executable Name for a File

If your goal is simply to open a particular file, then Shel | Execut e() is what you need. All that you
then need to know is the name of the file to open. However, there may be other circumstances in
which you need to know the exact name of the program registered to handle files of a given type on a
given computer. Let's see an example of that.

Have you ever wondered how browsers detect when they are no longer your default browser, and
promptly complain about this? Roughly speaking, they try to read the name of the executable file
registered to handle HTML files. If they don't find their name, they realize that you have changed

your allegiance, and feel authorized to reproach you officially!

The Windows SDK defines a function that returns the name of the executable file that's registered to
handle a given file type. Its name is Fi ndExecut abl e(), and it's declared in shel | api . dl | :

HI NSTANCE Fi ndExecut abl e(LPCTSTR | pFil e, LPCTSTR | pDirectory, LPTSTR | pResult);

232

Program Executors

The prototype is quite self-explanatory. It accepts the name of the document, and a base directory if
the name isn't fully qualified. If the file name is complete (specifies both drive and directory) then
| pDi rectory is redundant. The name of the file is returned through | pResul t .

Fi ndExecut abl e() searches the registry for the file extension provided, and returns the contents
of the shel | \ open\ command\ def aul t entry.

Flaws in FindExecutable()

There are a few points about this function that need clarification: Fi ndExecut abl e() isn't perfect,
and it suffers from at least one known bug. For a start, the documentation claims that the return value
should be greater than 32 to denote success, but I have no idea of what it really means — is it an

HI NSTANCE (of what?), a DDE conversation ID (why does it need DDE?) or a just a random number
(I hope not!). On Win32 platforms, I would have found a Boolean value far more reasonable.

The File Must Exist

Fi ndExecut abl e() has a couple of other, more interesting, flaws. The first one regards the file
name: even though this is not clearly pointed out in the documentation, the file name you're passing
must exist. I suspect that this behavior is forced by backward compatibility; in my opinion, there's no
reason for not retrieving the executable associated with a file name just because the file itself doesn't
exist. The information you're seeking is only tied to the extension of that file name. If I want to know
the name of the default browser, I should be able to call Fi ndExecut abl e() and pass *. ht mas the
file name. To demonstrate that these are not far-fetched ideas, let me say that SHGet Fi | el nf o()
(which we examined in Chapter 4) lets you do just this.

Avoiding Spaces in Path Names

Last but not least, Fi ndExecut abl e() has real problems with long file names that include spaces.
There's an MSDN article (See Further Reading) about this with a few workarounds, and I suggest that
you pay close attention. This is a definite bug in the code, and this time Microsoft appears to be fully
aware of the problem.

When you ask Fi ndExecut abl e() to retrieve a path name, it reads the registry and returns the
string. The problem is that sometimes, these strings include command line arguments, but it's not
easy for the function to determine where they begin. A good rule of thumb to follow is that you

should enclose the file name in quotes, so that the function can assume everything after the last quote
to be arguments:

Default = "c:\ny Dir\theApp.exe" \n

If you don't do this, the chances are that the function will cut off a portion of the string while trying to
locate possible command line arguments, because it will assume that the arguments begin after the
first space. Thus, if the path name includes spaces, it will be truncated. For example, if the string to
be retrieved is:

c:\My Dir\theapp. exe
Then what actually gets returned to you is:

c:\ W

233

Chapter 8

I have noticed that Internet Explorer (see above) registers its 8.3 name in the registry (under the
HKEY_CLASSES_ROOT\ ht m fi | e\ shel | \ command key), rather than its long file name. Many
other Microsoft programs do the same thing, and the problems with long file names when using
Fi ndExecut abl e() are the reason.

Using Long File Names without Rules

This bug has been known since December 1995, but nearly 3 years later it is still waiting for a fix.
However, Fi ndExecut abl e() is only partially responsible for problem — it simply inherits the
complexity that derives from using long file names without rules. Let me emphasize again that if you
enclose the path name in quotes, everything works perfectly.

The MSDN article that describes the bug (see Further Reading for references) points out that you can
just replace the terminating \ O of the string returned to you with a space (ASCII 32), and the string
will then be fixed. Unfortunately, this is not quite true; let's see why.

Microsoft is right when it claims that replacing the null character that truncated the string with a
space restores the string to its initial state. This occurs because the memory buffer hasn't actually
been changed or set to zero. The function shown below should work fine:

HI NSTANCE Fi ndExecut abl eEx(LPCTSTR | pFi |l e, LPCTSTR | pDirectory, LPTSTR | pResult)
HI NSTANCE hi = Fi ndExecut abl e(I pFile, |IpDirectory, |pResult);
| pResul t[Istrlen(lpesult)] = 32; /1 32 is the ASCI| val ue of space

return hi;

}

Or rather, it would do, if it weren't for a small problem. As a result of this modification, what you're
returned is the string read from the registry. The trouble is that this is the string with the command

line arguments that originated the problem! For example, suppose that the shel | \ conmand string
is:

c:\My Dir\theapp. exe %

Now suppose further that the file name for which you want the executable is c: \ nyFi | e. xyz.
Normally, Fi ndExecut abl e() would return:

c:\' W

By applying the suggested workaround (by using Fi ndExecut abl eEx()), the string returned
becomes:

c:\My Dir\theapp.exe c:\nyFile.xyz

Now it's up to you to extract the real file name! Remember that you can't rely on spaces to break the
string into its component parts, because it might be one long file name with spaces everywhere, even
in the extension.

234

Program Executors

A More Reliable Workaround for FindExecutable()
If you use the faithful old _spl it pat h() function to break a file name like the one above into its
component parts, your directory item will be \ My Di r\ t heapp. exe c:\

_splitpath() extracts whatever is between the first and the final backslash in the string you pass
to it. If there's a file name as an argument, then there will always be a ": ' in the extracted string.
Thus, it suffices to truncate the string at that point and then split it again. Here's the code:

HI NSTANCE Fi ndExecut abl eEx(LPCTSTR | pFil e, LPCTSTR | pDirectory, LPTSTR | pResult)

{

/1l These _MAX constants defined in stdlib.h

TCHAR dri ve[_MAX_DRI VE] ;

TCHAR dir[_MAX DI R];

TCHAR di r1[_MAX DI R] ;

TCHAR fil e[_MAX_FNAME] ;

TCHAR ext [_MAX_EXT] ;

HI NSTANCE hi = Fi ndExecutabl e(l pFile, |pDirectory, |pResult);

I pResul t[Istrlen(lpResult)] = 32;

_splitpath(l pResult, drive, dir, file, ext);

/'l Search for : in the directory name, and truncate the string

LPTSTR p = strchr(dir, ':");

if(p !'= NULL)

{
1P :
dir[p - dir] = 0;
/1 Now split what remains again to get file and extension
_splitpath(dir, NULL, dirl, file, ext);
_nmakepat h(| pResult, drive, dirl, file, ext);

return hi;

}

It works! Or rather, it works provided that there's nothing on the command line between the program
name and the file. In other words, if the layout is like this, then you're OK:

c:\My Dir\theapp. exe % [whatever you want]
But if it's like this, you still have a problem:

c:\My Dir\theapp.exe [option list] %
Unfortunately, this isn't an unusual choice, and I can't offer you a 100% safe solution — I'm not at all
sure that a solution is even possible. If you've ever worked with long file names, you will know that
when it comes to free parsing, they are really hard nuts to crack.
What happens is that the option list is automatically appended to the file extension, and unless it
contains invalid long file name characters, an extension containing a space like . exe - p is perfectly

acceptable. Moreover, _spl it path() and _makepat h() just handle strings and don't check the
components for long file name compatibility.

235

Chapter 8

To cut a long story short, I think that truncating the file extension to the first space would be a good
first approximation. In my experience, I've never seen a real-world use of spaces in file extensions. In
conclusion, then, the final Fi ndExecut abl eEx() function looks like this:

HI NSTANCE Fi ndExecut abl eEx(LPCTSTR | pFil e, LPCTSTR I pDirectory, LPTSTR | pResult)
{

/1 Search for : in the directory nanme, and truncate the string
LPTSTR p = strchr(dir, ':");

if(p !'= NULL)

{

--ps
dir[p - dir] = 0;

/1 Now split what remamins again to get file and extension
_splitpath(dir, NULL, dirl, file, ext);

p = strchr(ext, 32);

ext[p - ext] = 0;

_nmeakepat h(I pResul t, drive, dirl, file, ext);

return hi;

}

The Fi ndExecut abl e() bug is a long story that began a few months after the release of Windows
95, and is still far from ending. The bug lives on in Windows 98!

You may be aware that shell versions 4.71 and later support a new library called

shl wapi . dl | that's full of apparently useful functions for string and path name
manipulation. You might be wondering whether such functions, with promising names like

Pat hRenoveAr gs() , could have helped here. Unfortunately, they don't — I tried them out,
but they aren't smart enough to handle long file names successfully. (I'll cover shl wapi . dl | in
Chapter 10.)

ShellExecute() Tips and Tricks

I mentioned earlier that Shel | Execut e() is a very useful function for performing operations on
files and system objects. In addition to this, when used in conjunction with Fi ndExecut abl e(), it
can help you to perform some tricky tasks more quickly. Here's a collection of examples.

Detecting the Default Browser

To determine the default browser for a machine, you need to specify the name of an existing . ht m
file to Fi ndExecut abl e() . A self-contained routine might create an empty file on the fly, call
Fi ndExecut abl e(), and then delete the file again:

voi d Get Def aul t Browser (LPTSTR szBr owser Nane)

{
HFI LE h =_l creat ("dummy. ht i, 0);
_lclose(h);
Fi ndExecut abl e("dumy. ht nf', NULL, szBrowser Nane);
Del et eFi | e("dumy. htni');
}

236

Program Executors

Of course, to detect whether your default browser is Internet Explorer or Netscape Communicator,
you can simply check the value of the Def aul t entry in the HKEY_CLASSES_ROOT\ . ht mkey. It
will be ht ml fi | e if the browser is Internet Explorer or Net scapeMar kup if the browser comes
from Netscape. Each browser writes (and leaves) its own settings in a separate registry sub-tree. Then,
just by changing the magic word in the . ht mkey, the default browser is switched.

Connecting to a URL

If you need to know the browser's name in order to connect to a remote URL, or to view a HTML
file, then there's a quicker solution: Shel | Execut e() .

Shel | Execut e(NULL, NULL, _ TEXT("http://wmy wrox. cont'), NULL, NULL, SW SHOW;

The function itself does the job of retrieving and launching the browser (if one is installed). When the
file name is prefixed by ht t p, Shel | Execut e() searches under HKEY_CLASSES_ROOT\
ht t p\ shel | \ open\ command.

Sending e-mail Messages
To send e-mail messages programmatically, you have a number of choices: there are Collaborative
Data Objects (CDO), the Messaging API, or you can rely on the services of other applications like
Microsoft Outlook. I always envied the simplicity of this task in HTML pages, where you just need a
link through the specialized mai | t 0 protocol:
D no Esposito

Well, thanks to Shel | Execut e(), the same simplicity is available also to Windows programs:

Shel | Execut e(NULL, NULL, _ TEXT("nmailto: desposito@nfonedia.it"),
NULL, NULL, SW SHOW;

Once more, the key is in the registry:

HKEY_CLASSES_ROOT

\mailto
\'shel |
\ open
\ command

http and mai | t 0 are examples of pluggable protocols — custom URL protocols built into an in-
process COM server that guide the browser through the process of accessing the resource. With
Shel | Execut e(), you can invoke resources through any registered protocol, even a custom
protocol like res: or about : . (See Further Reading.)

Printing Documents

As long as a program that enables printing via the command line for certain kinds of documents
exists, you can issue a command like this:

Shel | Execut e(NULL, _ TEXT("print"), szDocName, NULL, NULL, SW SHOW;

A common convention is to enable printing of a document by using the / p option on the command
line, but it isjust a convention — feel free to use any option you want to denote printing.

237

http://www.wrox.com
mailto:desposito@infomedia.it>Dino
mailto:desposito@infomedia.it

Chapter 8

Finding Files and Folders

If you need to run the Find dialog, starting from a specific folder, it's as easy as calling:
Shel | Execut e(NULL, _ TEXT("find"), szDirNane, NULL, NULL, SW SHOW:

If you specify NULL or the empty string as the folder name, the dialog will appear ready to work on
drive C. If you pass a non-zero string that points to a non-existent folder, you'll get an error.

ShellExecute() vs. CreateProcess()

I have now said enough about Shel | Execut e() for us to be able to hazard a comparison with
Cr eat eProcess(). The point is not to determine which function is better (they are quite different,
and both are very useful), but which function to use when it comes to creating a process.

The first thing to take into account is that internally, Shel | Execut e() calls Cr eat ePr ocess(),
and so Shel | Execut e() is necessarily a smaller and simpler-to-use wrapper for

Cr eat eProcess(). On the other hand, Shel | Execut e() is flexible enough to let you open and
print documents, not to mention more specific verbs that are available to document classes.

Unless you need to create processes that exploit the advanced features Cr eat ePr ocess() makes
available (debug mode, priority, environment settings, startup information and the like), I
recommend that you always choose Shel | Execut e(), which has a simpler syntax.

Why You Should Use ShellExecute() to Run Programs

Another argument that tilts the balance in favor of using Shel | Execut e() is a guideline from
Microsoft that forms part of the current draft for the new Logo Requirements — that hefty tome you
should depend upon when creating logo-compliant Microsoft Windows 98 and Windows NT
applications.

Microsoft recommends that you use Shel | Execut e() to run external applications because it
ensures that any restrictive policy adopted by the system administrator will be carefully checked.
System policies allow administrators to decide which applications can or can't be started from
Windows. Shel | Execut e() takes this blacklist into account, whereas Cr eat eProcess() does
not.

Policies

A policy is simply a collection of related settings that's normally saved in the system registry. One of
the most interesting of these collections is called Shell Restrictions, which contains registry entries
that let you control the functionality of the Start menu and Explorer.

One of the things you can do is to prevent the shell from displaying the Run or the Find item in the

Start menu. In the same way, you can forbid the changing of settings through the Control Panel, or
through the taskbar Properties dialog. Let's see how to set such things up.

238

Program Executors

The Shell Restrictions Policy
The registry key involved in the Shell Restrictions policy is:

HKEY_CURRENT _USER
\ Sof t war e
\' M crosoft

\ W ndows
\ Curr ent Ver si on
\ Policies
\ Expl orer

To do what was outlined above, you need to create some new entries that don't exist by default,
setting them to 0 or 1 as appropriate:

Entry Description

NoRun If the entry is set to 1, this hides the Run... command from the Start menu
NoFi nd If 1, hides the Find command from the Start menu

NoSet Fol ders If 1, hides all the standard Settings commands from the Start menu
NoSet Taskbar If 1, hides the Taskbar Properties dialog

For the update to take place, all the entries must be DWORDs. When you remove commands in this
way, the changes take place immediately, but the user interface isn't updated until next time you

reboot the machine. If you try to use one of the commands during this period, you'll get a message
box like this:

Restrictions [<]

Thiz operation has been cancelled due to restrictions in effect on this computer, Pleaze
cohtact your system administrator.

A good source of information about the registry keys to use for implementing policies may be
found in the Platform SDK area of the MSDN Library. In particular, check out the Windows
Logo and Programming Guidelines.

Extending ShellExecute()

Despite supporting policies, Shel | Execut e() has a significant drawback that can make using it
difficult: it doesn't return, or let you know, the handle of the newly created process. This means that
we can't, for example, spawn a program and wait for it to terminate before continuing execution. In
other words, Shel | Execut e() suffers from its 16-bit origins that allow it to exploit only a subset of
the new and more powerful features of Cr eat ePr ocess() — the one that's also supported by

W nExec().

239

Chapter 8

However, a new function was introduced with shell version 4.0: Shel | Execut eEx() . It has a
compact prototype that is typical of many shell functions, supports many flags, and, above all,
extends Shel | Execut e() by providing support for process synchronization and PIDLs.

ShellExecuteEXx()

Shel | Execut eEx() clearly supersedes Shel | Execut e() . It is declared in shel | api . h:
BOOL Shel | Execut eEx(LPSHELLEXECUTEI NFO | pExecl nf 0) ;
The SHELLEXECUTEI NFO structure has the following layout:

typedef struct _SHELLEXECUTEI NFO

DWORD cbSi ze;

ULONG f Mask;

HWAD hwnd;

LPCTSTR | pVer b;
LPCTSTR | pFi | e;
LPCTSTR | pPar anet er s;
LPCTSTR | pDirectory;
i nt nShow,

HI NSTANCE hl nst App;

/1 Optional nenbers
LPVA D | pl DLi st ;
LPCSTR | pd ass;
HKEY hkeyd ass;
DWORD dwHot Key;
HANDLE hl con;
HANDLE hProcess;
} SHELLEXECUTEI NFO, FAR * LPSHELLEXECUTEI NFG,

Before using this structure, it's highly recommended that you fill it with zeros and set cbSi ze to the
actual length, like this:

SHELLEXECUTEI NFO sei ;
Zer oMenor y(&sei, si zeof (SHELLEXECUTEI NFO)) ;
sei . chSi ze = si zeof (SHELLEXECUTEI NFO) ;

As you can see from the comment inside the declaration, the members are divided into two groups.
In practice, the first group makes Shel | Execut eEx() functionally equivalent to

Shel | Execut e(), while the collection of optional members makes it more powerful and justifies
the 'Ex' suffix.

The hwnd, | pVer b, | pFil e, | pParanmeters, | pDi rect ory and nShow members are identical in
intention to the parameters for Shel | Execut e() that we have already seen. The hl nst App
member, however, is an output buffer that will be filled with what was formerly the return value of
Shel | Execut e().

The nShow member always denotes the style of the created window, even though the documentation
says that it only specifies how the application is to be displayed if | pFi | e is an executable. Whether
| pFi | e is an executable or a document file, nShow must always be assigned the SW_ constant that
you require. Be aware that if you set it to 0, you'll have a hidden window.

240

Program Executors

Here's the simplest way to call Shel | Execut eEx() :

SHELLEXECUTEI NFO sei ;

Zer oMenory(&sei, sizeof (SHELLEXECUTEI NFO)) ;
sei.chSi ze = sizeof (SHELLEXECUTEI NFO) ;
sei .l pFile = __ _TEXT("expl orer.exe");

sei . nShow = SW SHOW

sei .|l pVerb = __TEXT("open");

Shel | Execut eEx(&sei) ;

The Optional Members

One of the members that doesn't have a corresponding entry in the parameter list of
Shel | Execut e() is f Mask. This can be a combination of one or more of the following values:

Flag

Description

SEE_MASK_CLASSKEY
SEE_MASK_CLASSNAME
SEE_MASK_CONNECTNETDRV

SEE_MASK_DOENVSUBST

SEE_MASK_FLAG DDEWAI T

SEE_MASK_FLAG_NO_UI
SEE_MASK_HOTKEY
SEE_MASK_| CON
SEE_MASK_I DLI ST

SEE_MASK_| NVOKEI DLI ST

SEE_MASK_NOCL OSEPROCESS

The hkeyCl ass member should be used.
The | pCl ass member should be used.

| pFi | e will be interpreted as a file name expressed in
UNC (Universal Naming Convention) format.

Any environment variables specified in the | pDi r ect ory
and | pFi | @ members will be expanded. %N NDI R% for
example, opens the Windows folder.

If the function starts a DDE conversation, wait for it to
terminate before returning.

Don't display a message box in the case of errors.
The dwHot key member should be used.
The hl con member should be used.

Forces the function to use the contents of | pl DLi st
instead of | pFi | e.

Causes the function to use the PIDL specified in

| pl DLi st . If the member is NULL, a PIDL to | pFi | e is
created on the fly and used. This flag overrides
SEE_MASK_I DLI ST.

Sets the hPr ocess member with the handle to the process.

The | pl DLi st member can contain a PIDL that will be used instead of | pFi | e. hPr ocess returns
the HPROCESS handle of the new process spawned.

241

Chapter 8

Additional Features

The optional fields serve to implement some additional functionality over Shel | Execut e() . First
and foremost, you can use PIDLs to run applications and open folders. Here's the code to open the
Printers folder:

LPI TEM DLI ST pi dl ;

SHCet Speci al Fol der Locati on(NULL, CSIDL_PRI NTERS, &pidl);
SHELLEXECUTEI NFO sei ;

Zer oMenor y(&sei, sizeof (SHELLEXECUTEI NFO)) ;

sei . chSi ze = sizeof (SHELLEXECUTEI NFO) ;

sei . nShow = SW SHOW

sei .|l plDList = pidl;

sei . f Mask = SEE_NASK_| NVOKEI DLI ST;

sei.lpVerb = _ TEXT("open");

Shel | Execut eEx(&sei) ;

If you also specify the SEE_MASK _DOENVSUBST flag, then you can use any environment variable in
either | pFil e or | pDirectory. To open the Windows directory, for example, you can just indicate
%N NDI R%

Lastly, we have the ability to synchronize an application launched by Shel | Execut eEx() !
Provided that you turn on the SEE_MASK_NOCL OSEPROCESS bit in the f Mask member, you will be
returned the handle of the new process via the hPr ocess member. That means the line:

Wi t For Si ngl eCbj ect (sei . hProcess, | NFIN TE);

will cause the calling application to block while waiting for the other one to terminate.

Displaying a File's Properties Dialog
The SEE_MASK_| NVOKEI DLI ST flag is important because it gives Shel | Execut eEx() another big

advantage over Shel | Execut e() : it enables the function to invoke dynamic verbs as well as static
ones. As I explained earlier, dynamic verbs are added at runtime by context menu shell extensions.

It works like this: if Shel | Execut eEx() is unable to find the verb in the list of static verbs, it tries
to locate the context menu for the given file. This search results in a pointer to the | Cont ext Menu
interface. The dynamic verb is then invoked through the functions exposed by the interface.

I'll deal with context menu and shell extensions later on, in Chapter 15. To discover how to get
the handle of the context menu for a given file, see Further Reading.

As a consequence of this, you can easily display the file's Properties dialog box — the same dialog
that shows up when you right-click on a file and choose Properties. Here's a simple function that
does just that:

voi d ShowFi | eProperti es(LPCTSTR szPat hNane)
SHELLEXECUTEI NFO sei ;

Zer oMenor y(&sei, sizeof (SHELLEXECUTEI NFO)) ;
sei . cbhSi ze = si zeof (SHELLEXECUTEI NFO) ;

242

Program Executors

sei .| pFil e = szPat hNane;

sei . nShow = SW SHOW
sei . f Mask = SEE_MASK_| NVOKEI DLI ST;
sei.lpVerb = __ TEXT("properties");

Shel | Execut eEx(&sei) ;
}

ShellExecuteEx() Return Values

The function returns a Boolean value that describes the success of the call: TRUE if successful, and
FALSE in the case of failure. Get Last Err or () and the value returned in hl nst App can be used to
gain more information about what has happened when something goes wrong.

Example: Program Executors

The screenshot below shows the interface of a simple demonstration program called Execut e that

allows you to test verbs. As usual, it's based on the skeleton for dialog-based applications generated
by the Wrox AppWizard.

IDC_FILENAME
File: ! || Ibc_BROWSE
Dperation: —+— IDC_OPERATION
ShellExecute | ShellExecuteEx | FindE xecutable ~|—— IDC_FIND

Executable found: Return

‘ f —+— IDC_RETVAL

\

IDC_SHELL IDC_EXE IDC_SHELLEX

You can choose the file to test either by typing its name, or by browsing for it with the ... button. In
the Operation edit box, you should write the name of the verb you want to execute on the file.

The first two buttons — ShellExecute and ShellExecuteEx — allow you to test the respective functions.
The FindExecutable button, on the other hand, calls that function to return the name of the
executable registered to open (always the verb open) the specified file. This name is then displayed
in the Executable found edit box, while Return shows Fi ndExecut abl e() 's return code.

Implementing the application's functionality is simply a matter of providing handlers for the four
buttons on the dialog. OnBr owse() is the easiest, so let's start with that.

voi d OnBrowse(HVWAD hDl g)

{
TCHAR szFi | e[MAX_PATH| = {0};
TCHAR szW nDi r [MAX_PATH] = {0};
Get WndowsDi rectory(szWnbDi r, MAX PATH);

OPENFI LENAME of n;
Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;

243

Chapter 8

of n.1 Struct Si ze = si zeof (OPENFI LENAME) ;
ofn.IpstrFilter = _ TEXT("Al files\0*.*\0");
of n. nMaxFi |l e = MAX_PATH,
ofn.IpstrinitialDir = szWnDir;
ofn.lpstrFile = szFile;
i f(!GetOpenFil eNanme(&ofn))
return;
el se
Set Dl gl t eniText (hDl g, | DC_FI LENAME, ofn.lpstrFile);

Next comes OnShel | Execut e(), while simply extracts the file name and the operation from the

dialog, assembles a call to Shel | Execut e() itself, and displays the return value:

voi d OnShel | Execut e(HWND hDI g)

{
TCHAR sFi | e[MAX_PATH = {0};
TCHAR sOp[MAX_PATH = {0};
TCHAR sRC[MAX_PATH = {0};
Get Dl gl t enText (hDl g, | DC_FI LENAME, sFile, MAX PATH);
Get Dl gl t enText (hDl g, | DC_OPERATI ON, sOp, MAX_PATH);
HI NSTANCE h = Shel | Execut e(NULL, sOp, sFile, NULL, NULL, SW SHOW;
wsprintf(sRC, _ TEXT("%d"), h);
Set DIl gl t enText (hDi g, | DC_RETVAL, sRO);
return;

}

Thirdly, there's OnShel | Execut eEX() , which does pretty much the same thing, but using a

SHELLEXECUTEI NFO structure:

voi d OnShel | Execut eEx(HVAD hDl g)

{
TCHAR sFi | e[MAX_PATH = {0};
TCHAR sOp[MAX_PATH = {0};
TCHAR sRC[MAX_PATH] = {0};
Get DI gl t enText (hDl g, | DC_FI LENAME, sFile, MAX PATH);
Get Dl gl t enText (hDl g, | DC_OPERATI ON, sOp, MAX_PATH);
SHELLEXECUTEI NFO sei ;
Zer oMenor y(&sei, sizeof (SHELLEXECUTEI NFO)) ;
sei . chSi ze = si zeof (SHELLEXECUTEI NFO) ;
sei.lpFile = sFile;
sei . nShow = SW SHOW
sei . f Mask = SEE_NMASK _DOENVSUBST | SEE_MASK_| NVOKEI DLI ST;
sei .|l pVerb = sQOp;
DWORD rc = Shel | Execut eEx(&sei) ;
wsprintf(sRC, _ TEXT("%d"), rc);
Set DIl gl t enText (hDi g, | DC_RETVAL, sRO);
return;
}

244

Program Executors

Finally, OnFi ndExec() uses the Fi ndExecut abl eEx() function that we put together earlier in the
chapter to do its work:

voi d OnFi ndExec(HWAD hDl g)

{
TCHAR sFi | e[l MAX_PATH = {0};
TCHAR sPrg[MAX_PATH] = {0};
TCHAR sRC[MAX_PATH] = {0};
Get Dl gl tenifext (hDl g, | DC_FI LENAVE, sFile, MAX PATH);
HI NSTANCE h = Fi ndExecut abl eEx(sFile, NULL, sPrg);
wsprintf(sRC, _ TEXT("%d"), h);
Set Dl gl t enifext (hDl g, | DC_RETVAL, sRO);
Set Dl gl t enText (hDl g, | DC_EXE, sPrg);
return;
}

Add #i ncl udes for shl obj . h, commd! g. h and r esour ce. h to the top of your source file, make
sure that you're linking to conmdl g32. h, and you should be able to compile and link the application.
The screenshot below shows it getting to grips with the Properties dialog of a GIF file:

Winlogo_gif Properties 2]
General I
@ ‘winlogo. gif
Type: GIF Image Program Executors
Location: C:AwINDOWS
Size: 1.40KE [1.434 bytes), 32,768 bytes used i CAWINDOWS \Winlogo.gif J
Operation: properties
M5-D0S name; WwINLOGO.GIF
Created: 25 August 1338 13:01:26 ShelExecute ShelExecuteEx FindE secutable |
Modified: 11 bay 1938 20.01.00
Accessed: 04 November 1935 Executable found: Return
|w
Altibutes: I~ | Bead-only T Hidden
¥ Aichive 7 Sustern
oK | Cancel | Spll

Multi-Monitor Support

To conclude our discussion of the Shel | Execut e() and Shel | Execut eEx() functions, I want to
say a few words about a cool feature that was new in Windows 98. I'm talking about multi-monitor
support, which is the ability programmatically to span the output of programs across multiple
monitors. Personally, I find the new Windows 98 function called Moni t or Fr omPoi nt () amazing,
although at the time of writing I've yet to meet a program who has really experimented with it.

What's the relationship between multi-monitor support and Shel | Execut e() ? Well, the Windows
98 version of this function supports multiple monitors. This means, for instance, that any child
process will be shown on the same monitor as the parent. However, this is only the default behavior.
If you specify an hwnd parameter, then you can redirect the new window to the same monitor as the
window that has that hwnd parameter.

245

Chapter 8

Hooking on ShellExecute()

Have you ever heard of the | Shel | Execut eHook interface? As its name rather suggests, its logic
follows the traditional Windows hook model, while the practical implementation requires you to write
an in-process COM server. Methods of the interface are called from the code of both

Shel | Execut e() and Shel | Execut eEx() in order to let the user gain more control of the startup
process. By using | Shel | Execut eHook, a module can parse (in a customized way) the command
line that is being executed, and resolve it to the right program.

When using MS DOS, for example, we sometimes write small batch procedures with very short or
easy-to-type names. In this way we can run a program, or perform a repetitive task, quickly and
easily. Well, | Shel | Execut eHook gives us the ability to do roughly the same thing under
Windows. A module implementing | Shel | Execut eHook is invoked whenever Shel | Execut e()
or Shel | Execut eEx() is about to execute a verb on a file, no matter what kind of file it is. The
module is in the middle, and can do whatever suits it, such as:

O Trace (and log in a file) all the applications started through the shell
Q Prevent unauthorized access to certain programs or folders
Q Implement named objects — that is, keywords that map to a specific program or action

Implementing the | Shel | Execut eHook interface really is quick and easy. Unfortunately, there's no
mention anywhere in the documentation of how to let the shell know that you've done so, and it's this
point that I shall address in the next section.

Registering an IShellExecuteHook Handler

First and foremost, an | Shel | Execut eHook handler is a COM server, and must be registered
properly under the following path:

HKEY_CLASSES_ROOT
\CLSI D

Of course, this is far from the end of the matter. The Windows shell must know that the handler
exists, and where it is located. Since an | Shel | Execut eHook handler isn't very different from the
Browser Helper Objects that I examined in Chapter 7, I guessed and hoped that the registration
pattern was similar in this case, and I was right. Both helper objects and shell execute hooks must also
be registered under:

HKEY_LOCAL_MACHI NE
\ Sof t war e
\'M crosoft
\ W ndows
\ Current Ver si on
\ Expl orer

246

Program Executors

Helpers go under a key named ¢ Registry Editor
Br owser Hel per Obj ects, Registy Edit View Help
while hooks are located under -+ BrowseHlewProcess] f Name | Daia
Sh | | E t eH k 3 -3 Brows.elHelperwac:ts Ehj[Default] [value not set)
e Xecut eFo0oKs: {1 C3SFiters (ab]{4F430133-2951-11D:2BC00-7CA506C1 0000}
o-(Deskiop {AEBET1 7E-7E19-11d0-47E E-DOC4FDE1 572}

£

[Drive
-1 FindE stensions

F-C Intemet

F-C3 mycomputer

-] NetworkNeighborhood

-2 NewShortcutHandlers J
{27 Shell Folders

s | 5 hellE wecuteHooks

- Shellcan0verlayl dentifiers

-0 Smalllcong -
e Ll | 2

‘ My ComputersHKE'Y_LOCAL_MACHINEASOFTWARE \Microsofthwindows' Currentersion'explorer\ShellE recuteHooks 2

As shown in the figure, each key may contain a collection of strings that each evaluate to a CLSID.
The shell just walks that list, and attempts to load the servers.

The IShellExecuteHook Interface

| Shel | Execut eHook is one of the simplest COM interfaces I've ever seen. It's composed of a
single function called Execut e(), which is declared as follows:

HRESULT Execut e(LPSHELLEXECUTEI NFO pei) ;

SHELLEXECUTEI NFOis the same structure we met earlier when talking about Shel | Execut eEx() .
This function is invoked by the system just before a new application or document is opened through
the shell interface. In other words, this hook gets involved when you run a new application, or you
invoke a verb on a document in one of the following ways:

Q Programmatically, through Shel | Execut e() or Shel | Execut eEx()
Q Through the Run dialog box
Q Double-clicking from the Explorer

If you run another program through Cr eat eProcess() or W nExec(), the hook module won't be
notified. The same problem occurs if you run a program or open documents via a DOS box, or use
any other low-level techniques.

Thanks to the structure passed as an argument, the Execut e() method receives a verb, a file name,
arguments, a directory and whatever else the user has passed to Shel | Execut e() or its sister
function.

As mentioned earlier, both Shel | Execut e() and Shel | Execut eEx() end up calling
Cr eat ePr ocess() . However, they do much more than simply obtaining the command line
and passing it to Cr eat eProcess() . For a start, they handle policies and support this hook!

247

Chapter 8

Returning from the Hook
The hook will return S_FALSE if the shell can proceed as usual and create the required process. If no
further processing is required, however — that is, the hook doesn't want the shell to start the process —
then the hook will return a value of S_OK. This may happen because the hook checked some
conditions and wants to prevent the currently logged user to run that program or document, but
another possibility is that the hook code wants to run the document itself, giving (say) a non-standard
priority to the thread. This requires that you arrange the call to Cr eat ePr ocess() yourself. More
importantly, if we return S_OK to the shell, we also need to set the hl nst App member of
SHEL LEXECUTEI NFO properly.

"Setting the hl nst App member properly,” means assigning it a value that denotes to the shell the
success or failure (with a relevant error message) of our processing. If we run the application
ourselves, then this will be the HI NSTANCE of the new process. If we break the processing, then we
can assign to it any value greater than 32 in order to prevent the shell from displaying an error
message box.

As an example, suppose that we decide to block any new process:

HRESULT Execut e(LPSHELLEXECUTEI NFO | psei)
{

}

return S K

No matter what parameters we receive, we immediately return S_OK. In this case, the shell finds a
value of 0 in the hl nst App member and interprets the return value as an error code. It then displays
an appropriate message box for that error number. Here's a screenshot:

+ e:\book\shell\text\chap03\source\filemapidebug

e There iz not enough free memorny ta run this program. Guit one or mare programs, and then
try again.

Writing an IShellExecuteHook Handler

When it comes to writing COM servers, the | DN P |
Active Template Library (ATL) is a great

resource. Having run the ATL COM AppWizard
to generate a skeleton COM server called Hook, Ct+ COM

we can add a new class to it by choosing Simple Short Hame: IShowHook | cguaSS;IShowHook

Object: Class: IW Itertace: W
H File: IW Type: IShowHook Class

CBP File: [ShowHook.cpp || ProgID: [Haok ShowHosk

Names | atiibutes |

(]S I Cancel |

248

Program Executors

This new class, called CShowHook, should be derived from | Shel | Execut eHook. As already
mentioned, this interface requires us to include shl obj . h. However, rather than deriving from

I Shel | Execut eHook directly, we can define a generic implementation of the class, named (in the
conventional ATL manner) | Shel | Execut eHook! npl :

/1 | Shel | Execut eHookl npl . h

/1

FEEELEEEEET i irrr
#i ncl ude <Atl Com h>

#i ncl ude <Shl Qoj . h>

cl ass ATL_NO VTABLE | Shel | Execut eHookl nmpl : public | Shel | Execut eHook

{
publi c:

/1 1 Unknown
STDMETHOD(Queryl nterface) (REFIID riid, void** ppvObject) = 0;
_ATL_DEBUG ADDREF_RELEASE | MPL(| Shel | Execut eHookl npl)

/1 1 Shel | Execut eHook
STDVETHOD(Execut e) (LPSHELLEXECUTEI NFO | psei)
{

}

return S_FALSE;

The real CShowHook class is then declared like this:

#i ncl ude "resource. h"
#i ncl ude "condef. h"
#i ncl ude "I Shel | Execut eHookl npl . h"

IR NN NN
/1 CShowHook
cl ass ATL_NO VTABLE CShowHook :

publ i ¢ CCon(bj ect Root Ex<CContSi ngl eThr eadModel >,

publ i ¢ CConCoC ass<CShowHook, &CLSI D _ShowHook>,

publ i c | Shel | Execut eHookl npl ,

publ i c | Di spatchl npl <I ShowHook, &l | D_| ShowHook, &LIBI D_SHOMLI b>

{

public:
CShowHook()
{

}

STDVETHOD(Execut e) (LPSHELLEXECUTEI NFO | psei) ;
DECLARE_REG STRY_RESOURCE! D(| DR_SHOWHOOK)
DECLARE_PROTECT_FI NAL_CONSTRUCT()

BEG N_COM_MAP(CShowHook)
COM | NTERFACE._ ENTRY(| ShowHook)
COM_| NTERFACE_ENTRY(| Di spat ch)

COM_| NTERFACE_ENTRY(| Shel | Execut eHook)
END_COM_MAP()

/1 1 ShowHook
public:
|

249

Chapter 8

Now all that's missing is the implementation of the hook. Earlier, I outlined three possible
applications of such hooks: tracing, authorization, and naming. Let's see the code necessary for all
three of these.

HRESULT CShowHook: : Execut e(LPSHELLEXECUTEI NFO | psei)

{

// Trace the program file opened
TCHAR szTi me[50] = {0};
Get Ti meFor mat (LOCALE_SYSTEM DEFAULT, 0, NULL, NULL, szTine, 50);
TCHAR szText[1024] = {0};
wsprintf(szText, _ TEXT("%: % at %"),
| psei ->l pVerb, |psei->lpFile, szTine);

FI LE *f;
f = fopen(__TEXT("c:\\ ShowHook. txt"), _ TEXT("a+t"));
fseek(f, 0, SEEK END);
fprintf(f, _ TEXT("%: % at %\n\r"),
| psei - >l pVerb, |psei->lpFile, szTine);
fclose(f);

/1 Check the shortcuts list and run prograns
TCHAR szFi | eNarme[MAX_PATH] = {0};
GetPrivateProfileString(__TEXT("GoldList"), |psei->lpFile,

""", szFil eName, MAX PATH, _ TEXT("c:\\showhook.ini"));
if(lstrlen(szFil eNane))

| psei - >hl nst App =
reinterpret_cast <H NSTANCE>(W nExec(szFi | eNane, SW SHOW);
return S_OK;

}

/'l Prevent from doing anything if the name contai ns DEBUG
strlw (const_cast <LPTSTR>(| psei ->l pFile));
if(strstr(lpsei->lpFile, _ TEXT("debug")))

| psei - >hl nst App = reinterpret_cast <H NSTANCE>(42);
return S_OK;

}

// Let it continue...
return S_FALSE;

Editing the Registry Script

Before we analyze the code that's been added above, we need to do one more thing to make the
server completely self-registering. This involves supplementing the registry script code that's
provided by the Wizard, in order to add information specific to the shell execute hook.

250

Program Executors

Place this at the end of the file:

HKLM
SOFTWARE
{
M crosoft
W ndows
{
Cur r ent Ver si on
Expl orer
Shel | Execut eHooks
val {4F43D133-2951-11D2- BCOO- 7CA506C10000} = s "'
}
}
}
}
}
}
}

The hook is contained in ShowHook. dl | , and registration of the server is mostly automatic, thanks to
the Wizard code. What we've done here is to arrange that the hook's CLSID be correctly registered
under the Shel | Execut eHooks key.

How the Hook Works
Tracing is done by writing to disk

the verb used, the name of the file o [Seadh B

. Nopen: C:AWINDOWS\EXPLORER.EXE at 20.30.33 |
acted upon, and the time Of the Call, Nopen: C:\MINDDWS\Application Data\Hicrosoft\lInternet ExploreriQuick La
. . B{null): regsvr32 at 20.31.86
The following picture shows the B(null): regsur3? at 28.31.47
. Hopen: C:A\WINDOWSMEXPLORER.EXE at 20.31.54
results. Notice that the 10g also EExplore: E:\Book\SHELL\Text at 28.31.59
3 Ivi 3 BExplore: E:\Book\SHELL\Text\Chap88 at 28.32.88
includes traces of the activity during BExplore: E:\Book\SHELL\Text\ChapBS\Source at 20.32.82
a reboot (Sys Tr ay_ exe fOf BExplore: E:\Book\SHELL\Text\Chap@88\Source\NewLink at 28.32.83
. ’ BExplore: E:\Book\SHELL\Text\Chap88\Source\Show at 20.32.06
lIlStaJlCe). BExplore: E:\Book\SHELL\Text\Chap@8iSourcexShow\Debug at 28.32.07

E{null): regsvr32 at 20.32.24

B{null): G:\WINDOWS\SYSTEH\SysTray.Exe at 28.35.28

B(null): C:\WINDOWSASYSTEW\Mgactrl.exe at 28.35.28

E{null): C:\Program Files\Matrox MGA PowerDesk\ColoryHgcctl95.exe at 2
E{null}: C:\Programmi\WebSuriSistemaysuctrl.exe at 20.35.21

Nopen: E:AUTILITYMEXPFOLDA\Release\ExpFold.exe at 28.35.21

Nopen: D:\MsOffice\Office\FINDFAST.EXE at 28.35.22

Nopen: E:\Book\SHELL\Text\Chap@8\Chapter 8.doc at 28.35.37

Nopen: G:AWINDOUS\Application Data\Microsoft\Internet ExplorerifQuick Lal
Nopen: D:\DevStudio\SharedIDE\bin\MSDEV.EXE at 28.43.26 i

B{null): D:ADEUSTU™IASHARED™1A\BIN\REGSUR3Z2.EXE at 28.48.45

< | 2y

The code above also deals with naming — it attempts to recognize a list of key names, and then
translate them into applications. The list is kept in a . i ni file that's located in the root directory.
Typical content of the file would be something like:

[Gol dLi st]

reg=regedit.exe

tt =not epad. exe

AddNewHar dwar e=cont r ol . exe sysdm cpl, Add New Har dwar e

251

Chapter 8

The words on the left are recognized by the hook and translated into the command lines on the right.
This allows us to type AddNewHardware into the Run... box, for example, and the Wizard will start!
I'll say more about the syntax for the Wizard in Chapter 11.

Finally, authorization is covered by the last part of the Execut e() function, which prevents any
folder or any file whose name contains the string "debug" from being opened. Note though that if we
had forgotten to return a value greater than 32, we'd also have been presented with a nasty error
message box. This is just a demonstration, but consider the fact that Shel | Execut e() is called very
often throughout Explorer, and you should take great care over the size and duration of any custom
code that you hook to it.

Summary

As usual, I've covered a lot of ground in this chapter and revealed several pitfalls along the way. I
began with a discussion of W nExec(), moved on to Cr eat eProcess(), and then dealt with
Shel | Execut e() . After discussing the features and bugs of that function, I talked about

Fi ndExecut abl e(), which also has a few flaws.

Overall, Shel | Execut eEx() seems to combine the silent power of Cr eat ePr ocess() with the
flexibility of Shel | Execut e() . Support for PIDLs and policies, and the possibility of hooking,
makes Shel | Execut eEx() my candidate for the title of "Best Windows Program Executor"!

As my argument developed, I covered:

Q The features and bugs of Shel | Execut e() and Fi ndExecut abl e()

Q Why the Windows 98 Logo documentation recommends
Shel | Execut e() /Shel | Execut eEx() over Cr eat eProcess()

Q Where Shel | Execut eEx() extends the functionality of Shel | Execut e()
O How to extend Shel | Execut eEx() with hooking

Further Reading

A chapter with a wealth of information is the prelude to a wealth of further reading! If you want to
know more about the new Logo Requirements for Windows 98 applications, you can check out the
Platform SDK area of the MSDN Library. In particular, you might be interested in the Windows
Programming Guidelines section.

For more information concerning the shell functions that we have examined in this chapter, here's a
selection of Knowledge Base articles that may prove to be useful:

Article ID: Q94956: WinExec() Error Codes in Windows 3.0/3.1

Article ID: Q67673: How to Determine When Another Application Has Finished

Article ID: Q137572: How to Restart the Windows Shell Programmatically

Article ID: Q145701: How to Close a Shelled Process When Finished under Windows 95
Article ID: Q84456: TERMWAIT Spawns Task and Waits for its Termination

Article ID: Q174156: Programmatically Launch the Default Internet Browser

Article ID: Q140724: FindExecutable() Truncates Result at First Space in LFN

Article ID: Q182807: Problems Using SEE_MASK_INVOKEIDLIST with ShellExecuteEx()

Iy I Iy

252

Program Executors

If you're looking for an idea on how to write your own function to connect to the Internet, then you
should take a look at Stuart Patterson's article A GotoURL Function using ShellExecute(), which
appeared in the August 97 issue of WDJ.

If you're planning to experience the thrill of multi-monitor output, you would do well to begin by
reading David Campbell's How to exploit multi-monitor support in Memphis and Windows NT5.0, MS],
June 97.

Jeff Prosise explains how to get the context menu (and find out about the dynamic verbs of a file or a
PIDL) in his Wicked Code column in the April 1997 issue of MS]J.

Finally, for the registry and policies, I recommend Managing the Windows NT Registry, by Paul
Robichaux (O'Reilly). Despite the title, which implies that the book is specifically for NT, it turns out
that the book is also relevant to Windows 9x. A quick and dirty example of policy management can
also be found in an old article of mine, Testing the Autoplay via the Floppy Drive which appeared in
WDJ, December 1996.

253

]

Icons and the Windows Taskbar

If you ask non-programming people to point out the best features of Windows, you can be sure that
sooner or later they will mention the clarity of the icons as one of the most attractive aspects of the
system. No matter that Windows 98 now supports esoteric things like the Universal Serial Bus and
WDM (which looks more like the acronym of a new software conference than a common architecture
for device drivers); icons still remain dear to people's hearts. You have to admit that Microsoft always
gets the most out of its graphics people.

You need neither a passion for drawing nor an appreciation of fine art to realize that representing the
simple (and not-so-simple) concepts that lie behind menu commands, using just a block of 32 x 32
pixels and 16 colors, is a great achievement. What I like most about Microsoft's icons is that even at
the lowest resolution (16 x 16 pixels) they are clear and easily understood.

With the release of Windows 95, icons consolidated their already strong position in the Windows
jigsaw. They multiplied too — this was the time when 16 x 16 and even 48 x 48 resolutions were
introduced, with better support from the system for a larger number of colors. Icons that use 256
colors are now a common feature of many commercial products.

On a related theme, we should also consider the taskbar. It's certainly not the case that the taskbar is
only concerned with icons, but it makes very good use of them, from program buttons, through the
more recent quick-launch toolbars (introduced in shell version 4.71), to the tray area.

From the software writer's point of view, the best news from Microsoft has been the introduction of
the SHGet Fi | el nf o() function, the behavior of which we examined thoroughly in Chapter 4.
Despite its name, this function is at its best when working with icons. Furthermore, with the
introduction first of the Active Desktop and then Windows 98, a brand new interface has been
introduced for working with the taskbar. The structure of the taskbar window (and of the desktop
itself) has also altered considerably as a result of these changes.

Chapter 9

In this chapter, I intend to:

Provide an annotated overview of the functions you need to work with icons
Demonstrate how to extract icons from modules
Show the way to put and, above all, manage icons in the tray area

Examine the new layout of the taskbar

[S iy Wy

Explain the undocumented aspects of the new taskbar COM interfaces

Also in this chapter I'll write a function for browsing the icons contained in any executable file, and a
piece of code that can automatically restart the shell and, more importantly, detect when the shell
restarts. This latter point is directly related to a possible bug in the code of shel | 32. dI | that
manages tray icons.

What You Should Know About Icons

An icon can be used to identify any object that appears in the shell's namespace; it differs from a
bitmap mainly due to the presence of a bitmask. When combined with the pixel layer, this mask gives
the icon a kind of 'transparency' with respect to the underlying background. An icon can be a single
resource or a group of related pictures that reproduce the same subject at different resolutions and
color depths.

Throughout the Windows shell, icons are managed by the means of a COM interface called

| Ext ract | con, which we met in Chapter 5. | Ext ract | con is implemented by the code that
wraps namespace extensions, and for a file folder this code is in shel | 32. dl | . However, you can
provide your own | Ext ract | con through a shell extension module in order that you may
customize the shell's icons, and I'll show you how to do that in Chapter 15.

Windows provides a collection of standard icons that applications can load and use without the need
to unload them again afterwards. These icons are identified by symbols with the prefix | DI _ that are
defined in Wi nuser . h — typical examples are | DI _I CONQUESTI ON and | DI _I CONSTOP, which
you may have come across when using MessageBox() .

When created or loaded, an icon is assigned a unique handle whose type is H CON. Many of the
Win32 functions that work with icons require a handle of this kind. You have to release all the icons
that you create or extract explicitly from your modules, but that is not the case for system icons like
those mentioned above. Because they belong to the system, it frees them when it can.

Creating Icons

There are a variety of ways in which you can create icons. You can use an image editor and create a
. i co file, or you can use a resource editor and compile icons in a . r es file, together with the
application's other resources. It's also possible to create icons programmatically, in which case the
functions you might be interested in are:

Q Createlcon()
Q Createl conFronResource()
O Createlconlndirect()

256

Icons and the Windows Taskbar

The best way to create icons from within the code of a program, however, is by means of one of the
Windows 95 common controls: the image list.

Creating and Modifying Icons Programmatically

I showed you an example of how you could modify an existing icon programmatically by means of the
image list control in Chapter 5. Specifically, I demonstrated how to combine two icons dynamically.
The example produced the 'hand-held' folder icon that the system uses to denote that a given folder is
shared.

Creating new icons is easy too. Broadly speaking, what you should do is put an icon or a bitmap into
an image list control, and then read it back through | magelLi st _Get | con() . For example, if you
have an HBI TMAP, then you can convert it to an icon with the following code:

HI CON HBi t mapToH con(HBI TMAP hbm int cx, int cy)

HI MACGELI ST him = ImagelLi st_Create(cx, cy, ILC COOR 1, 1);
int i = ImageList_Add(him, hbm NULL);

HI CON hlcon = I mageList_GCetlcon(him, i, |1LD NORVAL);

| mageLi st_Destroy(him);

return hlcon;

This is a quite simple implementation; there are many other | LC_ and | LD_ flags that you could
have exploited in the calls to | mageLi st _Create() and | mageLi st _Get | con(), but I'll refer
you to the MSDN Library documentation of these functions for further details. An application that
obtains an icon this way must take care to free it when it is no longer needed.

Bitmaps and icons are much more alike than is commonly believed to be the case. You can extract a
structure called | CONI NFO from an HI CON using the Get | conl nf o() function:

BOOL Cet | conl nfo(H CON hlcon, PICONI NFO pi coni nfo);
The structure renders an icon and is defined as follows:

typedef struct _I CONI NFO
{

BOOL flcon; /! TRUE if the structure refers to an icon
DWORD xHot spot ; /'l x-coordinate of the hotspot (See bel ow)
DWORD yHot spot ; /] y-coordinate of the hotspot (See bel ow)

HBlI TMAP hbmvask; /1 Bitmask that makes the icon transparent
HBI TMAP hbmCol or ; /1 1con col or bitmp
} | CONI NFG

As you can see, there are HBI TMAPs inside any icon. | CONI NFOserves a dual purpose: it is used to
describe the internal structure of icons and cursors. The f | con member distinguishes the actual type
of the resource — it's TRUE for icons, and FALSE for cursors.

Don't be confused by the 'hotspot' member. Like cursors, icons have hotspots, but for the latter the
hotspot is always at the center of its area. For cursors, the location of the hotspot may change. The
most interesting parts of the structure, however, are the two HBI TMAP members, because they mean
that you have a system-provided means of converting an HI CON to an HBI TMAP. Here's a simple and
direct wrapper:

257

Chapter 9

HBI TMAP HI conToHBi t map(Hl CON hl con)

ICONINFO i i ;
Getl conlnfo(hlcon, &i);
return ii.hbnCol or;

Drawing Icons

Despite the means available for creating icons programmatically, you will usually end up loading
them from external files. There are several functions for doing this, but the most widely known are
Loadl con() and Loadl mage() . I'll examine these and the others in a moment. Even when you're
drawing icons, there are several methods you can use to place the icon on the screen. As usual, the
best approach depends upon exactly what you need to do. The simplest solution is to call

Drawl con() :

BOOL Drawi con(HDC hdc, int x, int y, H CON hlcon);

It's fast and easy to use, but it's not very flexible. Consider, though, that this function was introduced
back when icons only existed at a resolution of 32 x 32, and in 16 colors. Now, there are so many
types of icons that a simple function like this one just doesn't suffice. Dr awl con() can be used to
draw small and large icons, provided that you hold a valid handle to them, but that's the limit of its
versatility.

If you need to do more than Dr awl con() allows, a better approach is to use | mageLi st _Draw() .
This function allows you to apply graphic filters, such as blending. The 'selected' or 'ghosted' icons
that populate the Windows shell are realized with this technique.

Animated Icons

Animated icons have largely been superseded by animated GIFs and simple AVI files, but if you do
come across a situation in which you need to use them, Dr awl conEx() is the API function to
employ. It also gives you the ability to stretch the icon to a desired size.

Extracting Icons from Files

You have a range of choices for extracting icons from files. You can use Extractl con() or
Extractl conEx(), as well as Extract Associ at edl con(), Loadl mage() and
SHGet Fi | el nfo() . Let's compare and contrast these possibilities.

Function Description

Extractl con() Extracts a given icon from a file by specifying a zero-based
index. The function always returns the large icon.

Extract! conEx() Works like Ext ract | con(), but can extract both large
and small icons.

258

Icons and the Windows Taskbar

Function Description
Extract Associ at edl con() Returns the large icon associated with a given file or path
SHGet Fi | el nfo() Returns the large or small icons for a given file, path or

PIDL, and can apply some graphic effects too, as described
in Chapter 4.

Loadl mage() Extracts the icon from a given file at the desired resolution.
This is the only way to get at, say, 48 x 48 icons.

Loadl con() Extracts the icon from the resources of a given executable
file. The source file is identified by instance and not by
name. The icon is identified by ID and not by index.

As you can see, in the descriptions I've differentiated between functions that refurn an icon, and
functions that extract an icon. Members of the first group take the name of a file, folder or PIDL as
input, and walk the registry for the default icon to load. They are SHGet Fi | el nf o() and

Extract Associ at edl con() . Functions in the second set want the name of a file (EXE, DLL, ICO,
or similar) whose resources they will walk in order to find the specified icon, which is identified by a
zero-based index.

The distinction between returning and extracting is essentially academic, since all the functions give
you an HI CON as a result, from slightly different input parameters. You decide to load and return or
extract an icon depending on the information that you can give to the function.

Extractl con() requires a legacy HI NSTANCE argument that its sister function
Extract| conEx() does not need. Consequently, the prototype of the latter seems more natural
today:

HI CON Ext ract | con(H NSTANCE hl nst,
LPCTSTR szFile,
Ul NT nl conl ndex) ;

U NT Extract!conEx(LPCTSTR | pszFil e,
i nt nl conl ndex,
HI CON* phi conLar ge,
HI CON* phi conSmal |,
Ul NT nl cons);

As you can see, Extract| conEx() allows you to get both large and small icons. Furthermore, it is
also able to retrieve icons by their IDs. To do this, you should resort to a little trick and assign

nl conl ndex the negative value of the ID. For example, to get the icon with an ID of 1001 you need
to pass —1001. Notice that this feature is a specific 32-bit enhancement, and isn't available for the 16-
bit version of the function.

Of course, this technique won't work with icons that don't have a numeric ID. In those cases, you must
refer to the icon by index.

Extract Associ at edl con() is an earlier (and simpler) version of SHGet Fi | el nf o():

HI CON Ext ract Associ at edl con(H NSTANCE hl nst, LPTSTR | pl conPath, LPWORD I pilcon);

259

Chapter 9

This searches for the indexed icon in the specified file (or in its associated executable file) and always
returns the large icon. The function checks whether | pl conPat h addresses a file with embedded
icons, and if successful extracts the icon indexed by | pi | con. This is nearly identical to what
Extract | conEx() does. If | pl conPat h doesn't contain icons, Ext r act Associ at edl con()
attempts to locate the icon on a per-class basis. It figures out the type of the file by looking at the
extension (BMP, DOC etc), and walks the registry for the default icon for that type.

WORD W D;
Extract Associ at edl con(hlnst, _ TEXT("c:\nyfile.doc"), & D);

The above code, for example, returns the icon associated with Word documents, provided that you
have installed Microsoft Word. Interestingly, | pi | con is an input/output parameter that will be set
to the ID of the selected icon.

We carefully examined the features of SHGet Fi | el nf o() in Chapter 4, but remember that it
doesn't allow you to pick an icon from a file by number.

What About Loadlmage() and Loadlcon()?

It's worth taking a moment to discuss Loadl mage() and Loadl con() . For years, the latter was the
only way to access both application and system icons, and it has the advantage of a simple and easy-
to-remember prototype:

HI CON Loadl con(H NSTANCE hl nst, LPCTSTR szl conNane);

Unfortunately, it doesn't allow you to load icons from an ICO file and requires the executable (DLL,
EXE, OCX, DRV etc) to be loaded in memory to be able to extract icons. In fact, it locates the
resources through an HI NSTANCE handle. In this respect (and several others), Loadl mage() isa
great improvement. For example, it provides you with the ability to load an icon from a disk file, and
at a size you request. If such an icon exists, it is loaded. Otherwise, the nearest icon is stretched to the
required dimensions.

H CON hl con = Loadl mage(hl nst, szl conName, | MAGE | CON, 48, 48, LR DEFAULTCOLOR);

The line of code above demonstrates how to load a 48 x 48 icon. Furthermore, the final parameter of
Loadl mage() can be used to apply filters to the icon's colors.

Loading System Icons

To load a system icon, such as the Windows logo or the question mark, you just need to pass NULL as
the application instance:

H CON hl con = Loadl con(NULL, MAKEI NTRESOURCE(1 DI W NLOGO))

You don't need to free this icon, because it belongs to the system and will be freed upon shutdown.
If you're not familiar with SDK programming, you should note that the MAKEI NTRESOURCE() macro
serves the purpose of casting numeric IDs into strings, to fit the prototypes of the LoadXXX() functions

that load resources. MAKEI NTRESOURCE() is also used inside MFC code, but this is hidden from the
programmer.

260

Icons and the Windows Taskbar

The System's Image List

As long as the shell or your applications are using icons, the system caches them in order to provide
quicker access and easier icon manipulation. This cache is implemented by means of an image list.
You can get the handle to this through SHGet Fi | el nf o() by specifying the

SHGFI _SYSI CONI NDEX flag. If you want the list of small icons, just add the SHGFI _SMALLI CON
flag. (See Chapter 4 for details about this function.)

Which is the Best Way?

So, what's the best way to extract icons? In the light of my experience, I would recommend that you
use Extract | con() if you just want to get icons from a file and provided that you don't need small
icons. If you do need small icons, then you absolutely must use Ext ract | conEx() .

Going further up the chain, any time you need to know the icon that the shell has associated with a
file object (a drive, a folder, a printer, an ordinary file, etc.), use SHGet Fi | el nf o() instead.

Loadl mage() is rather more complex than Loadl con(), so I recommend that you resort to it only
if you need an icon at a specified resolution, say 48 x 48.

This has been a fairly rapid overview of ground-level icon programming. If you need to get further into the
details, you should refer to the MSDN Library.

Assigning Icons to Dialog Boxes

If you're creating top-level windows, or more generally, if you can control the classes of your
windows, then assigning icons is hardly an issue at all. You just have to set the appropriate member
of the WNDCLASS structure, and make a call to Regi st er Cl ass() . If you want to handle small
icons too, you should use WNDCLASSEX and Regi st er Cl assEx() instead, but the idea is the same.

But what about dialog boxes? These have a system-defined class called WC_DI ALOG (the value of this
symbol is #32770), over which you have no control. Moreover, were you to change the icon assigned
to this class, all the dialog boxes throughout the system would be affected. While this is not
recommended because of the impact it may have on the whole system, you could change the icon of
all dialogs by calling Set Cl assLong() :

Set d assLong(hDl g, GCL_HI CON, reinterpret_cast<LONG>(hl conNew)) ;

The hDI g argument is a window handle that's used as an indirect reference to its class. In other
words, the function changes the icon for the class to which the window belongs.

Fortunately, if you just want to change the icon of a single dialog, there are a couple of messages that
allow you to do it: WM_SETI CON and WM_GETI CON. As the names suggest, the former lets you set the
icon assigned to a particular dialog, while the latter reads the current Hl CON. You can call the
following code at any time that suits your needs (but typically in response to the WM_| NI TDI ALOG
message):

SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmal l));
SendMessage(hDl g, WM SETI CON, TRUE, reinterpret_cast <LPARAM>(g_hl conLarge));

261

Chapter 9

The | Par amargument of the message is the HI CON, large or small. The wPar amtells the system how
to store and consider that icon — in practice, it denotes in which system image list the icon should be
stored. It should be FALSE for small icons, and TRUE for large icons. Conversely, the following code
shows how to get the icons (both large and small) from a dialog window:

H CON hl conSm
H CON hl conLg

SendMessage(hDl g, WM GETI CON, | CON_SMVALL, 0);
SendMessage(hDl g, WM GETI CON, I CON BIG 0);

Browsing for Icons

The ability to browse for icons is a feature that could enrich many programs. Unfortunately, there's
no documented way of generating a dialog like the one in this figure programmatically:

Change lcon H I

File name:
IE: W IND 0w SAEXPLORER . EXE

Current icon:

A
QK I Cancel | Browsze. |

In case you're wondering, this dialog is the one that appears when you open the Properties dialog of
a shortcut and click on Change Icon.... The figure shows all the icons contained in Expl or er . exe.

How hard would it be, then, to write a function (let's call it SHBr owseFor | con()) that works like

the dialog in the picture? In fact, it's easier than it sounds, as I shall demonstrate in this Wrox
AppWizard-based DLL project that I called SHHel per.

A SHBrowseForilcon() Function
I chose this prototype for the function and added it to SHHel per. h:

i nt SHBrowseFor| con(LPTSTR szFile, H CON* | phlcon);

SHBr owseFor | con() takes the name of the file to browse, and a pointer to a handle where the
function will store the selected icon. On success, the function also returns the zero-based index of the
icon you picked up; on failure, it returns -1.

262

Icons and the Windows Taskbar

IDC_FILENAME

| \]Lf IDC_BROWSE

ted

yellow green

magenta

———+1— IDC_LIST

cyan blue

Oican(s)

IDC_ICONCOUNT IDOK

Of course, the function needs a dialog template, and the above screenshot shows what mine looks
like — I gave it the identifier | DD_BROWSEI CON. The behavior of SHBr owseFor | con() is intuitive,
and can be summarized in the following steps:

0O000D

Create an image list to hold all the icons contained in the file

Extract the icons and fill the image list

Associate the image list with a list control, and fill the list control

Get the currently selected icon, and go back to its index in the image list
Extract the icon from the image list, and return

The code for the function looks like this:

i nt SHBrowseFor | con(LPTSTR szFil e,

{

HI CON* | phl con)

/1 The function assunes default-sized icons (usually 32 x 32)
int cx = CGetSystemvetrics(SM CXl CON) ;
int cy = GetSystemvetrics(SM CYl CON) ;
| strcpy(g_szFi | eNane,
g_him

szFile);
= I magelLi st_Create(cx, cy, ILC MASK, 1, 1);
Di al ogBox(g_hThi sDl |,

MAKEI NTRESOURCE(| DD_BROWSEI CON), Cet Focus(), Browsel conProc);
/'l Free the inmage |ist

| mageLi st _Destroy(g_him);

/1 Set the return values (the file m ght have changed)
*| phl con = g_hl con;

| strcpy(szFile, g_szFil eNane);

/1 This index has been set by the dial og procedure
return g_il conl ndex;

263

Chapter 9

Firstly, we create a global image list, specifying that we're interested in default-sized pictures (usually
32 x 32 pixels). Then, we display the dialog. Once the dialog is closed, we destroy the image list and
set the return values — the selected icon (or NULL if the dialog has been canceled) and its index. In
both cases, we make use of global variables that are set by the dialog's window procedure.
Furthermore, since our dialog template provides a browsing button, the file from which the selected
icon comes may not be the same as we get initially from the caller application. We return the file
name too, using the same szFi | e buffer.

The code that follows comprises the dialog's window procedure, and some helper functions that it
uses internally.

BOOL CALLBACK Browsel conProc(HWND hDi g, U NT ui Msg, WPARAM wPar am LPARAM | Par an)

{
swi t ch(ui Msg)
{
case WM I NI TDI ALOG
OnlnitDi al og(hD g);
br eak;
case VWM _COVVAND:
swi t ch(wPar am
case | DC_BROWSE:
OnBrowse(hDl g) ;
br eak;
case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;
case | DOK:
DoGet | con(hDl g) ;
EndDi al og(hDl g, TRUE);
return FALSE;
}
}
return FALSE;
}
void OnlnitD al og(HWND hDl g)
{
HWAD hwndLi st = GetDiglten(hD g, |IDC LIST);
Set DIl gl t enText (hDI g, | DC_FI LENAVE, g_szFil eNane);
Li st Vi ew_Set | mageLi st (hwndLi st, g_him, LVSIL_NORNAL);
DoLoadl cons(hDl g, g_szFil eNane);
}

voi d OnBrowse(HWND hDI g)

TCHAR szW nDi r [MAX_PATH] = {0};
TCHAR szFi | e[l MAX_PATH] = {0};
/1l Browse for files...

OPENFI LENAME of n;

Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;
of n. 1 Struct Si ze = si zeof (OPENFI LENAME) ;

264

Icons and the Windows Taskbar

ofn.lpstrFilter = _ _TEXT("lcons\0*.exe;*.dll;*.ico\0");
of n. nMaxFi | e = MAX_PATH;
Get W ndowsDi rectory(szWnbDi r, MAX PATH);
ofn.IpstrinitialDir = szWnDir;
ofn.lpstrFile = szFile;
i f(!GetOpenFil eName(&ofn))

return;

Set Dl gl t enifext (hDl g, | DC_FI LENAVE, ofn.lpstrFile);
DoLoadl cons(hDi g, ofn.IpstrFile);
| strcpy(g_szFil eNanme, ofn.lpstrFile);

The heart of SHBr owseFor | con() lies in the DoLoadl cons() and DoGet | con() functions. They
extract the icons for filling the list control and get the selected icon when the user clicks the OK
button respectively.

int DoLoadl cons(HWND hDl g, LPTSTR szFil eNane)
{
TCHAR szStatus[30] = {0};

/1 Get the nunber of icons
int i NumOf I cons = reinterpret_cast<int>(
Extractlcon(g_hThisD |, szFileNane, -1));

/1 Update user interface

HWAD hwndLi st = GetDi glten(hD g, | DC_LIST);

Li st Vi ew Del et eAl | | t ens(hwndLi st) ;

wsprintf(szStatus, _ TEXT("% icon(s) found."), iNunCfIcons);
Set Dl gl t eniText (hDI g, | DC_| CONCOUNT, szStatus);

/1 Fill the inage list and the list view at the same tine
for(int i =0 ; i <iNumOflcons ; i++)

HI CON hlcon = Extractlcon(g_hThisD |, szFileNane, i);
int ilndex = | mageli st_Addl con(g_him, hlcon);

/1 Add to the list view

LV_I TEM | vi ;

ZeroMenory(& vi, sizeof (LV_ITEM);

Ivi.mask = LVI F_I MAGE;

Ivi.iltem=ilndex;

lvi.ilmage = il ndex;

Li stView | nsertltem hwndLi st, & vi);
}

return i NunOFf | cons;

voi d DoGet | con(HWAD hDl g)
HWAD hwndLi st = GetDi gltenm(hD g, | DC_LIST);

// Get the index of the list views selected item

g_ilconlndex = -1;
int i = ListView GetNextlten(hwndList, -1, LVN _SELECTED);
if(i ==-1)

return;

265

Chapter 9

g_ilconlndex = i;

/1 Get information about the selected item
LV_ITEM | vi ;

ZeroMenory(& vi, sizeof (LV_ITEM);

Ivi.mask = LVI F_I MAGE;

lvi.iltem=i;

Li st View Getltem hwndList, & vi);

I/l Get the image list index of the icon and return the H CON
g_hlcon = I mageLi st_Getlcon(g_him, Ivi.ilnage, 0);

A quick (and bitter!) note about list views: I just don't understand the reason why they have such
a quirky and bewildering programming interface — I'm referring in particular to the algorithm
required to get the selected item. Of course, if you don't know the solution already (or who to
ask!), the chances are that you'll resort to... owner-drawn list boxes.

Once we know the index of the selected list view item, we could avoid passing through the list view
and the image list to get the Hl CON — we could re-call Ext r act | con() with the current filename
and icon index instead. I chose the approach you see here in the belief that it is more efficient
because we won't have to access a disk file again. If the system itself is dynamically maintaining an
image list, we can reasonably hope that it is the best solution.

To compile and make the DLL usable, you now need to add an entry for SHBr owseFor | con() to
the DEF file, and to complete the header and library file lists. The header files required for this
project are shl obj . h, resour ce. h, commdl g. h and shel | api . h, while the libraries you need to
link to are contt| 32.1i b and condl g32.1i b.

How to Call SHBrowseForicon()
I shall use SHBr owseFor | con() in a real world example in Chapter 11, but to conclude this
section, let's have a quick look at how an external application might call it:

int ilconlndex = SHBrowseFor| con(szFi | eNane, &hlcon);
if(ilconlndex >= 0)

IC.\W’INDDWS\SYSTEM\SheIBZ.dII |

.
j
5 9 W

80 icon(z)

o

266

Icons and the Windows Taskbar

The Tray Notification Area

The tray notification area (TNA) is a window of class
TrayNot i f yWhd that lies at the right hand edge of the taskbar

(when the taskbar is placed horizontally). ‘ Yac) 1324

By default, the system places a child window containing the clock (class Tr ayCl ockWCl ass) in the
TNA. Some of the icons that appear by default in your TNA are set during system startup by a
program called systray. exe, which may add icons depending upon your hardware. Typically, it
adds an icon if you have a sound card, or the machine is a laptop. If you want your own icons to
appear in the TNA at startup, you have to write your own program to manage the TNA and place it
in the St ar t up folder.

We met the TNA briefly in Chapter 7, when we discussed a tool to create folders through Explorer by
hitting a key. Here we'll delve deep into the details of how to manage icons in the TNA.

Of course, there's a function to add or remove icons in the tray area programmatically; its name is
Shel | _Notifylcon(). Anicon placed in the tray area can have an ID, tooltip text, a context menu
and a window with which to communicate and notify it of mouse events. You probably won't be
surprised to discover that we'll run into a couple of nasty bugs too.

Putting Icons in the Tray Notification Area
The Shel | _Not i fyl con() function has the following prototype:

BOOL W NAPI Shel | _Noti fyl con(DWORD dwiMessage, PNOTI FYlI CONDATA pni d) ;

NOTI FYlI CONDATA is a structure that gathers all the data we want to use to configure the icon in the
tray notification area. The dwMessage parameter specifies the action we want to accomplish:

Action Description

NI M_ADD Add a new icon to the tray area

NI M_DELETE Remove an existing icon from the tray area
NI M_MODI FY Modify an existing icon in the tray area

Each icon is fully described by the following structure:

typedef struct _NOTI FYI CONDATA

DWORD cbSi ze;
HWD hwd;
U NT ul D
U NT uFl ags;
U NT uCal | backMessage;
HI CON hl con;
char szTip[64];
} NOTI FYI CONDATA, *PNOTI FYI CONDATA;

267

Chapter 9

Member Description

hwhd

ul D

chSi ze Must contain the size of structure.

uFl ags Specifies what combination of the following members is used by the

uCal | backMessage ID of the message the icon will use to communicate with the hWhd

hl con Handle of the icon to be shown. It should be a small icon (16 x 16),

szTip Text of up to 64 bytes in length for the icon's tooltip. Requires

The handle of the window that will receive notification messages
from the icon.

The icon identifier — that is, a user-defined value that allows the
caller application to identify the icon uniquely.

function: uCal | backMessage, hl con and szTi p, represented by
the flags NI F_MESSAGE, NI F_I CON and NI F_TI P respectively. If
you're using any of these members, remember to turn on the
corresponding flag.

window. Requires NI F_MESSAGE to be set in uFl ags.

but the system will automatically apply stretching, if needed.
Requires NI F_I CON to be set in uFl ags.

NI F_TI P to be set in uFl ags.

With this knowledge, putting an icon in the tray notification area is a fairly simple task that you can
accomplish like this:

NOTI

FYI CONDATA ni d;

Zer oMenor y(&ni d, si zeof (NOTI FYI CONDATA)) ;

ni d.
ni d.
ni d.
ni d.
ni d.
ni d.

cbSi ze = si zeof (NOTI FYI CONDATA) ;

hwid = hwd;

ulD = 1 CONLI b;

uFlags = NNF_TIP | NIF_ICON | N F_MESSAGE;
uCal | backMessage = WM MYMESSAGE;

hl con = hSnal | | con;

I strcpyn(nid.szTip, _ TEXT("This icon's been added by nme!"), 64);

Shel

| _Notifylcon(NI F_ADD, &nid);

Deleting an icon is much simpler, since you don't have to set any members other than ul D and

chSi ze

. You can modify any of the previously set arguments at any time in order to reflect changes

in your applications. In this case, you would use NIl M_MODI FY instead of NI M_ADD when calling
Shel | _Notifylcon().

Outlook Express, for example, uses NI F_MODI FY to show a little animation when sending or
receiving data. Similarly, the envelope icon that shows up when you have new unread e-mail is added
using a NI M_ADD message, and then removed through NI M_DELETE.

268

Icons and the Windows Taskbar

Notifying Mouse Events

When discussing tray icons, an incorrect (but commonly accepted and understood) expression that
you'll hear is, "The icon notifies the window of all the mouse events." In fact, all that's wrong is the
subject of this sentence; we should say, "The Tr ayNot i f yWhd window notifies the specified window
of all the mouse-related events." The actual icons are drawn in the client area of the

TrayNot i f yWhd window. The size of this window changes according to the number of icons it
contains, and the screen edge where the taskbar is docked.

If the TrayNot i f yWhd window detects that the mouse is doing something that affects one of its
icons, then it lets the window associated with the icon (the hWhd member of the NOTI FYI CONDATA
structure) know about it. In practice, when the mouse is moved, clicked or right-clicked over the
bounding rectangle of the icon, the messages produced by the system are forwarded to the window.

Referring to the sample above, the message sent has the following form:
SendMessage(ni d. hwad, ni d. uCal | backMessage, nid.ul D, | Paran;

The wPar amargument of SendMessage() is the identifier of the icon on which the event
originated, while | Par amis the message code: WM_RBUTTONUP, \M_L BUTTONUP, W\M_MOUSEMOVE
and so on. Note that because of this, no information related to the original message (the mouse
position, for example) is forwarded to the application's window. Here's how a window could handle
the notifications it gets from a tray icon:

case W MYMESSAGE:
i f (wParam == | CON_I D)

{
swi tch(l Param

{
case VW _RBUTTONUP:

ShowCont ext Menu() ;
br eak;

case VW _LBUTTONUP:
DoMai nActi on();
br eak;

}
}

Normally, the window associated with a tray icon will do two things:

Q Display a context menu in response to a right-click on the icon

Q Execute a primary action when the user clicks on the icon. In most cases, this means displaying a
dialog box

Conversely, the window has nothing to do in order to display the tooltip. Tooltips are handled
transparently by the Tr ayNot i f yWhd window.

Writing Tray Applications

A tray-based application has a slightly different layout from any other Windows program. It should
still have a main window, but in most cases this is invisible. This window will receive and process
events in the background, and possibly be displayed only after the user clicks or double-clicks the
icon.

269

Chapter 9

There's no rule that prevents an application from having a visible main window as well as a tray icon.
However, you should use a tray icon as an indication to the user that your program is up and running
behind the scenes — this is particularly applicable to programs that don't require a great deal of
interaction with the user. The idea is that when necessary, you click on the tray icon and the user
interface pops up for you to work with.

Tray applications might be seen as the Windows equivalent of the old MS-DOS TSR (Terminate and Stay
Resident) programs. If you haven't had the pleasure of dealing with MS DOS programming, TSRs were
applications that were idle from loading until you pressed a particular key combination. They then awoke
and a dialog popped up.

Over the next few pages, I'll outline the basic code necessary for a simple tray application. In the

W nMai n() function, we first load the small icon to put into the tray area and then create the dialog
to receive messages. Once we've set the icon (a task accomplished by Trayl con()), we enter the
loop that keeps our program alive and running. When we exit that loop, it's time to free the icon and
terminate the application.

int WNAPI W nMai n(HL NSTANCE hl nst ance, H NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne, i nt nCndShow)
{

/1 Copy the instance handle to a gl obal
g_hl nstance = hl nst ance;

/1 Load the 16x16 icon to go into the tray
H CON hSmal | | con = reinterpret_cast <H CON>(Loadl mage(hl nst ance,
__TEXT("APP_I CON"), | MAGE | CON, 16, 16, 0));

// Create an invisible dialog to get nessages fromthe icon
HWD hDl g = CreateDi al og(hl nstance, __TEXT("DLG MAIN'), NULL, APP_D gProc);

/1 Show the icon
Trayl con(hDl g, hSnalllcon, N M ADD);

// Enter the |oop to keep this program running
M5G nsg;
whi | e(Get Message(&rsg, NULL, 0, 0))

i f(!lIsD al ogMessage(hD g, &mrsg))

Transl at eMessage(&sQ) ;
Di spat chMessage(&s9) ;

}

// Rermove the icon and exit

Trayl con(hDl g, hSmall1con, N M DELETE);
Dest r oyW ndow(hDl g) ;

Destroyl con(hSnal | | con);

return 1;

What's different from a traditional Windows program? The answer is that you don't make the main
window visible, and instead have to deal with the tray area. The next function shows how to do this.
The value set in the uFl ags field means that we wish to support a callback message, an icon and a
tooltip.

270

Icons and the Windows Taskbar

The callback message is a user-defined message to be declared as an offset of WM_APP:

const

int WM EX MESSAGE = (WM APP + 1);

BOOL Trayl con(HWND hwhd, HI CON hl con, DWORD nsg)
{
NOTI FYI CONDATA ni d;
Zer oMenory(&ni d, si zeof (NOTI FYI CONDATA)) ;
ni d. cbSi ze = si zeof (NOTI FYI CONDATA) ;
ni d. hWhad = hWhd;
nid.ulD = | CON_I D
nid.uFlags = NNF_TIP | NIF_ICON| N F_MESSAGE,
ni d. uCal | backMessage = WM _EX_MESSAGE;
ni d. hlcon = hl con;
I strecpyn(nid.szTip, _ _TEXT("This icon's been added by ne!"), 64);
/1 Performthe specified operation on the icon
return Shell _Notifylcon(nsg, &nid);
}
A typical example of a tray application is the k& volume Control ISE E3
Volume Control that's present on almost all Options Help
WlndOWS SySt.emS' When' you click on the Wolume Control | 'wave CD Audio Synthesizer
1com, the conflguratlon dlalog appears: Balance: Balance: Balance: Balance:
AL VR IR
Wolurne: Wolurne: Wolurne: Wolurne:
[~ Mute al ¥ Select ¥ Select ¥ Select
|ESS AudioDnive Mixer [220]

Pay Attention to the Context Menu

A common feature of tray applications is the context menu that appears after you right click on the
icon. The following is a typical window procedure for the hidden window of a tray program.

BOOL CALLBACK APP_DI gProc(HW\D hDi g,
swi t ch(ui MsQ)

{
case W _COWVIVAND:
swi t ch(LOADRD(wPar am))

{

case | DCANCEL:
Post Qui t Message(0) ;
return FALSE;

}

br eak;

Ul NT ui Msg,

WPARAM wPar am LPARAM | Par an)

271

Chapter 9

case WM EX MESSACE:
i f (wParam == | CON_I D)

swi t ch(| Param

{
case VWM RBUTTONUP:
Cont ext Menu(hDl g) ;
br eak;
}
}
br eak;

}
return FALSE;
}

When the specified message is received and the icon involved has been verified (this is important
because the same application might add more icons), you can display a context menu. The context
menu is managed entirely by the window associated with the icon and is not a feature of the system
tray.

Displaying a context menu is not a problem; here's some vanilla code to do it:

voi d Cont ext Menu(HWAND hwnd)

{
HVENU hmenu = LoadMenu(g_hl nstance, MAKEI NTRESOURCE(| DR_MENU)) ;
HVENU hmmuPopup = Get SubMenu(hnenu, 0);
Set MenuDef aul t | t em(hmmuPopup, | DOK, FALSE);
PO NT pt;
Get Cur sor Pos(&pt) ;
Tr ackPopupMenu(hmuPopup, TPM LEFTALIGN, pt.x, pt.y, O, hwnd, NULL);
Dest r oyMenu(hmmuPopup) ;
Dest r oyMenu(hnenu) ;
}

The code loads a menu from the application's resources, extracts the first popup menu and declares
one default item to be drawn in bold with the call to Set MenuDef aul tItem().

When you right click on the icon, the context menu appears, as you would expect it to. Great!
However, for this first run, you don't want to test any of the menu commands, so click outside the
menu to cause it to disappear. You will find that the menu stubbornly remains in place, but
disappears as soon as you move the mouse over its area. In other cases, you'll end up with a menu
that hides nervously behind the taskbar:

Haln

|
[&GE 1507

This is a known bug (see Further Reading), but you can solve it by enclosing calls to
TrackPopupMenu() or TrackPopupMenuEx() between a pair of calls to
Set For egr oundW ndow() :

272

Icons and the Windows Taskbar

voi d Cont ext Menu(HWND hwnd)

{
HVENU hnenu = LoadMenu(g_hl nstance, MAKElI NTRESOURCE(| DR_MENU)) ;

HVENU hmmuPopup = Get SubMenu(hnenu, 0);
Set MenuDef aul t | t en{ hmmuPopup, | DOK, FALSE);

PO NT pt;

Get Cur sor Pos(&pt) ;

Set For egr oundW ndow(hwnd) ;

Tr ackPopupMenu(hmmuPopup, TPM LEFTALIGN, pt.x, pt.y, O, hwnd, NULL);
Set For egr oundW ndow(hwnd) ;

Dest r oyMenu(hmmuPopup) ;
Dest r oyMenu(hnenu) ;

This ensures that all the input gets redirected to our window, which can then dismiss the menu. The
bug is in the code of the Tr ayNot i f yWhd window, not in Tr ackPopupMenu() or our application.

How Many Icons are in the Tray Notification Area?

I'm not sure whether it would ever become an issue, but there's no documented way to discover
programmatically how many icons are stored in the tray notification area. If it becomes important in
your application, then you could try to get a result by examining the size of the Tr ayNot i f yWhd
window. This is not simple, though, because you have to take into account the different edges where
the taskbar can be docked, and whether the clock is being shown. If the taskbar is vertically aligned
then the icons are usually displayed below the clock, but if the taskbar is wide enough they will be
drawn next to it. Furthermore, the icons can sometimes be drawn in a single column. You get the
picture: the number of different possibilities is large, and overall it's a real mess.

Detecting When the Shell Restarts

If for any reason the shell is restarted, the icons in the tray notification area aren 't restored. This is
clearly due to a bug in shell code and, depending on how many icons you have in the tray, it might
be rather bothersome. However, restarting the shell is not an operation we expect to do frequently. In
my experience there are a couple of circumstances where it may be necessary: to recover an Explorer
crash (a GPF), or to obtain a brand new instance of it during the test of a shell extension. In the
former case, it's the system that recreates a new instance of the shell objects. In the latter case it's
entirely down to us. We can do it either programmatically or manually.

If we need to restart the shell programmatically, we can employ the following (surprisingly simple)
code:

voi d SHShel | Restart ()

HWAD hwnd = Fi ndW ndow(__ TEXT(" Prognman"), NULL);
Post Message(hwnd, WM QUI' T, 0, 0);
Shel | Execut e(NULL, NULL, _ TEXT("explorer.exe"), NULL, NULL, SW SHOW ;

We first quit the shell's main window, and then run it again. When you launch expl or er . exe it first
verifies whether or not there's another running instance. If not, it creates the taskbar and initializes
the Windows shell, otherwise it simply pops up the traditional browser.

273

Chapter 9

Under Windows NT, the taskbar is created each time expl or er . exe is launched in an empty
desktop. Even in Windows NT jargon, a desktop is exactly what you think it is: the on-screen
work area with menus, icons, windows, hooks and running programs. What's different is that
Windows NT lets you create multiple desktops and have them working at the same time.

However, only one such desktop is visible to the user at a time. The screensaver, for example, runs in a
separate desktop from the rest of your active programs. You can use API functions to create new desktops
and switch among them — Cr eat eDeskt op() and Swi t chDeskt op() are two of these. Windows
9x supports just one desktop.

Is there a way to detect when the shell restarts? If so, an application that relies heavily on tray icons
could restore them programmatically, simply by re-executing a piece of code. Happily, the Internet
Client SDK provides the answer: each time the shell restarts and recreates the taskbar, it registers and
broadcasts a message called Taskbar Cr eat ed.

Any application that is listening for this message, therefore, can restore its icons or do whatever else
it may need to do in response to the shell restarting. The code required is straightforward: the
program must register the same message, and store the value returned when it does so. This value is
guaranteed to be valid and unique throughout the system and the session.

U NT g_uShel | Restart;
g_uShel | Restart = Regi st er WndowVessage(__ TEXT(" Taskbar Created"));

When you register a message that's already been registered by another module, you're actually returned the
value assigned. In this way both modules know the message and can communicate through it.

A good time to do this registration is during the initialization of your application. Any action in
response to the shell restarting must then be coded in the window procedure:

i f(uiMsg == g_uShel | Restart)

}

Note that this feature is only available with shell version 4.71 or higher. In my opinion, the presence
of the Taskbar Cr eat ed message is an indirect confirmation (because a workaround is provided) of
the bug that causes the tray icons to disappear on shell restarts that I mentioned earlier.

Restarting the Windows Shell

Earlier in this section, I demonstrated a simple function that you could call from your programs in
order to restart the Windows shell. However it's also possible to do this 'manually’ with the following
steps:

Press Ctrl-Alt-Del.

Select Explorer from the Task Manager and kill it

When the typical shutdown window appears, cancel the operation

A few seconds later, the system will warn you that Explorer is not responding — kill the task

[Iy S

A few more seconds, and finally the shell restarts with a brand new taskbar

274

Icons and the Windows Taskbar

Knowing how to restart the shell (manually or programmatically) becomes an important issue when it
comes to developing shell extensions, because sometimes it's the only way to unload such a module
and make it possible to recompile it during the edit/compile/debug cycle.

The Layout of the Taskbar

As I pointed out in Chapter 2, the layout of the taskbar changed with the advent of shell version 4.71.
The main window is still Shel | _Tr ayWhd, and it still has the Start button and the Tr ayNot i f yWhd
as child windows, but the difference is that the tab control window that shows the active tasks is
contained in a coolbar window. This window shares the available space with a number of toolbar
windows.

‘ Start ‘ ‘ Coolbar ‘ ‘ Tray ‘

‘ Toolbar 1 ‘ ‘ Active Task }f‘ Toolbar n ‘ ‘ Clock ‘

The new layout is presented in the above diagram. The toolbars 1 to n may be added to the coolbar
using the taskbar's context menu, which you can obtain by right-clicking on the taskbar.

When a Window Goes in the Taskbar

The Windows taskbar is actually a tab control with a special TCS_BUTTONS style that gives each page
a button-like look. What you see in the taskbar aren't buttons at all, but just tabs of a

SysTabCont r ol 32 window. (SysTabCont r ol 32 is the official class name for a tab control.) To be
absolutely precise, this is not directly owned by the taskbar — there's an MSTask SWWCl ass window
in the middle. This information can easily be verified through Spy++.

By default, the tabs of a tab control have no content — it's up to your code to fill them. The control
itself is limited to notifying selection changes to its parent. In the case of the taskbar, the tabs display
the icons and captions of some top-level windows.

What appears on the taskbar is not a list of a/l the processes running at a certain moment in time. To
get this information, you should not rely on the taskbar, or on the Windows 95 Task Manager.
Instead, you should resort to specialized tools like the Process Viewer that comes with Visual C++. In
Chapter 15 I'll create a shell extension that uses the same logic as the Process Viewer to enumerate
processes.

Not all processes have a window that goes in the taskbar, or put another way, not all windows are
eligible to go in the taskbar. The taskbar only accepts:

QO Ownerless, visible windows
Q Owned, visible windows with the W5_EX_APPW NDOWextended style

The taskbar always rejects:

4 Invisible windows
Q Owned, visible windows with the W5_EX_TOOLW NDOWextended style

Q Visible windows owned by an invisible window

275

Chapter 9

Toggling the Visibility of the Taskbar

In Visual Basic, forms can have the Showl nTaskbar attribute. If you put Spy++ to work on a Visual
Basic form with this attribute set, you'll find that the value of Showl nTaskbar evaluates to the state
of the W6_EX_APPW NDOWhbit. In other words,

For mL. Showl nTaskbar = True
means
DWORD dwStyl e = Get W ndowLong(For nil. hWhad, GW._EXSTYLE) ;

dwsStyl e | = W5_EX_APPW NDOW
Set W ndowLong(For mlL. hWwhd, GAL_EXSTYLE, dwStyle);

On the other hand,

For mL. Show nTaskbar = Fal se
means

dwstyl e = Get W ndowLong(For mL. hWhd, GAL_EXSTYLE) ;
dwsStyl e & ~W5_EX_APPW NDOW
Set W ndowLong(For niL.. hwhd, GWN._EXSTYLE, dwsStyle);

Flashing a Window

There are functions and techniques in the Windows SDK that survive for years in obscurity. Then,
someone makes use of one of them in some well-known application and the poor function or
technique has its moment of glory. This happened when owner-drawn menus were brought into the
spotlight by Visual Studio 97 and Office 97, and now it's happening again for Fl ashW ndow(),
which is used to notify important but invisible messages in the Active Setup.

FI ashW ndow() is used to toggle the active/inactive color of a window's caption as if you were
manually activating/deactivating it. When the window is iconic and displayed in the taskbar, the
color of the button that renders the specified window changes.

BOOL Fl ashW ndow(
HWND hWhd, /! Handle to wi ndow to flash
BOOL bl nvert /1 Flash status

The hWhd argument identifies the window to flash, while bl nver t, if TRUE, denotes that you want to
invert the color of the caption (active to inactive, and vice versa). If FALSE, the window caption is
returned to its original status, be it active or inactive. Fl ashW ndow() is used to inform the user that
there's an important message window in the background.

This function might be very helpful, but as it stands it has a significant flaw. Fl ashW ndow() is
designed to flash only once, but you really need to do it repeatedly to capture the user's attention.
(Remember that the flashing window is not in the foreground, so the user may not notice it.)
Wouldn't it be nice to have a function that uses a timer to flash continuously for a few seconds?

276

Icons and the Windows Taskbar

A function to fulfil this role is unavailable on earlier platforms, but Windows 98 comes with a
FI ashW ndowEx() function that fills the gap, and which makes flashing a window on the taskbar as
easy as calling a single function:

BOOL Fl ashW ndowEx(PFLASHW NFO pfwi) ;
The FLASHW NFO structure is declared as follows:

typedef struct

U NT cbSi ze; /] Size of the structure, in bytes
HWD hwnd; /1 Wndow to flash

DWORD dwFl ags; /1 Flash status

U NT uCount; /1 Nunber of tinmes to flash

DWORD dwTi neout ; /1 Flash tinmeout

} FLASHW NFO, * PFLASHW NFGQ,

The Windows Taskbar

The Win32 API defines a few functions to create application desktop toolbars (appbars). These
objects are rather like 'custom taskbars', and have their official representative in the Office Shortcut
bar. It's useful for commercial products to be able to gather and make available their main
functionality in a single, desktop-based window, and this is particularly true for suites of applications.

To help programmers deal with these objects, Microsoft has defined a programming interface for
taskbars. Unfortunately, because the system taskbar is different from appbars, the use of the word
'taskbar' in this context seems a sure-fire way of bewildering people.

Attempts to differentiate taskbars from appbars are tricky, because the system taskbar and application
desktop toolbars share the SHAppBar Message() function:

U NT API ENTRY SHAppBar Message(DWORD dwivessage, PAPPBARDATA pbDat a) ;

However, it's not as bad as it sounds, because only a couple of the messages this function deals with
are sent to the system taskbar, from which they simply retrieve information. One, ABM_GETSTATE,
can tell us whether the Windows taskbar is currently 'autohiding’, or always on top. The other,
ABM_GETTASKBARPQCS, retrieves the bounding area of the taskbar and the edge where it is aligned.
We used this feature in Chapter 7 when we subclassed the Start button.

None of the other messages that can be issued through SHAppBar Message() has anything to do
with the system taskbar.

Getting the Taskbar's State Programmatically

Let's see exactly how to read the state of the system taskbar programmatically. As suggested above, to
know whether the taskbar is in the 'always on top' or 'auto hide' state, we need to call

SHAppBar Message() specifying ABM_GETSTATE as the dwMessage argument. The return value is
then a combination of the following constants:

O ABS_ALWAYSONTOP
O ABS_AUTOH DE

277

Chapter 9

To call SHAppBar Message(), we need to know a bit about a structure called APPBARDATA, which
is declared as follows:

typedef struct _AppBarData

DWORD chbSi ze;

HWD hwd;

Ul NT uCal | backMessage;
U NT uEdge;

RECT rc;

LPARAM | Par am
} APPBARDATA, *PAPPBARDATA;

In fact, though, the structure is not very important when it comes to reading the taskbar's 'autohide'
status, as the following code snippet demonstrates:

APPBARDATA abd;
Zer oMenor y(&bd, si zeof (APPBARDATA)) ;
abd. cbSi ze = si zeof (APPBARDATA) ;

rc = SHAppBar Message(ABM GETSTATE, &abd);
if(rc & ABS_ALWAYSONTOP)

| strcat (szText, _ TEXT("al ways on top"));
}

if(rc & ABS_AUTCHI DE)
{

I strcat(szText, __ TEXT("autohide"));

To get the current edge and the area occupied by the taskbar, we need the ABM_GETTASKBARPQOS
message. This time, the SHAppBar Message() function fills in an APPBARDATA structure with useful
information:

APPBARDATA abd;
Zer oMenor y(&bd, si zeof (APPBARDATA)) ;
abd. cbSi ze = si zeof (APPBARDATA) ;

SHAppBar Message(ABM_GETTASKBARPCS, &abd) ;
swi t ch(abd. uEdge)

{

case ABE BOTTOM
| strcat (szText, _ TEXT("aligned at the bottoni));
br eak;

case ABE_TOP:
| strcat (szText, _ TEXT("aligned at the top"));
br eak;

case ABE_LEFT:
| strcat (szText, __ TEXT("aligned on the left"));
br eak;

case ABE_RI GHT:
| strcat (szText, __TEXT("aligned on the right"));
br eak;

278

Icons and the Windows Taskbar

The uEdge member will contain a constant that denotes the edge of the screen that the taskbar is
currently docked at, while the r ¢ member will hold the coordinates of the taskbar rectangle. The
working area of the shell — that is, the screen minus all the docked taskbars and appbars — can be
obtained via Syst enPar amet er sl nf o(), specifying the SPI _ GETWORKAREA flag.

We can also get information about another of the settings that's dealt with by the Taskbar Properties
dialog: the clock. To determine whether the clock is displayed, you just need to get hold of the
handle of its window and check the WS_VI SI BLE flag.

/1l Get the taskbar w ndow handl e
hwndTaskbar = Fi ndW ndow(__ TEXT(" Shel | _TraywWhd"), NULL);

/'l Get the tray w ndow handl e
hwndTray = Fi ndW ndowEx(hwndTaskbar, NULL, _ TEXT("TrayNotifywhd"), NULL);

/1l Get the clock w ndow handl e

hwndd ock = Fi ndW ndowkx(hwndTray, NULL, _ TEXT("TrayCd ockWO ass"), NULL);
i f (hwndd ock)

i f(IsWndowVi si bl e(hwndd ock))
| strcat (szText, __ TEXT("clock visible"));
el se

I strcat (szText, _ TEXT("clock not visible"));

For the remainder of this chapter, I'll be putting together a program that highlights some of the
theory we've discussed. To start it off, I'll use the Wrox AppWizard to create a dialog-based
application called Taskbar that reads the state of the taskbar, and is also aware of the shell
restarting. Here's its user interface:

IDC_TEXT IDC_RETRIEVE

Taskbar Fun E

Syztem Taskbar Setting: ‘
FRetrieve |

I Fiestart the shell |

IDC_TASKBAR IDC_RESTART
The Retrieve button will execute the various snippets of code you've seen so far and display the

taskbar's position, its 'auto hide'/'always on top' status, and the clock settings. Restart the shell causes
the shell to restart.

279

Chapter 9

First of all, if we're going to detect when the shell is restarted, we need to register the
Taskbar Cr eat ed message in W nMai n() :

i nt APl ENTRY W nMai n(H NSTANCE hl nst ance, H NSTANCE hPrevi ous,
LPTSTR | psz, int iCmd)
{

/! Code onmitted for brevity

g_uShel | Restart = Regi st er WndowVessage(__ TEXT(" Taskbar Created"));

/1 Run nain dial og
BOOL b = Di al ogBox(hl nstance, "DLG MAIN', NULL, APP_D gProc);

/1 Exit

Destroyl con(g_hl conLar ge) ;
Destroyl con(g_hl conSmal |) ;
return b;

Here, g_uShel | Rest art is just a global variable of type Ul NT, as shown earlier. Next, add code to
APP_DI gProc() to handle the Retrieve and Restart buttons being pressed, and to test for the shell
restarting:

BOOL CALLBACK APP_DI gProc(HWND hDi g, U NT ui Msg, WPARAM wPar am LPARAM | Par am

{
swi t ch(ui Msg)

{

case WM I NI TDI ALCG
Onl nitDi al og(hDl g);
br eak;

case VW _COVIVAND:
swi t ch(wPar am
{

case | DC_RETRI EVE:
OnTaskbar Set ti ngs(hD g);
return FALSE;

case | DC_RESTART:
SHShel | Restart ();
return FALSE;

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

}

/1 When the shell restarts...
i f(ui Msg == g_uShel | Restart)

TCHAR szTi me[50] = {0};
TCHAR szMsg[MAX_PATH] = {0};
Get Ti meFor mat (LOCALE_SYSTEM DEFAULT, 0, NULL, NULL, szTine, 50);
wsprintf(szMsg, _ TEXT("The shell was |ast restarted at %"), szTine);
Set DI gl t enText (hDI g, | DC_TASKBAR, szMsQ);

}
return FALSE;

280

Icons and the Windows Taskbar

If the Restart button is pressed, the SHShel | Rest art () function that I defined earlier in the
chapter is called, and the resulting Taskbar Cr eat ed message fulfills the i f condition. When
Retrieve is clicked, the OnTaskbar Set ti ngs() function is invoked:

voi d OnTaskbar Setti ngs(HWND hDl g)

{
TCHAR szText [MAX_PATH = {0};

APPBARDATA abd;
abd. cbSi ze = si zeof (APPBARDATA) ;

/'l Retrieve the taskbar edge
SHAppBar Message(ABM_GETTASKBARPCS, &abd) ;
swi t ch(abd. uEdge)

{

case ABE_BOTTOM
I strcat (szText, _ TEXT("aligned at the bottomr\n"));
br eak;

case ABE TOP:
I strcat (szText, __ TEXT("aligned at the top\r\n"));
br eak;

case ABE _LEFT:
| strcat (szText, _ TEXT("aligned on the left\r\n"));
br eak;

case ABE_RI GHT:
| strcat (szText, _ TEXT("aligned on the right\r\n"));
br eak;

}

/1 Retrieve the taskbar state
DWORD rc = SHAppBar Message(ABM GETSTATE, &abd);
if(rc & ABS_ALWAYSONTCP)

I strcat (szText, __ TEXT("always on top\r\n"));
if(rc & ABS _AUTCH DE)

| strcat (szText, __ TEXT("autohide\r\n"));

/'l Retrieve the Show Cl ock option

HWD hwnd1l = Fi ndW ndow(__ TEXT(" Shel | _TraywWhd"), NULL);

HWD hwnd2 = Fi ndW ndowEx(hwnd1, NULL, _ TEXT("TrayNotifyWhd"), NULL);

HWAD hwndC ock = Fi ndW ndowEx(hwnd2, NULL, _ TEXT("TrayCd ockWd ass"), NULL);
i f (hwndd ock)

i f(IsWndowVi si bl e(hwndd ock))
I strcat (szText, _ TEXT("clock visible\r\n"));
el se
I strcat (szText, __ TEXT("clock not visible\r\n"));

}

/1 Show settings
Set DI gl t enText (hDI g, | DC_TEXT, szText);

281

Chapter 9

With these functions in place, and with a #i ncl ude directive for r esour ce. h, you should be able
to compile and execute the application, and achieve results something like this:

Taskbar Fun E2 I

— System Tagkbar Settings

aligned at the bottom Retrieve |
always on top

clack wisible

IThe shell was last restarted at 16:51:22 Festart the shell |

The other interesting setting of the system taskbar, the ‘auto hide' attribute, appears to be impossible to set
programmatically. If this can be done, the method of doing so is completely undocumented.

Hiding the Taskbar

As I mentioned earlier, the taskbar is an ordinary window that belongs to the shell process. It can be
subclassed or hidden just like any other window throughout the system. I covered interprocess
subclassing in Chapter 7, and demonstrated how browser helper objects and SHLoadl nProc() can
bring your code into the shell's address space.

If you try to subclass the taskbar without first injecting the code into the shell process, you won't be
successful. This happens not because you can't subclass the taskbar or the Start button (or indeed any
other system window), but because you haven't mapped your code into the shell's context.
Subclassing the taskbar is no harder than subclassing the Start button (see Chapter 7).

However, there are things you can do with the taskbar simply by using the window handle. In
general, you can safely send messages to another process window provided that you know its HAND,
and you aren't required to use pointers. Let's see an example that demonstrates this point.

I've already demonstrated how to use Fi ndW ndow() to get hold of the taskbar handle. Once you've
got it, hiding the taskbar is simply a matter of calling the right function:

voi d SHHi deTaskbar (BOOL f Hi de)

HWAD hwndTaskbar = Fi ndW ndow(__TEXT(" Shel | _Traywhd"), NULL);
ShowW ndow(hwndTaskbar, (fH de ? SWH DE : SWSHOW);
}

SHHi deTaskbar () hides or restores the taskbar window according to the Boolean value it receives.
Note that this code works despite the fact that the taskbar belongs to another process.

The ITaskbarList Interface

A new COM interface appeared on the scene with the introduction of version 4.71 of the shell; its
name is | Taskbar Li st . This is not an interface that you should implement in your own applications
(in fact, it's implemented by the shell), but simply a programming interface for modifying the system
taskbar.

282

Icons and the Windows Taskbar

There are two points to note about | Taskbar Li st . First, documentation for it does exist, but it's not
brilliant. Second, it seems that the header file that contains the interface definition is missing, which
means that if you want to use the interface, you'll have to write it yourself, which is exactly what I'll

do in a moment.

What ITaskbarList Promises to Do

In a nutshell, | Taskbar Li st gives you the means to modify slightly the contents of one of the
components of a Windows 9x taskbar: the task list. Through | Taskbar Li st, you can add new
custom buttons to, and delete them from, the taskbar. The methods of the interface are described as

follows:

Method

Description

Acti vat eTab()

AddTab()

Del et eTab()

Hrlnit()

Set ActiveAlt ()

The documentation says, "Activates an item on the taskbar. The window is
not actually activated; the window's item on the taskbar is merely displayed
as active." I was unable to reproduce this behavior.

Add a new tab to the taskbar. The function requires an HWND,
preferably one with the WS_CAPTI ON style to avoid blank tabs.

Deletes a tab that was previously added by AddTab() . The related
window is unaffected by this operation.

Initializes some internal structures that will keep track of the tabs that
you create. This method must be invoked only once, and before any
other method in the interface.

The documentation says, "Marks a taskbar item as active but does not
visually activate it." 1 was unable to reproduce this behavior.

An IDL Definition for the Interface

The latest shl gui d. h file defines a CLSID and an IID, but the formal definition of the

| Taskbar Li st interface upon which your own implementation would be based is nowhere to be
found! Given this, there are just two options: we can give up and get on with our lives, or we can be a
bit more persistent and write an appropriate IDL file ourselves. By passing this through the MIDL
compiler, we'll get a ready-to-use header.

/1 Taskbar.idl

import "oaidl.idl";
inmport "oleidl.idl";

A
/1 Interface:
N
[

| ocal ,

obj ect,

uui d(56FDF342- FD6D- 11d0- 958A- 006097C9A090) ,
poi nt er _def aul t (uni que)

283

Chapter 9

interface | TaskbarList : | Unknown
{
HRESULT ActivateTab([in] HAND hWwd);
HRESULT AddTab([in] HWD hwWd);
HRESULT Del et eTab([in] HWD hWd);
HRESULT Hrinit();
HRESULT Set ActiveAlt([in] HWD hWd);
b

I added this file to my project and amended its settings to generate a header called
| Taskbar Li st . h. With this file in hand, we can turn our minds to starting to try some code:

#i ncl ude <shl gui d. h>

voi d OnAddTab(HWKD hwWwid)

{
| Taskbar Li st* pTLi st = NULL;
Colnitialize(NULL);
CoCr eat el nst ance(CLSI D_Taskbar Li st, NULL, CLSCTX_SERVER,
I I D_I TaskbarLi st, reinterpret_cast<voi d**>(&pTList));
pTLi st - >AddTab(hWd) ;
pTLi st - >Rel ease();
CoUninitialize();
}

This is the barest minimum code you'll need to add a tab to the taskbar (I shall use an extended
version in the sample program). The documentation recommends that you give the window at least
the W5_CAPTI ON style, but any valid window, visible or not, is accepted.

Earlier in the chapter, I said that the taskbar rejects invisible windows. How does that fit with what's
written here? It's simple: | Taskbar Li st is the low-level interface that lets you program the tabs of
the taskbar. All the logic that guides the taskbar when it comes to creating new buttons is built on the
top of | Taskbar Li st . For this interface, windows and tabs just exist to be created, activated and
deleted — it knows nothing about the 'business rules' of the taskbar.

For a better understanding of the role played by | Taskbar Li st let's see how to make use of it.

ITaskbarList Sample Program

To save work, I decided to extend the sample program I developed earlier by adding a couple of new
buttons to the main dialog — I labeled them Add Tab and Delete Tab, with identifiers | DC_ADDTAB
and | DC_DELETETAB respectively.

What remains to be done, for now at least, is fairly simple. First, we need to modify APP_DI gPr oc()
to deal with the buttons:

case VWM _COVVAND:
swi t ch(wPar am

case | DC_ADDTAB:
OnAddTab(hDl g) ;
return FALSE;

284

Icons and the Windows Taskbar

case | DC_DELETETAB:
OnDel et eTab() ;
return FALSE;

case | DC_RETRI EVE:
OnTaskbar Settings(hDl g);
return FALSE;

case | DC_RESTART:
SHShel | Restart () ;
return FALSE;

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

Then, the two new message handlers need to be implemented to add and delete the new tab
respectively. On the first occasion OnAddTab() is called, it creates the hidden window (I've
arbitrarily chosen a button) that the tab will represent.

voi d OnAddTab(HARD hwad)

{
static BOOL bFirstTime = TRUE;
| Taskbar Li st* pTLi st = NULL;
HRESULT hr = CoCreatel nstance(CLSI D TaskbarLi st, NULL, CLSCTX_ SERVER,
11 D_| TaskbarLi st, reinterpret_cast<voi d**>(&TLi st));
i f (FAI LED(hr))
return;
/1 Call the first tine only
i f(bFirstTine)
{
bFirst Ti me = FALSE;
pTList->HrInit();
/!l Create a new button w ndow (al though any wi ndow class is fine)
g_hwndButton = Creat eW ndow __ TEXT("Button"), _ TEXT("Custom button..."),
W5_CAPTI ON | WS_SYSMENU | WS_VI SI BLE,
-300, -300, 50, 50, hwWhd, NULL, NULL, NULL);
}
pTLi st - >AddTab(g_hwndBut t on) ;
pTLi st - >Rel ease() ;
ShowwW ndow(g_hwndBut t on, SW HI DE) ;
}
voi d OnDel et eTab()
{
| Taskbar Li st* pTLi st = NULL;
HRESULT hr = CoCreatel nstance(CLSI D TaskbarLi st, NULL, CLSCTX SERVER,
11 D_| TaskbarLi st, reinterpret_cast<voi d**>(&TLi st));
i f (FAILED(hr))
return;
pTLi st - >Del et eTab(g_hwndBut t on) ;
pTLi st - >Rel ease() ;
}

285

Chapter 9

To make this code work, you need to add a new global variable of type HAND to hold the handle of
the new window. The COM libraries should also be initialized (and uninitialized) in W nMai n(), like
this:

// Run main dialog
Colnitialize(NULL);
BOOL b = Di al ogBox(hl nstance, "DLG MAIN', NULL, APP_D gProc);

/1 Exit

OnDel et eTab();
CoUninitialize();

Dest r oyW ndow(g_hwndBut t on) ;
Destroyl con(g_hl conLar ge);
Destroyl con(g_hl conSnal |);
return b;

}

Finally, you need #i ncl ude directives for | Taskbar Li st . h and shl gui d. h, and to link to
ol e32. | i b. With this in place, you'll be able to get behavior like that shown in the screenshot
below. A new button can be added and deleted, but it is lifeless. You can check and uncheck it
endlessly, but nothing more will happen.

Taskbar Fun

— System Taskbar Setting

Retrieve |

Restart the shel |

| Taskbarlist

These buttons add and remaove a new custom
tab to and from the taskbar. e et | DEeeE |

SDN Library .| BB Paint Shop Pro | A TaskbarFun (g Custom butt_. |30 1421

Taskbar-Window Communication

If a taskbar button were a real button, it would be quite easy to intercept any related events. Sadly, a
taskbar button is actually just a page on a tab control, which makes things rather more difficult.

While puzzling over this problem, I found myself wondering exactly why the documentation for

| Taskbar Li st:: AddTab() "recommends" that the windows you pass to it have the W5_CAPTI ON
style. Could it be that in certain circumstances, you can treat the taskbar button as if it's the caption
of your window? To find out, I tried subclassing the window whose HAND was passed to AddTab(),
and to my considerable relief it seems that my hunch was right.

It's true: some of the messages related to caption activity are forwarded to the window that the button
represents. In other words, the window passed through AddTab() receives a WM_ACT| VATE message
(and other non-client area related messages) when someone clicks on the corresponding taskbar
button.

286

Icons and the Windows Taskbar

We can subclass that window like this (where g_pf nO dPr oc is a global variable of type WNDPROC):
voi d OnAddTab(HWND hwwd)

{
static BOOL bFirstTime = TRUE;
| Taskbar Li st* pTLi st = NULL;
HRESULT hr = CoCreatel nstance(CLSI D TaskbarList, NULL, CLSCTX SERVER,
11 D_| TaskbarLi st, reinterpret_cast<voi d**>(&pTList));
i f (FAILED(hr))
return;
/1 Call the first tine only
i f (bFirstTine)
{
bFi rst Ti me = FALSE;
pTList->Hrlnit();
/]l Create a new button w ndow (al though any w ndow class is fine)
g_hwndButton = CreateWndow __ TEXT("Button"), _ TEXT("Custom button..."),
W5_CAPTI ON | W5_SYSMENU | WS_VI SI BLE,
-300, -300, 50, 50, hwhd, NULL, NULL, NULL);
g_pfnA dProc = Subcl assW ndow(g_hwndButt on, ButtonProc);
}
pTLi st - >AddTab(g_hwndBut t on) ;
pTLi st - >Rel ease();
ShowwW ndow(g_hwndBut t on, SW HI DE) ;
}

Before we discuss the kinds of things it's possible to do once the button has been subclassed, I should
say that the arguments I passed to Cr eat eW ndow() were chosen as a result of experimentation that
revealed some very strange behavior. If the window you pass to AddTab() has a caption and the
W5_SYSMENU style, then the button on the taskbar will show the icon as well. If the window is also
visible, however, I ran into these problems:

Q The application's main window loses the focus, with no way of regaining it

Q The application's system menu is never displayed properly when its taskbar button is right-clicked

Another thing that happens when the window is visible on being added is that the new taskbar button
is unselected, which is more like what we want. To get the best of both worlds, therefore, I initially
placed the window off the screen. Then, once the new tab has been added, I hide it '‘properly’ with a
call to ShowwW ndow() .

Setting up a Menu
Anyway, now that we know how communication between the taskbar and the window works, it's
quite easy to set up and display a pop-up menu on the fly. The following procedure is the one I'll use
to subclass the window (of class 'But t on') that is associated with the new taskbar's button.

LRESULT CALLBACK ButtonProc(HWD hwnd, U NT ui Msg, WPARAM wPar am LPARAM | Par am

{

swi tch(ui Msg)

{

case WM ACTI VATE:

i f (LOANORD(wWPar am) == TRUE)
OnBut t onActi vation();

return Cal | WndowProc(g_pfnd dProc, hwnd, ui Msg, wParam | Paran)j;

}

287

Chapter 9

voi d OnButtonActivation()

{
/1 Get the handle of the tab control
HWD hO = Fi ndW ndow(__ TEXT(" Shel | _TrayWhd"), NULL);
HWD hl = Fi ndW ndowex(hO, NULL, __ TEXT("Rebar Wndow32"), NULL);
HWD h2 = Fi ndW ndowex(h1, NULL, __ TEXT("MSTaskSWWC ass"), NULL);
HW\D h3 = Fi ndW ndoweEx(h2, NULL, __ TEXT("SysTabControl 32"), NULL);
// Create a new popup nenu
HVENU hnenu = Cr eat ePopupMenu();
// Get the currently selected button in the tab control
int i = TabCQrl _GetCurSel (h3);
/1 1f no tab is selected show a menu with a sole 'Close' item
if(i ==-1)
AppendMenu(hnenu, MF_STRING | DC_DELETETAB, _ TEXT("&C ose"));
el se
{
AppendMenu(hmenu, MF_STRING | DC_RESTART, _ TEXT("&Restart the shell"));
AppendMenu(hmenu, M-_STRING | DC_RETRI EVE,
_ TEXT("Re&trieve Taskbar Settings"));
AppendMenu(hmenu, MF_SEPARATOR, 0, NULL);
AppendMenu(hmenu, MF_STRING | DC_DELETETAB, _ TEXT("&Del ete Me"));
}
/1 Find out the position for the nenu. It depends upon the taskbar's edge
STARTMENUPCS snp;
if(i ==-1)
PO NT pt;
Get Cur sor Pos(&pt) ;
smp.ix = pt.Xx;
smp.iy = pt.y;
snmp. uFl ags = TPM BOTTOVALI G\;
}
el se
Get MenuPosi tion(h3, i, &snp);
/1 Display and then destroy the menu
Tr ackPopupMenu(hmenu, snp. uFl ags, snp.ix, snmp.iy, 0, g_hD g, 0);
Dest r oyMenu(hnenu) ;
}

A different menu is displayed if there's no longer a currently selected item when the button is
activated. As you can see, the menu items are given the same identifiers as other controls in the main
program, so that you can cause the shell to restart or retrieve taskbar settings from a context menu as
well as from the main dialog. For the call to TrackPopupMenu() to work properly, you'll need a
final global variable of type HAND that you can set to the handle of the main dialog in

Onl ni t Di al og() .

288

Icons and the Windows Taskbar

Determining the Menu Position

The final part of the application is concerned with the position of the pop-up menu (this is the
function performed by Get St art MenuPosi ti on() in the above code). Ultimately, this depends on
the edge of the taskbar, and the relative position of the taskbar button. In practice, the algorithm to
determine the correct position is very similar to the one I created in Chapter 7 for the Start menu —
the ABM_TASKBARPOS message is relied upon to determine the edge of the taskbar. In this case,
however, there's an additional difficulty: the x coordinate, which is always 0 for the Start menu, now
depends on the position of the button.

struct STARTMENUPCS

.

int ix;

int iy;

Ul NT uFl ags;
b

typedef STARTMENUPOS* LPSTARTMENUPCS;

int GetMenuPosition(HAWD hwndTab, int iltem LPSTARTMENUPGS | psnp)

{
/1l Set and then reset the size to get current wi dth and height of button
long iltentize = TabCirl _SetltenSi ze(hwndTab, 0, 0);
TabCirl _Setltenti ze(hwndTab, LOANORD(i |tenStize), H WORD(iltenSize));

/'l Get the tab control rectangle
RECT r;
Get W ndowRect (hwndTab, &r);

/'l Retrieve the taskbar's edge
APPBARDATA abd;

abd. cbSi ze = si zeof (APPBARDATA) ;

SHAppBar Message(ABM_GETTASKBARPGCS, &abd) ;
swi t ch(abd. uEdge)

{

case ABE BOTTOM
I psnp->ix =r.left + LOMRD(iltenSize) * iltem+ 3;
| psnp->iy = abd.rc.top;
| psnp- >uFl ags = TPM LEFTALI GN | TPM BOTTOVALI GN,
br eak;

case ABE_TOP:
| psnp->ix =r.left + LOMORD(iltenSize) * iltem+ 3;
| psnp->iy = abd.rc. bottom
| psnp- >uFl ags = TPM LEFTALI GN | TPM TOPALI G\;
br eak;

case ABE_LEFT:
| psnp->i x = abd.rc.right;
I psmp->iy = r.top + HWORD(i I tenSSi ze) * iltem + 3;
| psnp- >uFl ags = TPM LEFTALI GN | TPM TOPALI G\;
br eak;

case ABE_RI GHT:
| psmp->i x = abd.rc.left;
I psmp->iy = r.top + HWORD(i I tenSSi ze) * iltem + 3;
| psnp- >uFl ags = TPM Rl GHTALI GN | TPM TOPALI G\;
br eak;

}

return 1;

289

Chapter 9

In these calculations, the x coordinate is given by the left edge of the tab control window, plus an

offset determined by the width of the buttons:

I psmp->ix =r.left + LOMRD(iltentize) * iltem+ 3;

The item size is the same for all items, and obtained using a trick. When you set a new size, the
current one is returned, so we can grab the width and height by setting and then immediately
restoring the size. Width and height are packed into a | ong value, the low order word being the

width.

We can't use TabCtrl _Get It enRect () for this purpose, because the code that's calling the tab
control is part of another process. Windows, on the other hand, are global objects and accessible from
any process. Everything works, and messages can be sent, provided that pointers aren't involved.
Unfortunately, TabCt r|1 _Get | t emRect () requires a buffer to return the actual rectangle.

If the taskbar is aligned vertically, the coordinate that may vary is y:

| psnp->iy = r.top + HHWORD(i ItenfSize) * iltem+ 3;

And to prove that it works, this final screenshot shows how the menu looks when the taskbar is right

aligned:

A | 5

— Swstem T askbar Settings

aligned on the right

Fetrieve |

These buttons add and remove a new custom
tab to and from the taskbar,

always on top
clock visible
Restart the shell |
1 TaskbarList

AddTab | DeleteTab |

290

Bestart the shell

glrmlslE | sSEwER

Delete ke

Icons and the Windows Taskbar

Summary

In this chapter, I began by looking at icons, and finished with a look at the new, but poorly
documented, COM interface for the taskbar. Along the way I covered many aspects of Windows
icons, in particular the functions that place icons in the tray notification area.

The code that handles tray icons has problems when the shell restarts, and while Microsoft hasn't
solved them as such, it has recently introduced a message that can inform applications of an
upcoming shell reboot. This sounds rather like a silent admission of guilt to me, but whether this is
true or not, all existing applications are still affected. Ours, on the other hand, should be fine from
now on!

I also tried to clarify some points about the system taskbar and application desktop toolbars (a.k.a.
appbars). Finally, I put the | Taskbar Li st interface into action to modify the content of the taskbar.

To summarize the summary, this chapter provided:

An overview of icons under Win32

Advanced details about programming tray icons

A description of a semi-clandestine message that informs you of any shell restart
A comparison between taskbars and appbars

A report of real-world experiences with | Taskbar Li st

Further Reading

Useful tips about icons can be found in Bret Pehrson's article in the April 98 issue of WD], Rebuilding
the Internal Shell Icon Cache. In the same context, I can also point you to a more comprehensive
MSDN piece by John Hornick, entitled Icons in Win32, which you'll find in the MSDN Library under
Technical Articles | Windows Platform | User Interface.

[S iy Wy

Bitmaps and icons raise interesting issues if you look at them from the Visual Basic perspective as
well. I contributed an article to the December 1997 edition of WD]J that demonstrates how to convert
HI CONs and HBI TMAPs to Visual Basic pictures; it is called Converting Icon/Bitmap Handles to Pictures in
VB.

An interesting example of shell programming that also involves icons may be found in the August
1998 issue of MIND. The piece, which appears in the Cutting Edge column that I usually run,
concentrates mainly on Visual Basic code but does have a smattering of C++ as well.

Application desktop toolbars may be studied with the aid of Jeff Richter's article that appeared in the
March 1996 issue of MS]J.

Finally, here's a list of related Knowledge Base articles:

QO Knowledge Base Article Q179363: Cover the Task Bar with a Window

Knowledge Base Article Q142166: Taskbar Anomalies When Application Larger than the Screen
Knowledge Base Article Q135788: Menus for Notification Icons Don't Work Correctly
Knowledge Base Article Q97925: SetActiveWindow() and SetForegroundWindow() Clarification
Knowledge Base Article Q149276: Use Icons with the Windows 95 System Tray

Knowledge Base Article Q176085: Use the System Tray Directly from Visual Basic 5.0

[S R

291

Windows Helper Libraries

The aspect of Windows 98 that I appreciate most of all is that it has (hopefully) put a definitive end to
the long running saga of conct | 32.1i b and shel | 32. | i b version numbers. The version of
Internet Explorer 4 and the status of your Active Desktop settings are no longer an issue — with
Windows 98, all libraries on all machines are aligned.

I fear, however, that this state of calm is only an illusion and that sooner or later we'll have to write
wrapper code for creating slightly enhanced controls that show up late-breaking tweaks to the user
interface. Still, let's enjoy the lull before that particular storm!

To enable us to appreciate the present, how about remembering the bad old days? In this chapter, I'll
recall briefly the major problem that tormented programmers during the transition from Windows 95
to Windows 98. I'll also demonstrate what's new in the latest libraries. After that, the chapter will
revolve around three groups of new helper functions that address the Recycle Bin, the registry and
string manipulation.

Finally, I'll talk about what could be considered to be an open secret: an unofficially documented but
officially unacknowledged function for formatting drives.

To summarize then, we're going to look at:

Q Microsoft's answer to the shell versioning problem

Q The Recycle Bin API

O An annotated overview of some new helper libraries for working with strings and the registry
Q What's still undocumented in Windows 98

In particular, I'm aiming to show a useful and general technique for customizing and improving
system dialogs. I will then apply this to the still officially undocumented SHFor mat Dri ve()
function, which is a helper routine that Explorer uses to format drives programmatically.

Chapter 10

The Versioning Epidemic

This story begins when the first betas of Internet Explorer 3.0 hit the Web. People immediately
noticed the flat and textured toolbars, and then more complicated (even resizable) objects with side
handles. It wasn't exactly clear how they worked, but they were certainly cool, and so they became
known as coolbars.

While preliminary copies wisely stopped short of installing new system DLLs, the final version of
Internet Explorer 3.0 threw caution to the wind and overwrote conct | 32. dl | . From that point on,
unwary programmers began to use the brand new Internet Explorer 3.0 controls (mostly coolbars), in
some cases creating applications that required IE 3.0 to be installed to work properly. Worse still,
Microsoft refused for a long time to authorize distribution of the new version of conct| 32. dl |, and
it's still only relatively recently that they provided a self-extracting module that installs the latest
control libraries on Windows 95 and Windows NT 4.0 machines.

So far, I've restricted the discussion to IE 3.0, but the problems have continued into later versions. In
fact, the coup de grace came with the shell update release of Internet Explorer 4.0, because when the
Active Desktop starts getting involved, things become even more complicated. It's no longer a simple
matter of whether to use a more or less cool control for the user interface. Now, many new functions
have been added and documented as if they have always been part of Windows.

These problems are the reason why I've been making it very clear that this book assumes that you
have Windows 98 or Windows 95/Windows NT 4.0 with Internet Explorer 4.x and Active Desktop
installed. If you run some of the examples provided on a machine with different characteristics, the
chances are that you will get a polite error message from the system, informing you that a particular
function cannot be found in the shell library.

DLL Version Information

Many programmers have written utilities to determine which version of a given module a given
machine is hosting. Here's a code fragment that shows how this information can be obtained from the
VS_VERSI ONI NFOblock stored in the module's resources:

DWORD dwien = Get Fil eVersi onl nf oSi ze(szFil e, &wJsel ess);

LPVAO D | pVI = nal | oc(dwiLen);

GetFil eVersionlnfo(szFile, NULL, dwien, |pVl);

Ver QueryVal ue(l pVI, _ TEXT("\\"), reinterpret_cast<LPVO D*>(& pFFl), & BufSize);
DWORD dwVer 1 = | pFFI - >dwFi | eVer si onMs;

DWORD dwVer 2 = | pFFI - >dwFi | eVer si onLS;

Here, | pFFl is a pointer to a previously initialized VS_F| XEDFI LEI NFO structure. Of course, a
module that doesn't expose a VS_VERSI ONI NFO resource doesn't expose any version information that an
external program can read and check.

In fact, Microsoft now provides this facility through a new DLL policy. Every system DLL is
supposed to export a function called DI | Get Ver si on() that returns its version number —
internally, this function will execute code that is similar to the fragment shown above. Third-party
library vendors are being encouraged to do the same in their own products.

294

Windows Helper Libraries

Version Number of a System DLL

The idea of this policy is to provide a common and easy way for applications to know the version of
the DLLs they're using, or that they expect to find. Of course, a program that wants to perform such
checks can't attempt to import the function statically, because old DLLs won't support it. Instead, it

must rely on dynamic loading.

Here's an example of how a program could check for the Active Desktop update:

BOOL | sActiveDesktoplnstalled()

HI NSTANCE hShel | 32 = LoadLi brary(__TEXT("shel132.dl1"));
i f(!hShell 32)

return FALSE;
el se

DLLGETVERSI ONPROC pFunc = rei nt erpret_cast <DLLGETVERSI ONPROC>(
Get ProcAddr ess(hShel 1 32, _ TEXT("D | Get Version")));
i f(!pFunc)

Fr eeLi brary(hShel | 32);
return FALSE;

}

el se

{
DLLVERSI ONI NFO dvi ;
Zer oMenor y(&dvi, sizeof (dvi));
dvi . chSi ze = sizeof (dvi);
(*pFunc) (&dvi) ;

/1 Shell version < 4 neans NT 3.51
i f(dvi.dw\vaj orVersion < 4)

Fr eeLi brary(hShel | 32);
return FALSE;

}
i f(dvi.dw\aj orVersion == 4)

/1 Active Desktop installed
i f(dvi.dwM norVersion >= 71)
{
Fr eeLi brary(hShel | 32);
return TRUE
}
}
el se

/1 Hi gher than Wndows 9x and NT 4.0
Fr eeLi brary(hShel | 32);
return TRUE;
}
}

}

Fr eeLi brary(hShel | 32);

return FALSE;

295

Chapter 10

The function loads shel | 32. dl | and attempts to call a function called DI | Get Ver si on() . If this
fails, it's clear that the DLL is far older than the one installed by Active Desktop. Otherwise, it issues
a call. The prototype of the function is:

HRESULT DI | Get Ver si on(DLLVERSI ONI NFO* pdvi) ;
DLLVERSI ONI NFOis a structure defined in shl wapi . h like this:

typedef struct _DI I Versionlnfo

DWORD cbSi ze;
DWORD dwivhj or Ver si on;
DWORD dwM nor Ver si on;
DWORD dwBui | dNunber ;
DWORD dwPl at f or ml D

} DLLVERSI ONI NFG,

By using this structure, a program can even retrieve the build number and the target platform of a
DLL. The dwivhj or Ver si on and dwM nor Ver si on members are the first two items that form a
version number; the build number is usually the third. To distinguish the target platform, you can
check dwPl at f or ml D against the following constants:

O DLLVER PLATFORM W NDOWS (0x01) — DLL built for all Windows platforms
O DLLVER PLATFORM NT (0x02) — DLL built specifically for Windows NT

All the structure and constants that you need to call this function are declared in shl wapi . h, the
header file for the Shell Lightweight API that we'll be discussing further later in the chapter. To
reiterate, every shell DLL installed by Active Desktop exposes the DI | Get Ver si on() function.

Exposing the Version Number in your Own Functions

Every time you develop an executable module — an EXE, a DLL, or whatever — I strongly
recommend that you incorporate some version information. This can be done either by defining the
already-mentioned VS_VERSI ONI NFOstructure in the module's resources, or through the

Dl | Get Ver si on() function. Let's examine both cases.

Using VS_VERSIONINFO

The easiest way to provide applications and modules with version information is by defining a
VS_VERSI ON_I NFOresource type in the . r ¢ file of the project (in fact, the Wrox AppWizard does
exactly this). There's a resource editor screen for precisely this purpose, as the screenshot opposite
clearly demonstrates:

296

|
@ Version_ic - VS_VERSION_INFO [Version) [H[=] E3

Key Yalue -
FILEYERSION 1.0,0.1
FRODUCTYERSION 1.0,0.1
FILEFLA&GSMASK O=3ML
FILEFLAGS 0=0L
FILEOS WOS__WINDOWS32
FILETYPE WET_APP
FILESUBTYPE WET2_UNENDWHN
Block Header Englizh [United States) (040904b0)
Comments
CompanyMame
FileDrescription
FileYersion 1.00.001
Intermald ame VERSION
LegalCopyright
LegalTrademarks
riginalFilenare WERSION exe
PrivateBuild
Producth ame Version Checker
Producterzsion 1,000.1 |
SpecialBuid hd

Windows Helper Libraries

The information above is ultimately stored in script form in the project's RC file, like this:

VS_VERSI ON_I NFO Vi

ERSI ONI NFO

FILEVERSION 1,0,0, 1

PRODUCTVERSI ON 1

,0,0,1

FI LEFLAGSVASK Ox3f L

#i f def _DEBUG

FI LEFLAGS 0Ox1L
#el se

FI LEFLAGS 0xOL
#endi f

FI LECS 0x4L

FI LETYPE Ox1L

FI LESUBTYPE OxOL
BEG N

BLOCK "StringFil el nfo"
BEG N
BLOCK "040904b0"
BEG N
VALUE " ConpanyNane", "\0"
VALUE "Fi |l eDescription", "\0"
VALUE "Fil eVersion", "1.00.001\0"
VALUE "I nt er nal Nane", "VERSI O\\ 0"
VALUE "Legal Copyright", "\0"
VALUE "Legal Tr ademar ks", "\0"
VALUE "Ori gi nal Fi | enane", "VERSI ON. exe\ 0"
VALUE " Product Nane", "Version Checker\O0"
VALUE "Product Version", "1, 0, 0, 1\0"
END
END
BLOCK " Var Fi | el nf 0"
BEG N
VALUE "Transl ati on", 0x409, 1200
END
END

297

Chapter 10

Using DIlIGetVersion()

In addition, you are encouraged to export a DI | Get Ver si on() function from your own libraries. If
everyone follows this guidline, it should lead to a standard way of identifying the version number of a
module. Here's a typical implementation of DI | Get Ver si on() that returns a version number of 1.0.

#i ncl ude <shl wapi . h>

HRESULT DI | Get Ver si on(DLLVERSI ONI NFO* pdvi)

i f(pdvi == NULL)
return E_FAIL;

Zer oMenor y(pdvi, pdvi.cbSize);
pdvi - >dwiVaj or Ver si on 1
pdvi - >dwM nor Ver si on 0
pdvi - >dwPl at forml D = DLLVER PLATFORM W NDOWS;

return NOERROR;

A More General Function

As I've already mentioned, you can't expect to find DI | Get Ver si on() implemented in every DLL
on every Windows platform. While the steps Microsoft is taking to encourage its adoption are
welcome, we need much more. Asking the DLL itself to disclose its version number sounds a bit
strange to me, but on the other hand I guess it's easy to code and test.

In an ideal world, I would have liked a new system API function that could be used to read version
information from any valid file. The low-level means to do this have been available since Windows
3.1, but attempting to cope with version functions can be bothersome, to say the least. However, I've
written a general function that's capable of returning the version information of any executable file
that exposes it, both as string and as an array of numbers. You can even use this function, which I've
called SHGet Ver si onOf Fi | (), to read version numbers of 16-bit programs and DLLs, regardless
of the vendor:

DWORD SHGet Ver si onOf Fi | e(LPTSTR szFi | e,
LPTSTR szBuf, LPINT | piBuf, int iNunOfFields)
{

DWORD dwUsel ess = O;

U NT i Buf Si ze = 0;

VS_FI XEDFI LEI NFO* | pFFI = NULL;
TCHAR s[MAX_PATH] = {0};

DWORD dwien = Get Fil eVersi onl nf oSi ze(szFil e, &wJsel ess);
i f(dwien == 0)

i f(szBuf)
I strcpy(szBuf, _ TEXT("<unknown>"));
return O;

}

LPVO D | pVI = G obal Al'l ocPtr (GHND, dwLen);
Get Fi |l eVersi onl nfo(szFile, NULL, dwLen, |pVl);

298

Windows Helper Libraries

Ver QueryVal ue(l pvl, _ TEXT("\\"),
rei nterpret_cast<LPVO D*>(& pFFl), & BufSize);
DWORD dwMer 1 = | pFFI - >dwFi | eVer si onMVs;
DWORD dwMer 2 = | pFFI - >dwFi | eVer si onLS;
d obal FreePtr (1 pVl);

/1 Fill return buffers
i f(szBuf !'= NULL)

wsprintf(s, _ TEXT("%. %. %d. %d"),

H WORD(dwVer 1), LOAORD(dwMer 1), HI WORD(dwMer 2), LONORD(dwVer 2)) ;
| strcpy(szBuf, s);

i f(1piBuf !'= NULL)

for(int i =0 ; i <iNunOFields ; i++)
{
if(i ==0)
I piBuf[i] = H WORD(dwVer 1) ;
if(i == 1)
I pi Buf [i] = LOADRD(dw\Ver1);
if(i == 2)
I piBuf[i] = H WORD(dwVer 2);
if(i == 3)
I pi Buf [i] = LOWORD(dw\Ver2);
}

}

return dwer 1;

A version number consists of 4 numbers that are usually separated by dots. A typical example of a
full version number would therefore be something like 4. 71. 2106. 1. The first two numbers (4 and
71 in this case) are known as the major and minor version number respectively.

There's nothing to prevent you from using only a portion of the version number, if that is all you
require. I usually find that I need the version number in one of two formats — either as a string to
display in a dialog or as separate numbers in order to perform checks easily.

The programming interface of SHGet Ver si onOf Fi | e() is very flexible and tries to meet both
requirements. The function's return value is the major version number, but the parameter list includes
a pointer to a string in which it will return the information in the format %d. %d. %d. %. You can
pass NULL if you don't need a string.

SHGet Ver si onOf Fi | e() accepts two additional arguments. The first one is a pointer to an array of
integers, while the second specifies its size — it can contain up to 4 elements. Through this buffer, the
caller can receive the various elements that make up the version number separately. This
undoubtedly makes any further processing that you might want to do on the numbers more
comfortable.

299

Chapter 10

IDC_FILENAME IDC_BROWSE IDOK
Version Checker
C-8w/IND 0w S ADesktopWersionhD ebughWersion. exe J
File: | Werzion
C:NWINDOWS D esktop\WersionhD ebug\ersion exe 1001
I
IDC_VIEW

The screenshot above shows the interface of a program generated by the Wrox AppWizard that uses
SHGet Ver si onOf Fi | e() . Implementing it is largely a matter of writing handlers for the two
buttons, a process that you ought to be getting familiar with by now! Here's OnBr owse() :

voi d OnBrowse(HAND hDI g, WPARAM wi D)

{

TCHAR szFi | e[MAX_PATH = {0};
TCHAR szW nDi r [MAX_PATH] = {0};
Get WndowsDi rectory(szWnbDir, NMAX PATH);

OPENFI LENAME of n;

Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;

of n. 1 Struct Si ze = si zeof (OPENFI LENAME) ;

ofn.lpstrFilter = _ TEXT("Executabl e\0*. exe;*.dl|;*.drv;*.vxd\0");
of n. nMaxFi |l e = MAX_PATH,

ofn.IpstrinitialDir = szWnbDir;

ofn.IpstrFile = szFile;

i f(!GetOpenFil eNanme(&ofn))
return;
el se
Set Dl gl t enText (hDig, Wi D, ofn.IpstrFile);

Once you've chosen the file to interrogate, clicking on the OK button will invoke a function called
DoGet Ver si onl nf o(), which looks like this:

const int BUFSIZE
const int MSGSIZE

1024;
40;

voi d DoGet Versi onl nf o(HWAD hDl g)

{

300

TCHAR szTenp[MAX_PATH] = {0};
HWD hwndLi st = GetDi glten{hD g, | DC VIEW;
Get Dl gl t eniText (hDl g, | DC_FI LENAMVE, szTenp, MAX PATH);

I/l Create the string for the list view
TCHAR pszBuf [BUFSI ZE] = {0};

Windows Helper Libraries

LPTSTR psz = pszBuf;

I strcpy(psz, szTenp);
I strcat(psz, __TEXT("\0"));
psz += Istrlen(psz) + 1;

/'l Get the version info

TCHAR szl nf o[MSGSI ZE] = {0};

SHGet Ver si onO' Fi | e(szTenp, szlnfo, NULL, 0);
| strcpy(psz, szlnfo);

| strcat (psz, __ TEXT("\0"));

psz += Istrlen(psz) + 1;

// Add the two colum text
AddSt ri ngToReport Vi ew(hwndLi st, pszBuf, 2);

To do its work, DoGet Ver si onl nf o() uses SHGet Ver si onOf Fi | e(), which we defined earlier
in this chapter, and AddSt ri ngToReport Vi ew(), which you first saw back in Chapter 6. The
latter's sister function, MakeReport Vi ew(), is used in Onl ni t Di al 0g() to set up the list view:

voi d OnlnitDi al og(HWND hDl g)

{

/1 Initialize the report vieww th 2 colums: File and Version

HWAD hwndLi st = GetDi glten(hD g, |1 DC VIEW;

LPTSTR psz[] = { __TEXT("File"), reinterpret_cast <TCHAR*>(350),

_ TEXT("Version"), reinterpret_cast<TCHAR*>(95) };

MakeReport Vi ew(hwndLi st, psz, 2);

/1l Set the icons (T/F as to Large/ Small icon)

SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmall));

SendMessage(hDl g, WM SETI CON, TRUE, reinterpret_cast<LPARAM>(g_hl conLarge));
}

Finally, you need to add #i ncl udes for r esour ce. h and condl g. h, link to ver si on. | i b and
cormdl g32. 1 i b, and add a couple of new cases to the swi t ch in APP_DI gPr oc() :

case WM _COVIVAND:
swi t ch(wPar am

case | DC_BROWSE:
OnBrowse(hDl g, | DC_FI LENAME) ;
return FALSE;

case | DCK:
DoGet Ver si onl nfo(hDl g);
return FALSE;

case | DCANCEL.:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

301

Chapter 10

Once the application is running, you can type the name of the file to check in the edit field, or select
it from the Open dialog that appears when you click on the ... button. The code tied to the OK button
then attempts to read the version information from the specified file. The name of the file and the
version string are then written in the report view below unless the file doesn't contain version
information, in which case the string <unknown> is returned.

The Recycle Bin API

The Recycle Bin is a custom object that you find in the shell's namespace, right beneath the desktop.
It can be seen as a temporary container for all the file objects that have been deleted using shell
functions, from which files can be restored or definitively destroyed. It's important to keep in mind
that only those file objects that you delete manually through the shell, or programmatically by means
of the shell functions, go into the Recycle Bin. If you delete a file using Del et eFi | e(), or from the
MS-DOS prompt, the file will be removed from the file system directly, with no further intervention
required.

A specialized programming interface is needed for working with the Recycle Bin because deletion
requests must be processed differently. In Chapter 3 we discussed the SHFi | eOper ati on()
function, which was able to send deleted files to the bin. In the next section I'll examine two other,
more recent, functions that allow us to empty the Recycle Bin, and also to send it some queries.
These functions were introduced with version 4.71 of the shell.

Structure of the Recycle Bin

To elaborate on the definition of the last two paragraphs, the namespace extension through which the
Recycle Bin is implemented lies on the desktop. The actual containers for the deleted files are located
on each local drive, in a folder called Recycl ed.

Although you won't see it through the shell interface, each Recycl ed folder contains only the files
deleted in that drive. In fact, if you open any of the Recycl ed folders on your system you will
always see the same content, which is a list of all the deleted files from all your drives. If you look
around these folders with a DOS-based tool instead, you should be able to see the logic that the
Recycle Bin adopts.

302

Windows Helper Libraries

Microsoft{(R> Windows 98
CGC)Copyright Microsoft Gorp 1981-1998.

C:S\WINDOUS >dir c:“recycled

Uolume in drive C iz WIN?8
Uolume Serial Humber is 353B-7FL5
Directory of GC:~RECYCLED

28-84-98 17:15 .
28-84-98 17:15 ..
59,978 19-18-98 16:19 DCA.BMP
134.458 84-11-98 18:12 DC1.BMP
194,436 hytes
495,386,624 bhytes free

IC:SWINDOWS >dir e:“recycled

Uolume in drive E is STUDIOQ
Uolume Serial MNumber iz 353B-6FFB
Directory of E:~RECYCLED

<DIR> 28-04-98 16:48 .

<DIR> 28-04-98 16:48 ..
BMP 29,154 19-18-98 16:48 DEQA.BMP
BMP 52,258 31-87-98 28:49 DE1.BMP
2 Fileds> 81.412 hytes
2 dirds) 799.880.448 hytes free

Gz \WINDOWS >

The figure above shows the real content of two Recycl ed directories, on my C and E drives.

In fact, any deletion that occurs within the shell is divided into two non-consecutive steps. Initially,
the shell just moves the file from its original location to the Recycl ed folder of the current drive.
Once there, the file is renamed according to a convention that I will cover in the next section. When
asked to list its contents, the Recycle Bin that you see on the desktop just collects the files from the
various Recycl ed folders located on each local drive.

Renaming Convention

As the screenshot suggests, all the files in the Recycle Bin have a name that begins with D. The
second character is the original drive letter, and what follows is a local, incremental number that is
assigned to the file at time of deletion. The file retains its original extension.

While the Recycl ed folders themselves are hidden, the files marked for deletion have only the
Archive attribute set. The link between the 'deleted' name and the original is stored on a drive-by-
drive basis in a hidden file called i nf 02. (Open an MS-DOS prompt, then go to any Recycl ed
folder and type di r / AH)

What if the i nf 02 file gets lost or damaged? That's no problem, because the deletion of this file
doesn't affect the files to which it refers. Moreover, at each startup, Windows makes sure that an
i nf 02 file exists if there are deleted files. If i nf 02 doesn't exist, Windows will create it on the fly.

Restoring a file therefore means moving it back to its original location, and reverting to its original

name. If another file with the same name exists, a confirmation dialog box pops up. Deleting a file
from the Recycle Bin simply means that it will 'really' be deleted.

303

Chapter 10

The Recycle Bin View

The next picture illustrates what the Recycle Bin looks like through the Windows shell:

[EX Exploring - Recycle Bin

J File Edit “iew Go Favorites Toolz Help |

J Address I@ Fecycle Bin vl

All Folders x ame | Original Location | D ate Deleted | Tvpe | Siz_el
| [-=) Removable Disk [Z:] d mﬂﬂsm.bmp Ch 05/11/98 1752 Paint Shop Pro Image 53KEB
{2 Prirters @ 18430802 brop C:h 05/411/9817.52 Paint Shop Pro lmage 132KB
{&] Control Panel @ 18430803, brp E:\ 05/411/9817.52 Paint Shop Pra Image 29¢B
-{H] Scheduled Tasks @ 18430804, brp E:A 05/11/9817.52 Pairt Shop Pro Image R2KB
42 My Documents

Internet Explorer
Metwork Meighborhood
i iy & Bin

- Wersion -

| | | 7

You can see that the shell view shows the real names of the deleted files — essentially, the shell is
interpreting the names on our behalf. The filename you actually work with is not the same as the one
displayed via the shell.

This behavior is an example of how a namespace extension can build a layer of abstraction over
the physical content of a directory.

Functions for Interacting with the Recycle Bin

Apart from SHFi | eOper ati on(), there are just two other shell functions for working with the
Recycle Bin. They are:

Q SHEmptyRecycl eBin()
O SHQueryRecycl eBin()

As its name suggests, the first of these destroys all the files contained in the various Recycl ed
folders throughout the machine. The latter, on the other hand, retrieves the number of items in the
Recycl ed directory of a specified drive, and the amount of memory that they occupy. Let's see the
syntax in more detail, starting with SHEnpt yRecycl eBi n().

HRESULT SHEnpt yRecycl eBi n(HWAD hwnd, LPCTSTR pszRoot Pat h, DWORD dwFl ags) ;

The hwnd argument denotes the parent window for any window or dialog box that the function
should create. Depending on the value of pszRoot Pat h, the function can empty the Recycl ed
folder for a single disk, or all the disks — the argument is a path to the root directory of the drive on
which to empty the folder. If you pass a fully qualified path, only the drive part will be taken into
account. If the string is NULL, then the entire Recycle Bin is emptied, drive after drive.

The last argument can be used to specify some flags, as explained in the following table:

304

Windows Helper Libraries

Flag Description

SHERB_NOCONFI RMATI ON Usually, the system displays a confirmation dialog box
before proceeding with the operation. If this bit is set, the
dialog is suppressed.

SHERB_NOPROGRESSUI The shell also displays a dialog with a progress bar (shown
below). If this bit is set, no dialog will be displayed.
SHERB_NOSOUND If this bit is set, there will be no sound upon completion.
Deleting. .. I

@@

Ermptying the Recycle Bin

The SHQuer yRecycl eBi n() function has the following prototype:
HRESULT SHQuer yRecycl eBi n(LPCTSTR pszRoot Pat h, LPSHQUERYRBI NFO pSHQuer yRBI nf 0) ;

The pszRoot Pat h argument has the same features as it did for SHEnpt yRecycl eBi n() : it should
indicate the root directory of the drive for which information is to be retrieved. However, it can also
be NULL or a fully qualified path. In the first case the system retrieves information for all the drives
available, while in the latter case only the drive portion of the string is used.

The information retrieved is stored in a structure called SHQUERYRBI NFO, which is defined like this:

typedef struct _SHQUERYRBI NFO
{

DWORD cbSi ze;
__int64 i64Size;
__int64 i64Nunltens;
} SHQUERYRBI NFO, FAR* LPSHQUERYRBI NFQ,

As usual, the cbSi ze member must be filled with the structure's size prior to issuing the call. After

the call, i 64Si ze will contain the total number of bytes occupied by the portion of the Recycle Bin
specified in pszRoot Pat h, and i 64Numl t ens will hold the number of items marked for deletion.

The latter two members are both 64-bit integers.

Helper Libraries

In semi-clandestine fashion, installing the Active Desktop stores a new, relatively small library on
your disk called shl wapi . dl | (the Shell Lightweight API). This DLL contains many functions that
can (sometimes!) make a programmer's life much easier. Using this library is as easy as adding a

#i ncl ude for the header file shl wapi . h, and linking to the import library shl wapi . I i b.

305

Chapter 10

Let's see what this DLL can do for us. In the Internet Client SDK you will find quick descriptions of
its functions, with short examples. This is usually sufficient, because many of the functions are self-
explanatory. They are divided into three groups, which cover the following areas:

Q The registry
Q Strings

Q Path string manipulation

I'll be using these functions in the following examples, but I won't provide exhaustive coverage of
them. They are incredibly numerous and surprisingly simple, so I will point out what's new and most
interesting about the functionality that you can expect from shl wapi . dl | , rather than give an
endless list of names and arguments. From shell version 4.71 on, these routines may be considered to
be part of the Windows SDK.

The Registry Shell API

A great, and universally known, drawback of the Win32 Registry API is that you need to call three
functions in order to get even the world's most useless and insignificant value! You have to
open/create the key, do your reading or writing and then close the handle. To a greater or lesser
extent, they mimic file operations. The new functions in the Registry Shell API are a step forward,
because they save you the hassle of opening and closing the registry key each time you want a value.

Table of Functions in the Registry Shell API

The following table summarizes the most important of the new functions that you will find. They
simplify the development of registry-based code, and increase productivity.

Function Description

SHDel et eEnmpt yKey() Deletes the entire sub-tree of an empty key, like Windows NT's
RegDel et eKey()

SHDel et eKey/() Deletes a key and all its sub-trees, like Windows 95's
RegDel et eKey()

SHDel et eVal ue() Deletes a value

SHEnumKey Ex () Enumerates the sub-keys of a given key

SHEnunmVal ue() Enumerates the values of a given key

SHGet Val ue() Retrieves a value

SHOpenRegSt r eam() Returns the | St r eaminterface to a registry value

SHQuer yI nf oKey() Retrieves information about a given key

SHQuer yVal ueEx() Queries a registry key for a specific value

SHSet Val ue() Sets a value

306

Windows Helper Libraries

Manipulating Strings

High-level development tools have certainly provided us with useful ways of manipulating strings. If
they choose, Windows programmers can rely on the facilities provided by the C runtime library,
which includes things like st rstr () and strchr (), but if we can get rid of the runtime library, we
gain a smaller memory footprint. This is the reason why an increasing number of C runtime functions
have an alias in a Windows library, and this list now includes | strcpy(), | strcat(),
wsprintf() andl strcnp(), to name just a few.

This trend is reinforced with shl wapi . dl | , and we have new and interesting aliases such as
StrDup(), StrChr (), StrRChr () and Str Str (). In addition, the library provides some
timesaving and much-needed functions such as the two that convert a number into kilobytes, or into a
time interval. St r For mat Byt eSi ze() is capable of taking 24102 and returning "23.5 KB" — it's
even smart enough to convert to MB or GB, depending on the actual value that you pass.

StrTi meFrom nt erval () can take a length of time in milliseconds and convert it into a string of
minutes or hours.

To be critical for a moment, I'd say that we are still waiting for functions like Visual Basic's
Ri ght $() and M d$(), although to be fair similar functionality is available with MFC's CSt ri ng
class, and with STL's st ri ng class.

Table of Functions for Manipulating Strings

The following table summarizes the most important of the new functions for manipulating strings.
Notice that some of the functions have two versions, one of which is case sensitive. The function
whose name ends with | is nof case sensitive.

Function

Description

Chr Cnpl ()
StrChr(),StrChrl ()
StrCnpN(), Str CrpNI ()
St r Dup()

St r For mat Byt eSi ze()
St r Fronili nel nt erval ()
St r NCat ()

St r PBrk()

StrRChr(),StrRStrl ()
St r Spn()

Compares two characters (not case sensitive)

First occurrence of a character in a string

Compares the first n bytes of two strings

Duplicates a string

Converts a numeric value in bytes to KB, MB or GB
Converts a numeric value in ms to a time interval
Appends the specified number of characters

First occurrence of any of the characters in a given
buffer

Last occurrence of a character in a string

Finds a substring entirely formed by a given set of
characters

Table Continued on Following Page

307

Chapter 10

Function Description

StrStr(),StrStrl() Searches for a substring

StrTolnt (), StrToLong() String to number conversion

St r Tol nt Ex() Decimal/Hexadecimal string to number conversion
StrTrim) Remove leading and trailing blanks

Manipulating Path Strings

Although all of us continue to define them as strings, a path is nof just a string. There will be few
programs that you write where you won't have to reuse or rewrite a set of specialized functions for
handling paths. I think that a function to add a backslash conditionally must be one of the top-ten
most written functions in the history of modern computing! My own favorite macro for this purpose is
contained in a single line of code:

#def i ne ADDBACKSLASH(p) Istrcat(p, (p[lstrlien(p) - 1] == 92 2?2 "\\" : ""))

The functions of shl wapi . dl | sound really interesting, but sadly they won't help you to overcome
really difficult problems. Their main benefit is for dealing with repetitive tasks. In Chapter 8, for
example, we discussed the problems with spaces in long file names that cause Fi ndExecut abl e()
to fail. The list of path functions in the next section includes one for extracting arguments that
appears to offer a solution, but unfortunately the function assumes that the first space is the end of the
file name, which (as we have seen) is not always the case.

Table of Functions for Manipulating Path Strings

The following table summarizes many of the new functions for manipulating path strings. My
favorites are Pat hConpact Pat hEx (), which provides you with a truncated path that fits in a given
number of pixels, and (even better) Pat hSet DI gl t enPat h(), which exploits this function and
automatically draws the path name to a child window identified by ID. Also useful are

Pat hQuot eSpaces() and Pat hUnquot eSpaces(), which add and remove delimiting quotes if a
path contains one or more spaces. This is just the kind of functionality that would prevent the bug in
Fi ndExecut abl e() (See Chapter 8).

Function Description

Pat hAddBacksl ash() Makes sure the path has a final backslash

Pat hAddExt ensi on() Makes sure the path has an extension

Pat hBui | dRoot () Builds a drive path from the drive number (0 = A, etc.)

Pat hCanoni cal i ze() Expands and properly replaces all the instances of . .
and . that a path may contain

Pat hConbi ne() Combine drive and directory path

Pat hConpact Pat h() Truncates a path to fit a certain number of pixels

308

Windows Helper Libraries

Function

Description

Pat hConpact Pat hEx()

Pat hConmmonPr ef i x()
Pat hFi | eExi sts()
Pat hFi ndExt ensi on()
Pat hFi ndFi | eNane()

Pat hFi ndNext Conponent ()

Pat hGet Args()
Pat hGet Char Type()

Pat hGet Dri veNunber ()
Pat hl sDi rectory()
Pat hl sFi | eSpec()

Pat hl sRoot ()
Pat hl sSaneRoot ()
Pat hl sSyst enFol der ()

Pat hl sUNC()

Pat hl sURL()

Pat hQuot eSpaces()

Pat hRenoveAr gs()

Pat hRenoveBacksl ash()
Pat hRenoveExt ensi on()
Pat hRenoveFi | eSpec()

Pat hRenameExt ensi on()

Pat hSear chAndQual i fy()

Pat hSet DI gl t emPat h()

Inserts ellipses to make a path fit a certain number of
characters

Compares two paths for a common prefix
Verifies that a file exists

Gets the extension

Gets the file name

Gets the next item between two backslashes
Returns the command line of a path

Examines a given character with respect to the path. Is
it a valid long file name character, is it a wildcard or is
it a separator?

Gets the drive number. (0 = A, etc.)
Checks whether the given path is a directory

Checks whether the given path contains separators (\,
0
Checks whether the given path contains a root

Checks whether two given paths share the same root

Checks whether the given path has the System
attribute

Checks whether the given path follows UNC

conventions

Checks whether the given path is an URL

If a path contains a space, puts quotes around the path
Removes the arguments

Makes sure there's no final backslash

Makes sure there's no extension

Makes sure there's no file or extension

Replaces the extension

Determines whether a path is correct and fully
qualified

Makes sure text of a control containing a path is
correctly displayed in a child window

Table Continued on Following Page

309

Chapter 10

Function Description

Pat hSki pRoot () Parses a path, starting from a directory

Pat hStri pPat h() Removes the drive and directory

Pat hStri pToRoot () Leaves the drive only

Pat hUnquot eSpaces() Makes sure the path has no delimiting quotes

The Case for SHFormatDrive()

Despite the fact that Windows 98 has shipped and a large part of the shell has been affected by recent
changes, the documentation of a function called SHFor mat Dri ve() is still poor. By combining the
information here with the quick note in the MSDN Library and some articles that have appeared (see
Further Reading), you can format disks programmatically.

What the Function Does

As its name suggests, SHFor mat Dri ve() allows you to format a drive. In principle, you could try to
format your C drive, were it not for the fact that the function (or rather, the system) prevents you
from doing so! The official reason for this is that a drive with Windows or the swap file in use cannot
be formatted. Whatever the merits of the argument, I'll limit my discussion here to floppies. The
prototype (taken from the MSDN Library) is as follows:

DWORD W NAPI SHFor mat Dri ve(HWAD hwnd, UI NT drive, U NT fnt1D, U NT options);

Argument Description

hwnd Parent window of the dialog displayed

drive ID of the drive to be formatted (0 = A, 1 =B, 2 =C, etc.)
fmlD Should always be set to -1 at present

options Type of formatting

For the type of formatting, we can choose from:

Value Description

0 Quick format

1 Full format

2 Make system disk

310

Windows Helper Libraries

The return code of the function is one of the following:

Return Code Description

>0 Success

0 Wrong parameters passed
-1 Error while formatting

-2 Operation aborted

-3 Drive cannot be formatted

Now we have all that we need to call SHFor mat Dri ve() and format our disks, like this:
irc = SHFormat Dri ve(hwid, 0, -1, 0);

SHFor mat Dri ve() is exported quite normally by shel | 32. dl |, and shel | 32. | i b contains its
definition. What's missing (apart from a few lines of documentation!) is a declaration in

shel | api . h. Since the function is defined in shel | 32. | i b, you don't have to load it dynamically
through LoadLi brary() and Get ProcAddr ess() — you can just use its regular name.

Remember, though, that you'll have to add a declaration for the function somewhere. The one I gave
above is fine, although using it from C++ will require you to declare it as having C linkage by using
the ext er n keyword. See the code at the end of the section for clarification of this point.

SHFormatDrive() and Windows NT

Although the MSDN article doesn't mention it, the behavior of SHFor mat Dri ve() is slightly
different under Windows NT than it is under Windows 9«. In particular, the successful return code is
0 under NT, while it is greater than 0 under Windows 9x. In addition, the user interface is different,
and there's a further confirmation message box that appears when you press OK to start formatting.
See Further Reading for related articles.

The function is supported only on Windows NT 4.0 or higher. The version of the library that shipped
with NT 3.51 has an entry for it, but it just returns —1. Furthermore, a 16-bit version of the function
still exists in shel | . dl | .

A General Approach to Improving System Dialogs

Windows is still waiting for a well-documented function for formatting drives. Once we've figured out
how to use SHFor mat Dri ve(), we might be satisfied and stop there, but there's so much more that
we can do! For example, I'm still wondering why the function doesn't allow us to set the disk label
programmatically — doing it though Set Vol umelLabel () seems like unnecessary extra effort. And
what about a silent function that you can run without confirmation, and only stop when you need to?

311

Chapter 10

You know that I must be working towards something! Because SHFor mat Dri ve() is a dialog-based
function, it offers us a place to hook onto and change anything we want about it. In fact, there's a
general technique for so doing, which is:

Q Install a WH_CBT hook just before calling the dialog-based function that you want to hook, because
the first window of class WC_DI ALOG created in that thread is the dialog in which we're interested

Q Do whatever you want to do when intercepting the various events of the hook

Q Uninstall the hook

The hook receives from the system a pointer to the CREATESTRUCT structure that contains
information about the window to be created. We can modify its template, subclass it, modify its
position or a combination of all three! The possibilities that the WH_CBT hook provides are numerous

indeed.

The example program we will develop later in the chapter, whose dialog is shown in the figure below,
exploits this technique to enable label setting and silent formatting in SHFor mat Dri ve() . The
options that you select on this dialog will be communicated directly to the SHFor mat Dri ve()

dialog by means of the hook.

IDC_EDIT

Thiz program demonstrates an enhanced version of SHFarmatDrivel]
that alzo lets yol label diives and perform automatic, silent formatting.

— Option:
; ™ MoLabel IDC_NOLABEL
Label:
™ Show Summary IDC_SUMMARY
I ™ Copy spstem files IDC_COPYSYSTEMFILES
— Formatting

¥ Automatic and silent format I IDC_ERRCODE

Ok IDOK
S C—— \i -]

IDC_AUTOMATIC IDC_DRIVE

The Drive combo box lets you choose the drive to format (floppies only), while the OK button starts
the operation. The various checkboxes allow the user to specify the behavior we're expecting the
function to provide. The label under the OK button displays the value the function returns, while the
No Label, Show Summary, and Copy system files checkboxes map some of the controls that
populate the SHFor mat Dri ve() dialog under Windows 9x. As you'll see shortly, the situation is a
little different under Windows NT, and we'll be making a few runtime tweaks to the user interface.

Extending the Syntax of SHFormatDrive()

As a first step down the road to our sample application, I'll define a new function that will use
SHFor mat Dri ve() for much of its internal operation. Imaginatively called For mat Dri ve(), the
function has the following prototype:

int FormatDrive(HWD hWhd, int iDrive, int iCapacity,
int i Type, LPFORVATDRI VESTRUCT | pfd);

312

Windows Helper Libraries

The additional parameters are gathered together in the FORMATDRI VESTRUCT structure:

struct FORVATDRI VESTRUCT

{
BOOL bShowSummary; /1 Unused under W ndows NT
BOOL bNoLabel ; /1 Unused under W ndows NT
BOOL bCopySyst enfFi l es; /1 Unused under W ndows NT
BOOL bAutonati c; /1 Unused under W ndows NT
TCHAR szLabel [11];

b

typedef FORVATDRI VESTRUCT* LPFORMATDRI VESTRUCT;

Many of these parameters are modeled on the layout of the dialog produced by SHFor mat Dri ve()
under Windows 9«, which looks like this:

Format - 3% Floppy [A:] EHE

Capacity:

A4 Wb [3.5"] Start |
= Quick [erase)
= Full
" Copy system files only

— Other option:
Label:
|wHD><

I+ Mo label
v Display summary when finished
v Copy spstem files

The bShowSunmar y, bNoLabel and bCopySyst enFi | es members match the analogous
checkboxes in the system dialog box. szLabel will point to the new label required, while

bAut omat i ¢ indicates that a silent and somewhat automatic process is required. This last feature
doesn't have an analog in any of the dialog's controls, so its implementation is entirely my own.

The Windows NT Dialog Box

Unfortunately, the dialog produced by SHFor mat Dri ve() under Windows NT is quite different, as
the next figure shows:

313

Chapter 10

Format A:\ I

Capacity:

|35 1.44MB, 512 bytesisector =l
File aystem
|FaT =l
File systenm version
| -
Allocation unit size
IDefauIt allocation zize j
Yolume label
fwROx

Format optioh

¥ Quick Format
= Enable Eompression

Cloze |

Not only are there are fewer controls, rendering our bShowSurmmary, bNoLabel and

bCopySyst enFi | es structure members useless, but also the ID of the Label textbox is different.
Spy++ reveals that it's | D_DLG_TEXTLABEL under Windows 9x, and | D_NT_DLG_TEXTLABEL
under Windows NT. These inconsistencies will force us once again to detect on which platform we're
running and execute conditional code as appropriate.

An Automatic Function for Formatting Drives

We're now in a position where we know the things our For mat Dri ve() function must do. It needs
to establish what operating system it's running on, and to verify that the drive it has been called upon
to format is removable. Then it has to squirrel away the additional parameters in global memory so
that the hook can read them. After that it's just a matter of installing the hook, calling

SHFor mat Dri ve(), and uninstalling the hook again:

HHOOK g_hHook = NULL; /1 CBT hook
BOOL g_bl sNT; /1 Are we on NT?
FORMATDRI VESTRUCT g_f d; /1 Cther options

LRESULT CALLBACK CBTProc(int, WPARAM LPARAM ;

extern "C' DWORD W NAPI SHFor mat Dri ve(
HWD hwnd, U NT drive, UNT fntlD, U NT options);

// Format a drive calling the standard SHFormat Drive() function
int FormatDrive(HWMD hwd, int iDrive,
int iCapacity, int iType, LPFORVATDRI VESTRUCT | pfd)

/'l Read the platformfor |ater use...

OSVERSI ONI NFO os;
0s. dwOSVer si onl nf 0Si ze = si zeof (OSVERSI ONI NFO) ;

314

Windows Helper Libraries

Get Ver si onEx(&o0s) ;
g_blsNT = (os.dwPl atform d == VER PLATFORM W N32_NT) ;

/'l Check the drive type
TCHAR sz[5] = {0};
wsprintf(sz, _ TEXT("%:\\"), "A + iDrive);
BOOL bl sFl oppy = (CetDriveType(sz) == DRI VE_REMOVABLE);
i f(!blsFl oppy)
return -3;

/'l Copy the additional paraneters to gl obal nenory
CopyMenory(&g_fd, |pfd, sizeof (FORMATDRI VESTRUCT));

/1 Install the hook and call the function

g_hHook = Set W ndowsHookEx(WH_CBT, CBTProc, NULL, GetCurrentThreadl d());
int irc = SHFormat Dri ve(hWhd, iDrive, iCapacity, iType);

UnhookW ndowsHook Ex(g_hHook) ;

return irc;

}

This is obviously not the whole story, because, apart from a bit of elementary setup and checking,
most of the actual work gets pushed off to the CBTPr oc() callback function that's installed and
removed by the calls to Set W ndowsHookEx() and UnhookW ndowsHookEx() respectively. By
dint of this code, CBTPr oc() will be called when the SHFor mat Dri ve() dialog is about to be
displayed, and that's the point at which we get to step in and make changes.

Setting Volume Labels

As you'll see when we get to the code, making the settings on the SHFor mat Dri ve() dialog match
the ones we specify in our application is a relatively easy task, but there are some other issues that
CBTPr oc() needs to deal with.

For example, you might be thinking that to force the dialog to set a new disk label, it will be sufficient
simply to put the desired text into the appropriate edit box. Unfortunately, this won't suffice because
the contents of the box are actually read and utilized only if it has previously been edited. The dialog
procedure ignores the box completely until it detects an EN_CHANGE notification message from it.

When you change the text in the control manually, this message gets sent automatically, but doing it
from software doesn't have the same effect, so Set Dl gl t emlext () alone isn't enough. In order to
make the dialog believe that the text has been changed, we need to add a call to

SendDl gl t emVessage(), like this:

Set Dl gl t eniText (hDl g, iLabel I D, szlLabel);
SendDl gl t emvessage(hDl g, iLabel I D, EM SETMODI FY, TRUE, O0);

Here, the EM_SETMODI FY message serves the purpose of raising the EN_CHANGE notification.

Silent Formatting

Another problem with the SHFor mat Dri ve() dialog (from the point of view of manipulating it
programmatically) is that it always requires the user to click to confirm the operation. Ideally, we'd
like to be able to skip this confirmation so that we can begin formatting the disk simply by clicking on
a button in our application.

315

Chapter 10

To do this, the software must simulate a click on the SHFor mat Dri ve() dialog's OK button, and it
can do so by posting a WWM_COMMAND message to the dialog:

Post Message(hD g, WV COMVAND, | DOK, 0);

There's additional complexity here: we must make sure to post the message only on the first occasion
that the window is activated. Unfortunately, the HCBT_ACTI VATE event is also raised when the
progress window closes, and the format dialog returns to the foreground.

In order to close the progress window programmatically (by using another message), we also need a
way to detect when the formatting has been completed. The solution here is a timer that frequently
checks the state of the OK button to see whether it is enabled — it is always disabled for the entire
process of formatting. To know when to kill the timer, we just need to hook for the
HCBT_DESTROYWND notification.

Further NT Problems

Unfortunately, this trick won't work under Windows NT because there's a further confirmation
window before the format takes place. To try to work around this, we could consider hooking for the
additional window as well, but for now I'm going to add support for 'automatic' operation to the list
of things the application can't do under NT. Here, at last, is the code for CBTProc() :

HWD g_hwndDl g; /1 Dial og HMND
U NT g_i dTi ner; /[l Timer 1D

voi d CALLBACK Ti mer Proc(HWND, Ul NT, Ul NT, DWORD);

/1 CBT hook call back
LRESULT CALLBACK CBTProc(int i Code, WPARAM wParam LPARAM | Param

{
static BOOL bFirstTine = TRUE;

i f(iCode < 0)
return Cal | Next HookEx(g_hHook, i Code, wParam | Paran;

// About to activate the dial og
i f (i Code == HCBT_ACTI VATE)
{
// Get a handle to the dialog
g_hwndDl g = reinterpret_cast <HAND>(wPar an ;

/] Set the |abel edit box

int iLabel D = (g_blsNT ? | D NT_DLG TEXTLABEL : | D _DLG TEXTLABEL);
Set DI gl t enTText (g_hwndDl g, iLabel ID, g_fd.szlLabel);

SendDl gl t emMVessage(g_hwndDl g, iLabel I D, EM SETMODI FY, TRUE, O0);

// Check the option buttons

CHECK(Get DI gl t en{ g_hwndDl g, | D DLG SHOASUMVARY), g_fd. bShowSummary);
CHECK(Get DI gl t en{ g_hwndDi g, | D DLG NOLABEL), g_fd.bNoLabel);

CHECK(Get Dl gl tem(g_hwndDl g, | D DLG BOOTABLE), g_fd. bCopySystentiles);

// 1f not the first time, then nust skip
if(g_fd.bAutomati c && bFirstTi ne)

// Simulate a click on the Start button
bFirstTi me = FALSE;

316

Windows Helper Libraries

Post Message(g_hwndDl g, WM COMWAND, | DCOK, 0);

/1l Set the tiner to detect when formatting ends
g_idTimer = SetTimer(NULL, 1, 1000, Ti nmerProc);
}
}

/] About to destroy the dial og
i f(i Code == HCBT_DESTROYWAD)

/'l Reset first time flag and stop the tiner
bFirstTime = TRUE;
if(g_fd.bAutomatic)
Ki Il Ti mer (NULL, g_idTi nmer);
}

return Cal | Next HookEx(g_hHook, i Code, wParam | Paran;

The wPar ampassed to the callback procedure is the handle of the window being activated, namely
the dialog. Once you've got hold of that, accessing and modifying the content of the dialog controls is
fairly straightforward. You need to know the IDs of the standard dialog controls (another job for
Spy++1):

/'l 1 Ds of Wndows 9x standard dial og controls

const int | D DLG TEXTLABEL = 0x26; /1 Edit box for |abel
const int I D DLG NOLABEL = 0x27; /1 "No Label" checkbox
const int 1D DLG BOOTABLE = 0x28; /Il "Systemfiles" checkbox
const int | D DLG SHOAMSUWARY = 0x29; /1 " Show Summary" checkbox

/1 1 Ds of NT4 standard dialog controls
const int ID NT_DLG TEXTLABEL = 0x7007; // Edit box for |abel

Then there's my handy little macro, CHECK() , which makes light of some repetitive calls to
Post Message():

/'l Macro to post check nessages nore quickly
#def i ne CHECK(h, b) \
Post Message(h, BM SETCHECK, (b ? BST_CHECKED : BST_UNCHECKED), 0)

And finally, we have the Ti mer Proc() callback function:

/1 Timer call back
voi d CALLBACK Ti ner Proc(HWND hwnd, Ul NT uMsg, U NT i dEvent, DWORD dwTi ne)
{

HWAD hwndOK = Get Dl gl tem(g_hwndDl g, | DCK);

/1 Sinulate the O ose button being pressed

i f (I sWndowEnabl ed(hwndCK))
Post Message(g_hwndDl g, W COMVAND, | DCANCEL, O0);

As you can see, it watches for the OK button becoming enabled and then dismisses the dialog.

317

Chapter 10

The Sample Program

All that remains now is to set up a Wrox AppWizard-generated application with the dialog that I
showed you earlier in the chapter, and so that it uses the For mat Dri ve() function. Once you've
added all the functions we've developed so far, you just need to add code to the Onl ni t Di al og()
and OnOK() functions:

#i ncl ude "resource. h"

voi d OnlnitD al og(HWND hDl g)
{
/'l Read the platform..
OSVERSI ONI NFO os;
0s. dwOSVer si onl nf 0Si ze = si zeof (OSVERSI ONI NFO) ;
Get Ver si onEx(&os) ;
BOOL bl sNT = (os.dwPlatformd == VER PLATFORM W N32_NT) ;

/1 Disable sone options if under NT
i f (bl sNT)

Enabl eW ndow(Get Dl gl t em(hDl g,
Enabl eW ndow(Get Dl gl t em(hDl g,
Enabl eW ndow(Get Dl gl t em(hDl g,
Enabl eW ndow(Get Dl gl t enm(hDl g,

DC_SUMMVARY) , FALSE);
DC_NOLABEL), FALSE);
DC_COPYSYSTEMFI LES), FALSE);
DC_AUTOVATI C), FALSE);

}

/1 Fill the drive list

HWND hwndCbo = GetDiglten(hD g, | DC DRI VE);
ConmboBox_AddSt ri ng(hwndCho, _ TEXT(" A:"));
ConboBox_AddsSt ri ng(hwndCho, __ TEXT(" B:")
ConboBox_AddsSt ri ng(hwndCho, c")
ConboBox_AddSt ri ng(hwndCho, _ TEXT(" D ")
ConboBox_AddSt ri ng(hwndCho, _ TEXT(" E: ")
ConboBox_Set Cur Sel (hwndCbho, 0);

/1l Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hlconSmall));
SendMessage(hDl g, VWM SETI CON, TRUE, reinterpret_cast <LPARAM>(g_hl conLarge));

voi d OnOK(HWAD hDi g)

HWAD hwndCbo = GetDiglten(hD g, | DC DRI VE);
int iDrive = ConboBox_GCet Cur Sel (hwndCho) ;

FORMATDRI VESTRUCT f d;

Zer oMenory(& d, si zeof (FORVATDRI VESTRUCT)) ;

fd. bNoLabel = (1sD gButtonChecked(hD g, | DC_NOLABEL) == BST_CHECKED);

fd. bShowSummary = (I sD gButtonChecked(hDl g, | DC_SUMVARY) == BST_CHECKED);

fd. bCopySystenfiles = (IsD gButtonChecked(hDl g, | DC_ COPYSYSTEMFI LES) ==
BST_CHECKED) ;

fd. bAutomatic = (IsDl gButtonChecked(hD g, | DC_AUTOVATI C) == BST_CHECKED) ;

Get Dl gl tenText (hDi g, IDC EDIT, fd.szlLabel, 11);

int irc = FormatDrive(hDig, iDrive, -1, 0, &fd);

TCHAR szBuf [MAX_PATH = {0};

wsprintf(szBuf, _ TEXT("%"), irc);
Set Dl gl t enText (hDl g, | DC_ERRCODE, szBuf);

318

Windows Helper Libraries

There's really very little to be said: OnOK() gets the values from the dialog, bundles them up into a
FORMATDRI VESTRUCT, calls For mat Dri ve() and outputs the return value. What could be easier
than that?

Summary

This chapter has presented some fairly new aspects of the Windows 9x shell. In fact, they're new not
because they are relatively recent additions, but also because they are not widely known. With the
usual well-documented provisos, everything you've seen in this chapter works under Windows 95 and
Windows NT 4.0, as long you have installed Internet Explorer 4.0 and Active Desktop.

In this chapter, we examined:

How to get the version number of a generic executable file
The Recycle Bin API
The Shell Lightweight Utility API

An poorly-documented function for formatting drives

0O000D

A general technique for hooking and customizing system dialogs

In the book so far, we've been examining specific parts of the shell API. In this chapter, we have
covered more minor aspects with a broader brush and completed the overview.

Starting with the next chapter, I'll begin to dig inside Explorer, its objects, its registry settings and its
customization levels. In particular, I'll examine traditional components such as Control Panel, My
Briefcase and Printers, as well as some new ones. Among these, the most noteworthy are Scriptable
Shell Objects and the Windows Scripting Host.

Further Reading

A programmer's perspective of Windows 98 may be found in an article of mine that appeared in the
July 98 edition of MIND, in the Cutting Edge column. A similar article by Matt Pietrek, entitled A4
Programmer's Perspective on New System DLLs Features in Windows NT 5.0, was published in the
November and December 97 issues of MS]J.

I stated earlier that being able to leave the C runtime library out of the compiled code could improve
performance and memory demand. Doubtful? Then check out two of Matt Pietrek's articles that
appeared in the October 1996 issue of MSJ. One is in the Under The Hood column and specifically
covers runtime library functions, while the other is called Remove Fatty Deposits from Your Applications
Using Our 32-bit Liposuction Tools.

I wrote an article on SHFor mat Dri ve() that appeared in the March 98 issue of WDJ, in which I

endeavored to provide a uniform interface for dealing with the function, both under Windows 95 and
Windows NT 4.0. Check it out; it's called An Undocumented Function for Formatting Drives.

319

Chapter 10

Finally, as usual, here's a list of related Knowledge Base articles:

Article ID: Q158439: Files with Long Extensions Bypass the Recycle Bin When Deleted
Article ID: Q168570: Files Do Not Show Up in Recycle Bin When Deleted

Article ID: Q17169: Differences Between the Recycle Bin and the Recycled Folder
Article ID: Q136517: How the Recycle Bin Stores Files

Article ID: Q173688: Call SHFormatDrive in Windows 95 and Windows NT

320

1

Exploring the Shell

We'll now turn our attention away from the API and to the Windows Shell itself. My goal for this
chapter and the rest of the book is to provide you with a clear and comprehensive understanding of
how Explorer works, what objects make up the shell's namespace, and finally how you can customize
and extend its characteristics and behavior.

The Windows Shell, also known as Explorer, is a collection of specialized modules that work together
to form the shell's namespace and give it the ability to perform a lot of specialized tasks. These
include such things as exploring a folder, showing a specific directory sub-tree, or loading an external
module and communicating with it. Although the end result may be different, whenever these objects
are invoked and displayed, it is always Explorer working away in the background.

In many cases, Explorer provides these services by communicating with a given program through its
command line. It's therefore important to understand what Explorer expects from your applications if
you want it to manage them effectively for you. (This topic will be covered in much more detail in
Chapter 14.)

In this chapter, we'll be covering the following topics:

Explorer's command line

The RunDl | 32 program that runs system dialogs

The shell objects My Briefcase, Control Panel, Printers and Scheduled Tasks
Scrap objects

000 Oo

The source code example for this chapter provides you with a tool that could well be useful to you in
your everyday work. It brings together many of the topics we have covered in recent chapters, such
as shortcuts and registry manipulation, and also addresses some new topics that we will be discussing
in detail in the next few chapters.

Chapter 11

This tool, called NewLi nk, provides an alternative and far more flexible way to create shortcuts, on
the desktop or elsewhere. If you really like it, you can even install it as your default shortcut handler,
replacing the standard Windows Wizard.

Explorer's Command Line

Explorer has a command line that can take four optional switches, and as a result there are several
possible combinations:

explorer.exe [/n [, <folder>]]
[/e [, <folder>]]
[, /root, <object>]
[[, /select], <sub object>]

Notice the use of commas in the command line structure. This is certainly an unusual thing to see, but
it's not a mistake — that really is how it works! The following table explains what the switches mean:

Switch Description

/'n Opens the specified folder in a new, single-paned view. A single-paned view
looks like the windows you get in My Conput er, and is based on a list view.

/e Opens the specified folder in a new, double-paned view. This is the typical
Explorer view, with the namespace in the left pane as a tree view, and the
details in the right pane.

/ r oot Makes the specified folder the root of the tree view. Requires an / e view.

/ sel ect Selects the specified item in the left pane (the tree view).

The simplest switch is the / sel ect option, which is used to select a specific sub-item within the
opened folder. Here's an example of the syntax:

explorer /e, /select, c:\w ndows

You need to use this flag in conjunction with / e, because the / sel ect flag requires a tree view.
There's no way to select an item in the right pane, or the folder in a single-pane view. When you use
the / n and / e switches, you specify the folder name following a comma:

explorer /e, c:\
explorer /n, c:\
explorer c:\

The second and third of the command lines listed above produce identical results (a single-paned
view) — in other words, / n is the default option.

324

Exploring the Shell

The /root Switch

You'll often come across views that look like Explorer views, but which have a particular folder as the
root node. You can open Explorer views like this by using the / € and / r oot switches together, thus:

explorer /e, /root, c:\w ndows

Note that when a view is opened with a root other than the Desktop, the user cannot navigate up the
tree. If you run Explorer using ¢: \ wi ndows as the root, then you won't be able to access ¢: \ or any
other directory at the same level in the tree as c: \ wi ndows.

Using Special Folders as the Root

Special folders, such as the Recycle Bin, don't have a one-to-one correspondence with file system
folders. As we've discussed before, these namespace extensions are in-process COM servers, and as
such are identified by a CLSID. The / r oot switch lets you specify a CLSID as the folder to be used,
although a couple of constraints must be satisfied:

Q The COM server must implement all the interfaces required for a namespace extension.

Q You have to prefix the CLSID with : : to refer to it on Explorer's command line. The syntax
::{cl sid} is handled as if it's an ordinary directory name.

Take the following line as an example:

expl orer ::{645FF040-5081- 101B- 9F08- 00AA002F954E}
This will open a new window on the Recycle Bin, and you'll be able to do exactly the same with your
own custom folders. The following table contains the CLSIDs of a few of the folder objects you might

find on your desktop, but note that not all the objects on the desktop are folders — Inbox and My
Briefcase, for example, are applications.

CLSID Object

645FF040- 5081- 101B- 9F08- 00AAO02F954E Recycle Bin
20D04FEO- 3AEA- 1069- A2D8- 08002B30309D My Computer
208D2C60- 3AEA- 1069- A2D7- 08002B30309D Network Neighborhood
871C5380- 42A0- 1069- A2EA- 08002B30309D Internet Explorer
645FF040- 5081- 101B- 9F08- 00AAO002F954E Recycle Bin
21EC2020- 3AEA- 1069- A2DD- 08002B30309D Control Panel
992CFFA0- F557- 101A- 88EC- 00DD010CCCA48 Dial-Up Networking
2227A280- 3AEA- 1069- A2DE- 08002B30309D Printers

325

Chapter 11

Note that in this context, you can treat CLSIDs like traditional folders and combine them using
slashes. For example, to access the Pri nt er s folder, which is a sub-folder of My Conput er, you can
use the following syntax:

expl orer ::{20D04FEO- 3AEA- 1069- A2D8- 08002B30309D} \
11 {2227A280- 3AEA- 1069- A2DE- 08002B30309D}

What is rundli32.exe?

As I said a little earlier, the command line plays a primary role in the organization of Explorer. Many
of the functions that you can execute on file objects are carried out through the command line. To
help with this, Windows 9x and Windows NT 4.0 (and higher) come with a helper program called
rundl | 32. exe that allows you to call a DLL-exported function directly from the command line.
This utility is a simple wrapper built around the few API calls that are necessary to execute a DLL
function dynamically.

The following pseudo-code shows you roughly what r undl | 32 is doing:

voi d DoRunDl | 32(LPCTSTR szDl | Name, LPCTSTR szFuncNanme, LPCTSTR szCndlLi ne)

{
// Load the library into menory
HANDLE hLi b = LoadLi brary(szD | Nane) ;
/] Get the address of the function we've been asked to execute
FARPROC pFunc = Get ProcAddress(hLi b, szFuncNane);
/'l Execute the function using the pointer
pFunc(Get Focus(), hLib, szCndLine, SW SHOW;
/'l Free the library
Fr eeLi brary(hLi b);
}

In real life, all r undl | 32 receives is a single string that it parses to extract the DLL and function
names, plus any optional arguments for the function. The command line looks like this:

rundl | 32 dl | nane, funcnane [argunents]

The DLL name and the function name must be comma-separated, with no blanks between them. If you
call rundl | 32 without specifying a fully qualified name for the DLL, it is searched for in all the
standard paths, including the application's directory, the Windows directories, and the current
directory.

A flaw of this program is that it doesn't usually return enough information in the case of errors. If the
DLL function you're trying to call is missing (say, you mistyped its name), then it lets you know quite
precisely what happened. However, if the function can be called but fails during execution, the
chances are that you will have to guess the causes yourself!

The rundl | 32 interface is often used to call into some little known system dialogs, and you can also

use it to let other users call into your own DLLs. To be able to do so, all that matters is that the
callable functions have a predefined prototype.

326

Exploring the Shell

Functions Callable By rundli32.exe

In the pseudo-code above, look at the line that actually calls the DLL function. Rundl | 32 can only be
used to call functions with the following prototype — it is made up of four parameters, of which the
user sets only one:

voi d CALLBACK FuncNanme(HWD hwnd, /1l W ndow handl e
HI NSTANCE hi nst , /'l I nstance handl e
LPTSTR | pszCndLi ne, /1 Command | i ne
i nt nCdShow) ; /1 ShowwW ndow() par aneter

The first parameter, hwnd, is used to give a parent to any dialog box that may be created by the
function. In principle, this means that such dialogs will be modal with respect to the parent window.
In practice, though, this parameter always evaluates to the desktop window (that is, hwnd is NULL), so
any new window will be modeless with respect to all the other windows opened in the shell.

The second parameter is an Hl NSTANCE handle, which is the handle of the library, itself as returned
by LoadLi brary() . The fourth parameter, nCndShow, determines how the window will be
displayed, and is always SW SHOWwhen the function is called through r undl | 32.

The only 'controllable' parameter is the function command line | pszCndLi ne, through which the
function will receive its argument data. As an example, suppose you have a function that takes two
numbers. Its definition might be:

voi d MyFunc(int iFirst, |long | Second)

}
To make this function callable through the r undl | 32 interface, it should be changed like this:

voi d MyFuncl(HWAD hwnd, HI NSTANCE hi nst, LPTSTR | pszCndLi ne, int nShow)

int iFirst;
| ong | Second;

/'l Parse the command |ine, and crack out the paraneters
Par seCommandLi ne(| pszCndLi ne, & First, & Second);

/1 Call the function with the parameters we've extracted
MyFunc(i First, | Second);
}

Under Windows NT, the function to call is first searched with its Unicode name, then with the ANSI
name, and finally as it is written. This means that a call to MyFunc() will be converted to calls to
MyFuncW), MyFuncA() and MyFunc(), in that order. Of course, in the case of Unicode calls the
string will be passed in wide characters and evaluates to a LPWSTR rather than a LPSTR.

What you can do with rundll32.exe

rundl | 32 (and its 16-bit ancestor, called simply rundl |) is used mainly to display system dialog
boxes and to call DLL functions in situations where only a command line can be specified.
Originally, it was a tool designed by Microsoft for internal use only, and the limited set of practices
for which it was intended are obvious.

327

Chapter 11

The program can save you from having to load and unload DLLs explicitly when you're testing code,
and sometimes it can help you to check the dialogs exported from a DLL. On the other hand, it
forces you to adopt a fixed syntax for function calls, and there's no mechanism for returning data to
the caller. There is, however, one particular way in which you might want to use it.

You can use rundl | 32 to gain access to some of the system dialogs, including ones that aren't easily
accessible due to lack of documentation. In many cases, this is by design and the only recommended
(and documented) way to access such things is by using rundl | 32. As an example, let's consider the
Add New Printer Wizard:

Add Printer Wizard |

Hawy iz this printer attached to your computer?

1f it iz directly attached to your computer, click Local

Frinter. If it iz attached to anather computer, click Metwork
Frinter
1 Local printer

™ Mebwork printer

Cancel

This Wizard is implemented and invoked by the system through a function located in sysdm cpl,
which by its extension we can identify as a Control Panel DLL. The documentation suggests that you
call it like this:

rundl | 32. exe sysdmcpl, InstallDevice_Rundl| printer

Instead of a more 'natural’ straight call to | nst al | Devi ce_Rundl | (). This function takes the four
parameters we've already discussed, and uses the word pri nt er as an argument to decide what to
do. In fact, although it is undocumented, you can use the same syntax to install a new modem or a
monitor, simply by replacing the word pri nt er with the rodemor noni t or.

A RunDII() Function

Many system dialogs and Wizards are only supposed to be invoked by using r undl | 32. This is
probably because things could change in the future, in which event using r undl | 32 would shield
you from the new details. It may also be that some aspects of these functions and dialogs are not
meant to be completely public, and again, using an interface like r undl | 32 hides many of them.

328

Exploring the Shell

The next listing shows a possible implementation of a C++ function that mimics what r und| | 32
does. As such it revisits our earlier pseudo-code example, adding error checking and a means of
specifying the parent window:

voi d RunDl | (HAND hwnd, LPCTSTR szDi | Name, LPCTSTR szFunc, LPCTSTR szCndLi ne)

HANDLE hLi b = NULL;
hLi b = LoadLi brary(szD | Nane) ;
i f(hLib == NULL)

return;
FARPROC pFunc = NULL;
pFunc = Get ProcAddress(hLi b, szFunc);
i f(!pFunc == NULL)

pFunc(hwnd, hLib, szCrdLine, SW SHOW ;

FreeLi brary(hLi b);

By writing our own wrapper function in this way, we can pass any window we like as the parent of
any child dialog, enabling us to display dialogs that really are modal. In the source code for this book
that you can download from the Wrox web site, there's a sample application called RunXXX that uses
a function just like this one.

RundlI32.exe Protection Faults

Of course, you can try to use r undl | 32 with functions not specifically designed to work with it, but
you do so at your own risk — there can be problems. For instance, if you try to run a dialog, you may
well find that a protection fault occurs when you close it. Try executing the following code from the

Run dialog box:

rundl | 32 appwi z. cpl, Confi gStart Menu

The command will display a window that allows you to modify the content of the Programs menu:

Remove Shortcuts/Folders EH
Toremove an item from the Start menu, zelect the item and
click Remove.

-2 f =l
=) Accessories
() Fax
F-) Multimedia
E]-- System Toolz
Calculator
Clipboard Vigwer
Dial-Up Metwarking
[
Hemove | Cloge I

329

Chapter 11

When I close this dialog on my machine (which is running Internet Explorer 4.0), rundl | 32
produces this error:

! Rundli32 |

0 Thiz pragram has performed an illegal operation

and will be shut dovn,

If the: problem persistz, contact the program Dislig
wendar, -
Detaless

RUNDLLZEZ caused an inwvalid page fault in -
module Sunknowms at 0084:281e025fa.
=

Begisters:

EAM=00000000 C8=0137 EIP=516035fa EFLGE=00010Z46
EBX¥=816459%4c 55=013f ESP=0063fded EEF=0053fe38
ECK=clO9E2338 DS=013f ESI=00000001 FS=0cef
ED¥=bffhf3e0 E3=013f EDI=516035fa G8=0000

Evte=s at CS:EIP:

00 70 70 77 €9 7a Ze &2 Y0 &c 00 432 &6f €2 &6 &3

However, I've found out that if you issue the same command from within your own code, using a
function like RunDI | () above, it will work just fine!

This is just one example. If you search the MSDN Knowledge Base archive for ¥ undl | 'or
fundl | 32", you'll find a number of articles describing various faults caused by r undl | 32
when exiting from dialogs.

Commonly Used Commands

In some cases, these crashes stem from incorrect use of the function. If you ask r undl | 32 to execute
a function that has a prototype other than the recommended one, you'll probably get an error. It's not
possible to know exactly which exported functions are safely callable from r undl | 32, but you can
be sure that a function will work if its name includes a self-explanatory RunDI | prefix or suffix.

By delving into Knowledge Base articles, newsgroups, and several other places, I've put together a
short list of calls that allow you to access otherwise undocumented system dialogs:

Dialog Command line

Internet Properties Rundl I 32 I netcpl.cpl, Launchl nternet Cont r ol Panel
Remove Shortcuts/Folders Rundl | 32 appwi z. cpl, Confi gStart Menu

Open With Rundl | 32 shel | 32.dl |, OpenAs_RunDLL file

Connect to My Connection Rundl | 32 rnaui .dl |, Rnabial My Connection

Make New Connection Rundl | 32 RnaUl . dl I, RnaW zard

Add Printer Wizard Rundl | 32 sysdm cpl, I nstall Device_Rundl| printer
Install New Modem Rundl | 32 sysdm cpl, I nstall Device_Rundl|l nodem
Install New Monitor Rundl | 32 sysdm cpl, I nstall Device_Rundl| nonitor
Add New Hardware Wizard Control . exe sysdm cpl, Add New Har dwar e

330

Exploring the Shell

Internet Properties is the well-known tabbed dialog that appears if you double-click on the Internet
applet from the Control Panel, or if you choose the View | Internet Options... menu of Internet
Explorer, or even if you select Properties from the context menu associated with the Internet
Explorer icon. Moving on, we saw the Remove Shortcuts/Folders dialog during our earlier
experimentation, while Open With is the dialog that pops up when you try to open a file that hasn't
got a default viewer.

Connect to is the dialog that lets you connect to the Internet through the specified dial-up networking
applet. Note that you don't have to place the string that represents the connection in quotes, even if
the name includes spaces. Make New Connection runs the system Wizard to add a new connection to
the Di al - Up Net wor ki ng folder. As I've already mentioned, the remaining Add/Make dialogs
allow you to add a new modem, printer or monitor to the system's hardware configuration.

The last item in the table, Add New Hardware Wizard, is the default Wizard that scans your PC,
searching for new plug-and-play hardware. As you can see, however, it is not tied to r undl | 32 for
execution. Instead, it relies on cont r ol . exe, which is the executable behind the Control Panel; I've
included it here because it leads us on to a new topic: Explorer's constituent objects.

If you're running a non-English version of Windows, the Add New Hardware Wizard
command line won't work properly. You won't get an error message, but I can tell you that the
problem is due to localization — instead of the string Add New Har dwar e, you should use its
localized version. I'll say more about this topic later on.

The Explorer's Objects
The figure below shows a view of the shell's namespace. All the folders you can see below the
desktop are the objects that form the shell. My Conput er and Net wor k Nei ghbor hood hold the
details of the PC and its connections to the network. The | nt er net Expl or er node is a virtual
folder that represents the Internet. If a connection is present, you can expand it to see any web pages
currently displayed as if they are ordinary files. The Recycl e Bi n and My Bri ef case complete the
desktop's list of objects.

J File Edit “iew Go Favoites Tool: Help |
j SR o | =@ ‘ X
Back Fonward Up Cut Copy Paste | Undo Delete
J Address My Computer j
: All Folders x Marme | Tupe | Total Sizel
@ Desktop 5 3% Floppy [&:] 3% Inch Floppy ...
= Computer = Ms-dos_E(C:) Local Disk 1.02GB
il 314 Floppy [&:) =) Local Disk 939MB
E-= Ms-dos B(C) = [E) Local Disk 9E4MEB
R=N 0] P8 Msdned33d3(F) CO-ROM Disc E25ME
[E:] (] Prirters System Folder
Y Msdncd33d3 [F:] (3] Cantral Panel System Folder
-] Printers (28 DishUp Networking System Folder
{59 Cantral Panel
2] Dial-Up Metworking
[~ Metwark Meighborhood
-4 Intemet Explorer
Dina Egposito HomePage
----- @ Recycle Bin
-[£5 My Briefcase
4] | i
|@ 8 object(z] : 7 My Computer i

331

Chapter 11

We talked about the Recycl e Bi n in Chapter 10: it's a virtual folder that collects the statuses of
multiple physical folders distributed across all the local fixed drives. Each of these folders contains
references to the files marked for deletion.

My Bri ef case is an interesting but less well-known (and less frequently used!) feature that helps you
keep files and directories synchronized when you need to use them on more than one PC. I'll have
more to about this a little later on.

Under the node called My Conput er there are some more special folders. From the programmer's
point of view, the most interesting are:

Printers

Control Panel

Dial-Up Networking

Scheduled Tasks (Windows 98 and higher only)

000 Oo

Other special folders located under the W ndows directory hold details of subscriptions, downloaded
program files, and the history of visited sites.

The Control Panel

Control Panel is a sort of repository for dialogs that describe and configure hardware and software
components. The system provides a number of these dialogs automatically, and you can also add
your own. The Cont r ol Panel folder is a namespace extension that's filled by reading information
from all the . cpl files found in the Syst emdirectory. There's also a little executable called

cont rol . exe that simply asks the shell to open the folder, and then manages the activity of the
user, notifying the applets accordingly.

Of course, for an application you write to be a Control Panel item, you need rather more than just a
. cpl extension. First and foremost, the file must be a DLL, but it must also satisfy a number of
additional requirements:

Q It must export a function called CPl Appl et ()
Q It must respond properly to certain messages

Q It must provide an icon and a dialog box

The behavior of a Control Panel applet is entirely built around the configuration dialog that it
displays — one applet, one dialog.

Despite the fact that today, the term applet is mostly used to describe little Java modules, it has
been used for a long time in the Microsoft documentation to denote the components of the Control
Panel.

Developing Control Panel Applets
A Control Panel applet DLL must export a function called CPI Appl et () that has the following
prototype:

LONG CPI Appl et (HWND hwndCPI, // Handl e of the parent w ndow for the dial og
U NT uMsg, /'l Message received
LONG | Paranll, // First argunent specific for the nessage
LONG | Paran®); // Second argunment specific for the message

332

Exploring the Shell

This function is basically the window procedure for the applet — the controlling application
communicates with an applet by sending messages to this function. In particular, it may ask for the
number of applets the DLL implements, as well as information about the icon, name and description
of any given applet. Many . cpl files implement only a single applet, but there's nothing to prevent
them from implementing more than that. The following table shows all the possible messages:

Message Description

CPL_DBLCLK The applet icon has been double-clicked, so the associated dialog
should show up. The | Par aml argument is the 0-based number of
the applet in the DLL. This message is sent after CPL_| NQUI RE and
CPL_NEW NQUI RE. The | Par an? argument contains the user data
defined in the | Dat a member of the CPLI NFOstructure. (See later.)

CPL_EXIT This follows CPL_STOP and gets sent immediately before the applet
is unloaded. It takes no parameters.

CPL_GETCOUNT Asks the DLL to return the number of applets it implements. It is
sent after CPL_I NI T and takes no parameters.

CPL_INT Sent immediately after the applet is loaded. It takes no parameters.

CPL_I NQUI RE Used to get information about the applet. It is called only once and

the information the applet returns is cached by the system. The
| Par aml argument is the 0-based number of the applet in the DLL.
| Par ant is a pointer to a CPLI NFO structure that must be filled in.

CPL_NEW NQUI RE Used for the same purpose as CPL_| NQUI RE, it makes use of a
different structure and can be sent more than once during the
session. The | Par amil argument is the 0-based number of the dialog
in the DLL; | Par an? is a pointer to a NEWCPL| NFO structure that
must be filled in.

CPL_SELECT Obsolete and unsupported on all Win32 platforms.

CPL_STOP Sent only once to denote that the dialog is going to be closed. The
| Par aml argument is the 0-based number of the dialog in the DLL.
The | Par an2 argument denotes the user-defined data defined in
the | Dat a member of the CPLI NFO structure.

As you can see, the | Par anil argument is always the index of the dialog in the DLL, except in the
case of messages that take no parameters. The | Par an argument, on the other hand, can have two
meanings: it may represent a custom 32-bit buffer, or it might be a pointer to a data structure used to
gather information about the dialog.

There are two messages used by the controlling application to get information about the dialog
displayed by a given applet: CPL_I NQUI RE and CPL_NEW NQUI RE. In these cases, | Par an? points
to one of two different structures — CPLI NFO and NEWCPL| NFO — which are defined as shown
overleaf:

333

Chapter 11

typedef struct tagCPLI NFO

int idlcon; // Resource ID of the applet's icon
int idName; // Resource ID for the string with the dialog' s short nane
int idinfo; // Resource ID for the string with the dialog's description
LONG | Data; // Data defined by the application

} CPLINFG

typedef struct tagNEWCPLI NFO

DWORD dwSi ze; /1 Size of the structure
DWORD dwfFl ags; // Currently ignored
DWORD dwHel pCont ext ; /1 Currently ignored
LONG | Dat a; /| Data defined by the application
HI CON hl con; // Handl e of the applet's icon
TCHAR szNane[32] ; /1 Short nane of the dial og
TCHAR szl nf o 64] ; /1 Description of the dialog
TCHAR szHel pFi |l e[128] ; /1 Currently ignored

} NEWCPLI NFQ,

As you can see, despite different declarations, the structures contain the same information at this
time. A Control Panel applet should answer at least one of the associated messages, and in most cases
CPL_I NQUI RE offers slightly better performance due to the caching of information. If any of the
returned information is subject to change during the session, though, then you need to support
CPL_NEW NQUI RE as well. In fact, the latter message is sent each time that the controller is about to
use any of the applet's information. Another subtle difference is that CPLI NFOrequires the
information to be stored in the applet's resources, whereas NEWCPL| NFOreturns them in ready-to-use
buffers.

There might be circumstances in which you want to associate global status information with the
applet — it's never necessary, but sometimes it can help, and this is where the | Dat a member comes
into play. The following listing shows a sample CPl Appl et () function:

LONG CPI Appl et (HAND hwndCPI, Ul NT uMsg, LONG | Paranil, LONG | Paran®)

/1 Save the index of the dialog to consider
int iDglndex = | Parant;

swi t ch(uMsg)

// Do any initialization that m ght be required
case CPL_INIT:
return 1,

/1 Return the nunmber of applets in this DLL
case CPL_GETCOUNT:
return g_i NunCf Appl et s;

/1 Fill in the fields in the CPLINFO structure
case CPL_I NQUI RE:
LPCPLI NFO pCPL = reinterpret_cast <LPCPLI NFC>(| Par an®) ;

pCPL->i dl con = g_i | conl ndex;
pCPL- >i dNane = g_pszAppNane;
pCPL->i dl nfo = g_pszDesc;

br eak;

334

Exploring the Shell

/1 Display the dialog on receipt of a double-click nessage
case CPL_DBLCLK:
Di al ogBox(Get Mbdul eHandl e(NULL) ,
MAKEI NTRESOURCE(g_i DI gl D), hwndCPI, pfnD gProc);
br eak;

}

return 1,

Running Control Panel Applets

The cont r ol . exe application that I mentioned earlier in this chapter is not the program behind the
Cont rol Panel folder, but simply a stub that invokes Explorer to display the contents of all the

. cpl files it can find. In fact, Cont r ol Panel isn't a physical folder at all — the representation and
all the work of managing it are dealt with by the namespace extension that implements the folder.

If you want to run a Control Panel applet from a program, the best approach is to use rundl | 32 to
execute a function called Cont r ol _RunDLL() that's exported by the shel | 32. dI | library:

rundl | 32. exe shel132.dll, Control _RunDLL appl et. cpl
The above line will execute the applet called appl et . cpl by sending a CPL_DBLCLK message to
the CPI Appl et () function exported by the DLL. You could also call Control _RunDLL() using
the RunDI | () wrapper function that we put together earlier, for example:

RunDl | (hDl g, "shell32.dll", "Control _RunDLL", "desk.cpl,,3");

The output from this command is shown in the figure below:

Display Properties HE
Background | Screen Saver | Appearance |
Monitar Refresh I wieb Settings

Desktop area
Less J Iore
800 by BO0 pixels

[5

’7| Small Fants j Custom |

Change Dizplay Type... |

ak I Cancel | Ll |

335

Chapter 11

The command calls the display applet (desk. cpl) and tells it to display its fourth tab (the 3 in the
command line above refers to the fourth element in a 0-based counting system). This works because
when you call a Control Panel applet through Cont rol _RunDLL(), you can specify three
parameters of which two are optional. The first argument is the name of the . cpl file, while the
second argument is the 0-based number of the applet implemented in the DLL. This defaults to 0,
and must be prefixed by @ The third argument is the 0-based index of the tab you want to select
initially. Of course, this applies only to dialogs with multiple tabs, and once again defaults to 0.

With this explanation in mind, the above string desk. cpl , , 3 must be read as, "Display the fourth
tab in the first applet found in desk. cpl ". As a further example, let's consider the sysdm cpl

module, which contains two applets: System and Add New Hardware. To display the second page of
the first applet, which lists the peripherals installed on your system, you'd use this command line:

RunDi | (hDi g, "shell32.dll", "Control _RunDLL", "sysdmcpl,,1");
Which is equivalent to:

RunDi | (hDi g, "shell32.dll", "Control _RunDLL", "sysdmcpl, @, 1");
To start the Add New Hardware Wizard, on the other hand, you'd say:

RunDi | (hDi g, "shell32.dll", "Control _RunDLL", "sysdmcpl, @");

This call reflects the fact that we're invoking the second applet in the DLL, which is not a tabbed
dialog.

Control_RunDLL() vs. Control.exe

Earlier, I presented another way to run the Add New Hardware Wizard, using the cont r ol . exe
program:

control .exe sysdm cpl, Add New Har dwar e

While this approach certainly works, it has the significant drawback that the command line will vary
according to localization, and this tends to make it inferior to the Cont r ol _RunDLL() solution. If
you're running, say, the Italian version of Windows, the string will be Nuovo Har dwar e instead of
Add New Har dwar e. This means that the command line must be changed to:

control.exe sysdm cpl, Nuovo Hardware

The localized string has the ID 202 in the string list of the library sysdm cpl and is also returned
through the CPl Appl et () interface.

RunDII32.exe and RunDII() Trade-offs

rundl | 32. exe and our function RunDI | () provide the same functionality, and there are points in
favor of both of them. The rundl | 32. exe program is a standard part of the operating system, and
you can expect it to be updated in newer versions of Windows. This means that even if Microsoft
changes rundl | 32's programming interface — the prototype required for functions to be called
correctly — the program will still continue to work properly.

336

Exploring the Shell

On the other hand, if you're developing 16-bit code under Windows NT, you don't have an
equivalent 16-bit version of rundl | 32. (There's one called rundl | . exe under Windows 9x.) More
importantly, rundl | 32 is a program that you can't control directly, and it always starts a new
process. The RunDI | () function, on the other hand, runs in the address space of the caller.

The Printers Folder

The Pri nt er s folder doesn't map to a real file system folder either — it's a virtual folder that
provides access to the printing devices available on the system, such as printers and fax machines.
When you install a new printer on your PC, a new file is created in a hidden subdirectory under

W ndows. This subdirectory plays the same role as the Recycl ed folders of the Recycle Bin that we
examined in Chapter 10. The directory is called Pri nt Hood, and its path can be retrieved using the
SHGet Speci al Fol der Pat h() API function.

We examined how to browse the contents of the Pri nt er s folder in Chapter 5, and we'll
return to the subject in the next chapter, where we'll look at the new scriptable shell objects that
offer much of the navigational functionality we built earlier through Automation.

When talking about printers, we need to look at the SHI nvokePr i nt er Command() function, which

lets you send commands to printer objects. This function is supported only by shell versions 4.71 and
higher, and looks like this:

BOOL SHI nvokePri nt er Command(HVWAD hwnd,
Ul NT uActi on,
LPCTSTR | pBuf 1,
LPCTSTR | pBuf 2,
BOOL f Mbdal) ;

Parameter Description

hwnd Parent window for any dialog or window to be displayed by the function
uAction Code that identifies the action to be performed on the printer. (See below)
| pBuf 1 Buffer that contains additional information related to the action; this is

invariably the name of the printer

| pBuf 2 Buffer that contains additional information related to the action
f Modal If set to TRUE, the function must wait for the action to complete before
returning

Invoking Printer Commands

The uAct i on parameter can take the values shown overleaf:

337

Chapter 11

Command Description

PRI NTACTI ON_OPEN Opens a window that displays the status of the
printer

PRI NTACTI ON_PROPERTI ES Displays the properties of the printer

PRI NTACTI ON_TESTPAGE Prints a test page

PRI NTACTI ON_OPENNETPRN The same as PRI NTACTI ON_OPEN, but for network
printers

PRI NTACTI ON_NETI NSTALL Installs the specified network printer

PRI NTACTI ON_NETI NSTALLLI NK Creates a shortcut to the specified network printer;
| pBuf 2 points to the path for the shortcut

In all cases, | pBuf 1 points to the name of the printer, be it local, network or shared. In the case of
network printers, the name must follow the UNC format (\\ server\ pri nter). The | pBuf 2
parameter, on the other hand, is used only with the PRI NTACTI ON_NETI NSTALLLI NK flag.

Under Windows NT, a couple of other flags are supported for network printers only:

PRI NTACTI ON_SERVERPROPERTI ES, which displays properties for the server, and

PRI NTACTI ON_DOCUMENTDEFAULTS, which shows the properties of the default document on this
printer.

As usual, the Wrox AppWizard makes an excellent starting point for creating a quick application to
test aspects of SHI nvokePri nt er Command() and the web site code contains a basic example. As
with its similarly named brethren, the header file that defines the function is shel | api . h.

What the Function Returns

The documentation states that the function returns non-zero values if successful, but try as I might, I
was unable to make it return a value of zero. The function stubbornly returned TRUE even when I
specified a non-existent printer. Depending upon the command you've executed, you may get an
error message that tells you what has happened.

Dial-Up Networking
Di al - Up Net wor ki ng is a virtual folder that collects all the available Internet and network
connections. The associated functions are exported by r naui . dl |, and are called RnaDi al () (for
dialing a connection) and RnaW zar d() (for setting up a new connection). They both support the
rundl | 32 interface, and can therefore be run by the methods I described earlier in the chapter.

If you want to connect to the Internet without dealing with specific connections, you can resort to the

WinlInet APIL In particular, the | nt er net Aut oDi al () function lets you connect through the
default connection defined in the Di al - Up Net wor ki ng folder.

338

Exploring the Shell

Offline Browsing

Internet Explorer 4.0 introduced offline browsing — that is, a browse mode that accesses pages
exclusively from a local cache. You can detect this state through the | nt er net Quer yOpti on()
function in the WinInet API, while the | nt ernet GoOnl i ne() function presents a dialog box with
the options either to connect or to remain offline. All these topics are well covered in the Internet
Client SDK documentation, and for more information about the WinInet API you should refer to
Further Reading.

Scheduled Tasks

The Task Scheduler (or scheduling agent) is a module that was introduced under Windows 95 and
Windows NT 4.0 with the Active Desktop update, and was then included in Windows 98. Its main
purpose is to provide you with the ability to run specified tasks at particular times, or when
predefined criteria are satisfied.

From the programmer's perspective, the Task Scheduler is a COM server that exposes the
functionality to define a task and the trigger that causes it to execute. Basically, the Task Scheduler is
a simple monitor application that spends all its time watching for certain combinations of date, day of
week and time that have been marked as 'interesting', and then executes actions as required.

Windows NT Support for Scheduling

The scheduling agent introduced with shell version 4.71 is an application functionally similar to the
AT command provided with Windows NT. What's different is that the AT command employs the
NetSchedule API, while the agent exposes COM interfaces.

The Scheduling Agent

The scheduling agent under Windows 9x is the program nmst ask. exe, while under NT it is a service
called Schedul e. The agent isn't started by default unless you're running Windows 98, which also
includes a special folder with which to keep track of the scheduled tasks. The Internet Client SDK
provides several code examples that illustrate how to start and drive the agent.

The objects that the agent manages are the tasks. A task is basically an executable file, and each task
can have one or more triggers that decide when it's time to execute.

The scheduling agent is a server application that manages all the defined tasks, launches them at the
right time, and returns information about the time of last execution, the total number of executions
and the like. The functionality of the scheduling agent is fully described by the | TaskSchedul er
interface.

Tasks and Triggers

A task is described by the | Schedul edWor kil t emand | Task interfaces, and these expose methods
that are not very different from those you would find in a shortcut. You set up a task using
information such as application name, working directory, parameters, priority, maximum allowed
time of execution, and — most importantly — the trigger. | Task derives from

I Schedul edWor kI t em and is a more specialized version of that interface. There may be many
different types of work items defined in the future, but at present only tasks are supported. A task can
be a Win32 or Winl6 application, an OS/2 or MS-DOS application, a batch file (*. bat), a command
file (*. cmd), or indeed any file type properly registered with a handler application.

339

Chapter 11

Triggers are events used to identify the right moment to run a work item. In many cases, a trigger is a
unique time, such as "12:00:00 on December 3rd 1998". In other cases, it may be repeatable, such as
"6:00:00 on the third Monday of each month". Triggers are manipulated using the | TaskTri gger
interface and the TASK_TRI GGER structure, which defines the starting time of the task, its repetition
frequency, and its parameters.

All the related interfaces and the structures involved with task scheduling are fully documented in
the Internet Client SDK, and you should refer there for more detailed information and samples.

My Briefcase

My Bri ef case is a Windows 95 utility designed to help users maintain multiple copies of the same
documents on different computers. Once you've put a document in the My Bri ef case folder, the
software will take care of keeping the copy in the briefcase synchronized with the original.

This is useful when you are working between, say, a desktop PC and a laptop. You'll usually consider
the copy on the desktop machine as the 'original', and replace it with the modified version that comes
from the laptop. Then, just click on the file name in the My Bri ef case folder to have it check and
synchronize the copies:

Updating Briefcase. ..] |

tdyFile.bmp
Copying from 'ty Briefcaze’ to 'C:4

If one of the files has changed since Update My Briefcase [2] %]
the last synchronization operation,

. . B-’B The following filez need to be updated. To change the update action,
Windows automatlcally replaces the _1#1 use the right mouse button to click the file you want ko change.
unmodified files with the modified

: . In Briefzaze InE:\Book Shel\Te...
copies. If both files appear to have @ ot & i

been changed, then a merge operation 03/08/35 13.09 Feplace 25/08/9820.09

will occur. The merge operation
involves some interfaces that you can
implement in order to handle merging
your own documents:

Update I Cancel |

The objects that implement these interfaces are called reconcilers, and they are involved in
determining whether two versions of the same file are aligned or not. If both have changed, the
module can provide the means to merge the content to produce a new copy. This operation can be
interactive or not, as required, and may leave residue files. Precisely how the merge works will
depend upon the specific implementation of the reconciler.

340

Exploring the Shell

Details about reconcilers can be found in the Internet Client SDK documentation, as well as in
the Windows 95 Resource Kit.

Scrap Objects

Have you ever tried to select a piece of text from a Microsoft Word document and move or copy it
onto the Windows desktop? Surprisingly, the mouse cursor changes to an encouraging arrow instead
of a stop sign, meaning that you can drop that piece of Word document straight onto the desktop (or
any other Windows folder)! When you do so, you create a scrap object:

Basically, you're looking at a link to an object. Scraps are files with . shs extensions that are
automatically created when an object implementing | Dat aObj ect is dropped onto a folder or the
desktop. To read scraps, there's a r undl | 32-compliant function exported by shscrap. dl | . This
library is located in the Syst emdirectory and is not officially documented, because scrap support
should be provided automatically if you create a fully-fledged OLE application. However, if you're
interested in experimenting, shscrap. dl | exports a function called OpenScr ap_RunDLL() that
you can use to open any . shs file.

A New Shortcut Handler

In this book so far, we've discussed a number of individual topics and discussed the ways to integrate
particular features into your next application. In this chapter, however, we've started to explore the
components of the shell, focusing mainly on folders and command lines. Now I'm going to present a
significant example that uses many of the basic topics we've covered so far (shortcuts, icons, and
folders) and looks ahead towards shell customization. We're going to assemble a tool similar to (but
better than!) one of the standard Windows components, and then discover how to replace the
standard component with our own.

If you try to create a shortcut by right-

clicking on the desktop, or on any folder in
Explorer, or by selecting the File | New |
Shortcut menu, you'll be prompted with a
Wizard that allows you to specify the target
object and the name of the file you want to
create. The target folder for the . | nk file is
always assumed to be the folder from
which the process started. There's no way
to specify a description, or a hotkey, or
even an icon, and neither can you decide
where to create the shortcut.

Type the lozation and name of the itemn pou want to create
a shortcut to, Or, search for the itemn by clicking Browse.

LCommand line:

[
Browse... |

< Back it [z | Cancel I

341

Chapter 11

To work around all these limitations, we're going to build our own shortcut creator, and to make
things even better we're also going to substitute it for the standard Windows shortcut Wizard. In this
way, each time you right-click to create a new shortcut anywhere in the shell, our application will pop
up instead of the standard dialog.

The User Interface

This new Wizard for creating shortcuts will provide fields for entering the target file object, a
description, a hotkey and an icon. In addition, it will allow users to choose the path and name of the
final shortcut. The path can be expressed in terms of an absolute drive and directory, or in terms of a
special folder ID, such as Deskt op, Send To, Progr ans, St art Menu, and a few others.

IDI_ICON IDC_TARGET

Create Shortcut._.
Target;
] ! 4+ IDC_BROWSETARGET
Description]
[——— IDC_DESCRIPTION
Hotkey:
[CTRL+ &[T+ ——+— IDC_HOTKEY

Chosse Icon Path | IDC_CHOOSEICON
| = o IDC_BROWSEICON
IDC_ICONPATH e L1 ibc_iconinpex
[Deskiop =] |Mewink bk Ceate IDC_CREATE

IDC_PATH IDC_BROWSEPATH IDC_LINKFILE

The above screenshot shows the user interface. The first edit box will contain the name of the target
file, which you can browse for if you choose. The second edit box is for the shortcut's description,
while the third specifies the key combination to be used to recall it.

The next area lets you choose an icon to associate with the shortcut. You can select both the source
file (with the Choose Icon Path button) and the index of the icon within that file. We'll be making
use of the SHBr owseFor | con() function that we defined back in Chapter 9 for this purpose.

In the Save As frame, you can type in the path name or pick up a predefined item in the combo box.
Predefined items will be special folders such as Deskt op, Send To, and the like. The right hand edit
box will contain the file name for the shortcut without the . | nk extension and finally, to create the
shortcut, you'll need to press the Create button to invoke SHCr eat eShor t cut Ex(), one of our
functions from Chapter 6.

As ever, our starting point is a dialog-based application generated by the Wrox AppWizard — I called
mine NewLi nk. When the program is called from the shell (I'll demonstrate how to do that shortly) it
receives the name of a temporary file that the shell creates automatically before invoking the Wizard.
This name is passed in as W nMai n() 's | psz argument, and since we aren't interested in it, our first
action is to delete the file. We do, however, use its name for the output . | nk file.

The Old Functions

Once you have your dialog looking something like the one above, you can start coding with the
W nMai n() function, deleting the temporary file but saving the name away for future use:

342

Exploring the Shell

i nt API ENTRY W nMai n(H NSTANCE hl nst ance, H NSTANCE hPrevi ous,
LPTSTR I psz, int iCnd)
{

/Il Delete any tenporary file created by the shell
if(lstrlen(lpsz))
Del et eFi | e(l psz);

/1 Save gl obal data
g_hlconLarge = static_cast <H CON>(

Loadl mage(hl nstance, "APP_I CON', | MAGE_I CON,

Get Systemvetri cs(SM CXI CON), GCet Systemvetrics(SM.CXICON), 0));
g_hlconSmal | = static_cast <H CON>(

Loadl mage(hl nstance, "APP_I CON', | MAGE_| CON,

Get SystemMetri cs(SM_CXSM CON), Get Systemvetri cs(SM CXSM CON), 0));
| strcpy(g_szNewLi nkNare, | psz);

/1 Enabl e common controls

I NI TCOMMONCONTROLSEX i ccex;

i ccex.dwSi ze = sizeof (I Nl TCOMWONCONTROLSEX) ;
iccex.dw CC = | CC_W N95_CLASSES;

I ni t CoomonCont rol sEx(& ccex);

/1 Initialize COMfor the SHCreateShortcut Ex() function
Col nitialize(NULL);

/1 Run main dial og
BOOL b = Di al ogBox(hlnstance, "DLG MAIN', NULL, APP_Di gProc);

CoUninitialize()

/1 Exit

Destroyl con(g_hl conLarge);
Destroyl con(g_hl conSnal |);
return b;

}

The dialog procedure calls handlers for all the new buttons:

case WV _COWVVAND:
swi t ch(wPar am

{

case | DC_CREATE:
DoCr eat eShor t cut (hDl g) ;
return FALSE;

case | DC_BROANSEPATH:
OnBrowse(hDl g, | DC_PATH);
return FALSE;

case | DC_CHOOSEI CON:
OnChoosel con(hDl g) ;
return FALSE;

case | DC_BRONSETARGET:
OnBrowse(hDl g, | DC_TARCET) ;
return FALSE;

case | DC_BROWSEI CON:

OnBrowse(hDi g, | DC_| CONPATH) ;
return FALSE;

343

Chapter 11

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

The last of our three predefined functions, Onl ni t Di al og(), initializes all the controls in ways that
are probably familiar to you by now:

voi d OnlnitD al og(HWND hDl g)

{
/! Set the icons (T/F as to Large/ Small icon)
SendMessage(hDl g, WM SETI CON, FALSE, reinterpret_cast<LPARAM>(g_hl conSmal |));
SendMessage(hDl g, VWM SETI CON, TRUE, reinterpret_cast <LPARAM>(g_hl conLarge));

/1 Special folders avail able

HWAD hwndCbo = GetDi glten{hD g, | DC _PATH);

int i = ComboBox_AddStri ng(hwndCho, "Desktop");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_DESKTOP);

i = ConboBox_AddStri ng(hwndCho, "Favorites");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_FAVORI TES);
i = ConmboBox_AddStri ng(hwndCbo, "Prograns");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_PROGRAMS);

i = ConboBox_AddStri ng(hwndCho, "M/ Docunents");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_PERSONAL);

i = ConmboBox_AddStri ng(hwndCbo, "SendTo");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_SENDTO);

i = ConboBox_AddStri ng(hwndCho, "Start Menu");
ConboBox_Set | t enDat a(hwndCbo, i, CSIDL_STARTMENU);
ConboBox_Set Cur Sel (hwndCbho, 0);

/1 Initialize the hotkey control to prefix everything with Crl-At
SendDl gl t emVessage(hD g, | DC_HOTKEY, HKM SETRULES,
HKCOVB_NONE | HKCOMB_S | HKCOMVB_A | HKCOVB_C,
HOTKEYF_CONTROL | HOTKEYF_ALT) ;

Set Dl gl t enilext (hDl g, | DC_TARGET, "C\\");
Set DI gl t enText (hDI g, | DC_| CONI NDEX, "0");

// Handle any file nane received through the command |ine
i f(Istrlen(g_szNewLi nkNane))

{
LPTSTR pszBuf = g_szNewLi nkNane;

LPTSTR psz = strrchr(g_szNewLi nkNane, '\\');
Set Dl gl t enilext (hDl g, | DC_LNKFI LE, ++psz);
pszBuf [psz - pszBuf] = 0;
Set DIl gl t enTText (hDl g, | DC_PATH, pszBuf);

}

el se
Set DIl gl t enText (hDI g, | DC_LNKFI LE, "Newli nk");

The first action is to fill the combo box in the Save As frame with the names of the special folders
where you might want to create shortcuts. We also associate some item data with each string, to make
future processing easier. The next job is to initialize the hotkey control so that it will prefix
everything with Ctrl-Alt, which is necessary for shortcuts. We then set the default values for the target
string and the icon index, and use the filename passed on the command line as the basis for the link
name.

344

Exploring the Shell

The New Functions

The second handler function, and the first new function we're adding to the application, is called
when any one of the three browse buttons that the dialog boasts is pressed. The second argument is
used to differentiate between them:

voi d OnBrowse(HWND hDl g, WPARAM wi t eniType)

/1 Browse for directory only...
if(wtenlype == | DC_PATH)
{

LPMALLOC pMal | oc = NULL;
TCHAR szDi r [MAX_PATH = {0};
LPI TEM DLI ST pi dl = NULL;

BROWSEI NFO bi ;

Zer oMenor y(&i, si zeof (BROASEI NFO)) ;
bi . hwhdOwner = hDl g;

bi .| pszTitle = "Choose a folder:";

pi dl = SHBrowseFor Fol der (&bi) ;
SHGet Pat hFrom DLi st (pidl, szDir);
Set Dl gl t eniText (hDl g, | DC_PATH, szDir);

SHGet Mal | oc(&pMal | oc) ;
pMal | oc- >Free(pidl);
pMal | oc- >Rel ease();
return;

}

/1 Browse for files...

TCHAR szFi | e[MAX_PATH = {0};

OPENFI LENAME of n;

Zer oMenor y(&of n, si zeof (OPENFI LENAME)) ;
of n.1 Struct Si ze = si zeof (OPENFI LENAME) ;
swi tch(w t enilype)

{

case | DC_TARCET:
ofn. I pstrFilter
br eak;

case | DC_| CONPATH:
ofn.IpstrFilter = "lcons\0*.exe; *.dlIl;*.ico\0";
br eak;

"Al files\0*.*\0";

}

TCHAR szW nDi r [MAX_PATH] = {0};
of n. nMaxFi |l e = MAX_PATH,
Get WndowsDi rectory(szWnbDi r, MAX PATH);
ofn.lpstrinitialDr = szWnDir;
ofn. I pstrFile = szFile;
i f(!Get OpenFi |l eNane(&of n))

return;

Set Dl gl t eniText (hDl g, W teniType, ofn.lpstrFile);
/1 Show the first icon by default
HI CON hl con = Extract|con(Get Modul eHandl e(NULL), ofn.IpstrFile, 0);

SendDl gl t emvessage(hDl g, 1Dl _I CON, STM SETI CON,
rei nterpret_cast <WPARAM>(hl con), 0);

345

Chapter 11

If we're browsing for a path, we use the SHBr owseFor Fol der () API function to let the user find
the path, display it in the appropriate edit control, and then return after tidying up.

If we're browsing for files, we fill in a filter string appropriate to the type of files we're looking for,
and use this in a call to Get OpenFi | eName() . We display the filename in the appropriate edit

control, and also arrange to display the first icon in the file by default.

The handler for the Choose Icon Path button simply uses the SHBr owseFor | con() function from
Chapter 9 to select an icon from a file:

voi d OnChoosel con(HWND hDl g)

{
TCHAR szFi | eNanme[MAX_PATH] = {0};
Get Dl gl t enText (hDI g, | DC_| CONPATH, szFil eName, NMAX_PATH);
HI CON hl con;
int ilconlndex = SHBrowseFor| con(szFi | eNane, &hlcon);
i f(ilconlndex >= 0)
{
Set Dl gl t enilext (hDl g, | DC_| CONPATH, szFil eNane);
SetDigltem nt (hDi g, | DC_| CONI NDEX, ilconlndex, TRUE);
SendDl gl t emMVessage(hDl g, |1 DI _I CON, STM SETI CON,
rei nterpret_cast <WPARAM>(hl con), 0);
}
}

Once we've got all the data, the main work of the application is done in the handler for the Create
button:

voi d DoCreat eShort cut (HWND hDl g)

{
TCHAR szTar get [MAX_PATH] = {0};
TCHAR szDesc[MAX_PATH] = {0};

/] Get the hotkey
SHORTCUTSTRUCT ss;
ss. wHot Key = static_cast <WORD>(SendDl gl t emMessage(
hDl g, | DC_HOTKEY, HKM GETHOTKEY, 0, 0));

/] Get target and description

Get Dl gl t enText (hDI g, | DC_TARCET, szTarget, MAX PATH);

Get Dl gl tenText (hDl g, | DC_DESCRI PTI ON, szDesc, NAX_PATH);
Ss. pszTarget = szTarget;

Ss. pszDesc = szDesc;

// Get the icon

TCHAR szl con[MAX_PATH = {0};

Get DIl gl t enText (hDI g, | DC_| CONPATH, szlcon, MAX PATH);
ss. pszl conPath = szl con;

ss. W conl ndex = 0;

/1 Determ ne shortcut file name

/Il Get the target folder & final backslash

HWAD hwndCbo = GetDiglten{hD g, | DC _PATH);

int i = ComboBox_GCet Cur Sel (hwndCho) ;

DWORD nFol der = ConboBox_GCet | t enDat a(hwndCho, i);

TCHAR szPat h[MAX_PATH| = {0} ;

346

Exploring the Shell

i f (nFol der)

SHGet Speci al Fol der Pat h(hDl g, szPath, nFol der, FALSE);
el se

Get Dl gl t enText (hDl g, | DC_PATH, szPath, MAX_PATH);

if(szPath[lstrlen(szPath) - 1] != "\\")
| strcat (szPath, "\\");

TCHAR szLnkFi | e[MAX_PATH = {0};

Get Dl gl teniText (hDl g, | DC_LNKFI LE, szLnkFile, MAX PATH);
| strcat (szPath, szLnkFile);

| strcat (szPath, ".Ink");

/1l Create...
SHCr eat eShort cut Ex(szPat h, &ss);

}

All we're doing here is gathering the information from the various controls on the screen and packing
them into a SHORTCUTSTRUCT, prior to calling SHCr eat eShort Cut Ex() to actually do the work
for us. (We defined the structure and function involved here in Chapter 6.) With this code in place,
you just need to add the usual list of header files and libraries. On this occasion, we require

#i ncl udes for resource. h, shl obj . h and conmdl g. h, and links to ol €32. | i b and

comdl g32.1ib.

How to Replace the Windows Wizard

Wouldn't it be nice if we were able to replace the standard Windows Wizard for creating shortcuts
with our own? In fact, it's not that hard to do, and as you might expect, the key to the enterprise lies
in the registry. A shortcut is a . | nk file, so the first place to look is under this key:

HKEY_CLASSES_ROCT
\.Ink

Beneath it, you'll find a key called Shel | New. When it comes to creating a new file of a given type
from the shell — that is, through the New menu — Explorer always searches for a Shel | New key
within the file class sub-tree.

Inside this key, the Command value gives the command line, and you should find that it's set to:

runDLL32 AppW z. Cpl, NewLi nkHere %2

Note the use of rundl | 32. exe to run a DLL function as a command-line instruction. To replace the
standard Wizard, all we have to do is to change the Command value to execute our program, like this:

c:\Utility\ NewLi nk\ NewLi nk. exe %2

347

Chapter 11

;,'.-" Registry Editor !Elm I
Registy Edit Yiew Help
=1 ina ﬂ Hame | Data
i L 1 [Default] [value mot set]
i Command "o hutilitynewdink newlink, exe 2"
=0 Ik [ab] Command0ld "RurDLL32 Appiwiz.Cpl NewLinkHere 32"
-1 ShelEx
23 S
-] L0G
- |
Wi A
1 | » 4| 2
|My ComputertHEEY_CLASSES_ROOT' Ink'ShelMew 7

Notice that the final %2 is fundamental for the command line to work properly — remove or replace it
and the dialog will never appear. When you next choose to create a new shortcut from the desktop,
you'll find that our new dialog will appear.

The NewLi nk. exe program detects and uses the file name passed by the shell as an argument —
before invoking the shortcut creator, the shell always creates an empty file and passes its name to the
program. However, handling this file name is not a problem for us.

Editing the Registry
Replacing the default shortcut Wizard requires some editing of the registry, which you can either do
manually through the Registry Editor, or programmatically with a script file. For example, you can
restore the original situation simply by reassigning the original value to the Command entry with the
following script:

; restore.reg
REGEDI T4

[HKEY_CLASSES ROOT\ . | nk\ Shel | Newj
"Command" = "RunDLL32 appwi z.cpl, NewLi nkHere 9%2"

In just the same way, you could have used this script to install the handler in the first place:

; replace.reg
REGEDI T4

[HKEY_CLASSES ROOT\ . | nk\ Shel | Newj
"Command" = "c:\\utility\\new ink\\new ink.exe %"

Make sure you always use double slashes when entering path names in . r eg scripts, and remember
to replace the path in the example with the actual path where the newl i nk. exe file lives!

348

Exploring the Shell

Summary

Our first journey through the Windows shell ends here. We've looked at Explorer's command line
and discovered an interesting utility program called r undl | 32. exe, which allows you to use DLL
functions as command line instructions. While discussing the features of r undl | 32. exe, we also
discovered how to access programmatically some system dialogs whose programming interface isn't
documented, such as Add Printer Wizard, Add New Hardware, Make New Connection, and Open
With.

The second part of the chapter discussed some special virtual folders that implement shell objects,
such as Printers, Dial-up Networking, Scheduled Tasks, and My Briefcase. I provided an overview
of this subject, and mentioned some sites and documents where you could find further information.

Finally, we looked at an example that used many of the topics we've covered so far in the book. The
shortcut handler also provides a good introduction to the new topics we'll cover in Chapter 14, where
I'll explain how your documents should be integrated into the system's shell.

In summary, therefore, this chapter covered:

Explorer's command line.

The RunDLL32 programming interface

Accessing undocumented functions to display system dialogs

A review of some virtual folders such as Pri nt ers and My Bri ef case
Scrap objects

[W iy Ry Wy

How to write and install a new, custom module to create shortcuts

In the next two chapters, we'll continue our exploration and discover two really useful aspects of the
new Windows shell. The first involves the scriptable shell objects that give you programmatic access
to any shell feature, from dialogs to folders, and from windows to shortcuts. After that, we'll focus on
a very promising subsystem called Windows Scripting Host (WSH) that's supposed to bring the idea
of DOS batch files into Windows land.

Further Reading

I've found interesting ideas on using r undl | 32 in an article in Visual Basic Journal, the Italian
version of Visual Basic Programmer's Journal (VBP]). The author was Marco Losavio, and the article
was published in the September 97 issue. (The article is in Italian with source code available at
ftp://ftp.infomedia.it/pub/VBJ/vbjl7disk.zip.)

The Internet Client SDK contains introductory and detailed documentation about the development of
Control Panel applets. I also recommend the Internet Client SDK for getting more information about
Winlnet, the Briefcase, and the Scheduling Agent. Further explanation of My Bri ef case can also be
found in the Windows 95 Resource Kit.

349

ftp://ftp.infomedia.it/pub/VBJ/vbj17disk.zip

Chapter 11

I'd like also to mention a few articles about WinInet by Aaron Skonnard that appeared in MIND,
December 97, and MS], June 98. The titles are Dress your Applications for Success with Winlnet and How
to design reusable HTTP components by exploiting Winlnet and COM respectively. On the theme of
scheduling agents, let me point you towards a piece by Jomo Fisher in the March 1998 edition of
Windows Developer's Journal in March 98 called The Windows 98 Scheduling Agent.

The section in the Internet Client SDK about drag-and-drop also covers scrap objects, and provides
you with a wider overview and hints about the internal machinery that makes them work. Finally,
here's a list of useful Knowledge Base articles:

KB Article ID
KB Article ID
KB Article ID
KB Article ID
KB Article ID
KB Article ID
KB Article ID

350

: Q130510:
: Q164787:
: Q173039:
: Q166168:
: Q135068:
: Q177076:
: Q153383:

Command-Line Switches for Windows Explorer

The Windows 95 Rundll and Rundll32 Interface

RUNONCE Key Is Processed Immediately When RUNDLL32 Is Called
Use RUNDLL32 to Debug Control Panel Applets

Starting a Control Panel Applet in Windows 95 or WinNT

How to Start the Add Printer Wizard at a Command Prompt

How to Use/Replace Windows 95 Hardware Wizard in Custom Code

12

Scriptable Shell Objects

The new Windows shell has been enriched with a powerful new set of objects that provide you with
full access to all the shell's main features via Automation. Internet Explorer 4.0 introduced these new
COM objects in the latest version of shdocvw. dl | , which is one of its core components.

These objects let you drive the shell and its folders from programs, and they are documented in the
Internet Client SDK (now integrated into the Platform SDK). Because they are Automation servers,
these objects can easily be used from programs written in Visual Basic, Delphi or C/C++. They can
also be called from script code, including code from the Windows Scripting Host (WSH)
environment, which we'll cover in the next chapter.

In this chapter, we'll look at the shell object model and rewrite one of samples that I presented back
in Chapter 5. This will give us the opportunity to examine the true purpose of scriptable shell objects:
they provide a way to simplify access to features of the shell, and the contents of shell folders. Along
the way, we'll be covering:

The Shell object model
The Fol der and Fol der | t emobjects
Helper objects to manage verbs and favorites

000 Oo

Code examples written in both C++ and Visual Basic

The objects that we'll be describing provide an easy way to access the Windows shell and all its
features programmatically. It has always been possible to enumerate the contents of a folder, but you
needed a fairly deep knowledge of C++ programming. With the introduction of shell objects, it has
become as easy as calling an Automation server. Unfortunately, the drawback to this is that in order
to make life easier for Visual Basic and script programmers, it has been made more difficult for C and
C++ programmers who now have to cope with VARI ANT types and collections without the in-built
help provided by Visual Basic.

Chapter 12

The Best Language to Program the Shell

It seems that there's no middle path when it comes to accessing the shell's commands and properties
— it is either really easy, or really hard. We saw something of this in Chapter 5, when we tried to
enumerate the contents of a folder. We had to get the PIDL to the folder and the pointer to the right

| Shel | Fol der interface, and then by combining these two items we finally obtained an

| Enum DLi st interface that allowed us to enumerate the items in the folder. This isn't a very
satisfactory solution, though, because, while it gets the PIDL to each element, it's up to you to convert
that into a readable name.

This is the hard, low-level way to do the job, and of course it's a way only possible using languages
like C and C++ that support pointers. Scriptable shell objects solve this problem by providing a way
to program the shell with Visual Basic and scripting languages. If that was all they gave us, it would
still be a real boon, but these new objects offer more than just a set of Automation interfaces.

Undocumented Shell Features

What makes shell objects really interesting for C++ programmers is that they provide the only
documented way to access some shell features and dialogs. In addition, they provide a consistent
programming interface to all the features of the shell, documented or not.

Many of the methods exposed by the shell objects address functionality we already know about, but
which is accessible in several different ways. For example, to browse for folders you have a specific
API function, while you have to resort to Shel | Execut e() to run the Fi nd dialog, and to hand-
coded routines to enumerate the content of a folder. These are all now available through shell objects.

Here's a list of the dialogs and functions that you can only access through the shell object model:

The dialog that pops up when you click on Taskbar Settings from the Start menu
The functions to minimize or restore all the open windows

The functions to tile or cascade all the open windows

The functions to suspend or 'undock' a PC

The Run dialog

The Find Computer dialog

The system dialog to add folders or files to the Favorites list

| Iy [y Ay Sy

Other functions exposed by the object model can also be accessed in other ways; these include:

The dialog to browse for folders
Opening or exploring a folder
The date and time setup dialog
Running a Control Panel applet
The Find dialog

Access to any system folder

[S Sy S W)

354

Scriptable Shell Objects

The Shell Object Model

All the objects that actually form the shell's object model are implemented in shdocvw. dl | . A quick

but somewhat incomplete source of documentation for these objects is the Visual Basic Object

Browser.

a7 Object Browser

ISHDochCtI

= || &5 g

. 152

- [O) <]

|Classes

@ =globals=

1 Folder

1 Folderltemn

1 Folderltems

1 Folderltemverh

1 Folderitermverhs
B InternetExplarer
ELEE

1 ShellFolderview

Members of ‘Shell’
= ||eg Application

e& Farent
=% BrowseForFolder

=B Cascadedindows
=% ControlPanelltem
=@ EjectPC

T b L L i g o™ R T el C il

Class Shell

Member of SHOocWwCtl
Shell Object Type Informstion

If you're using Visual Basic, the Object Browser can really help you to discover new features with
which to experiment. I found out about the shell's object model by casually snooping around
shdocvw. dI | with the Object Browser. The next diagram shows this layout.

ShellUIHelper

ShellWindows

Folderltem

FolderltemVerb

The easiest way to create an instance of the Shel | object in Visual Basic is:

Dimo As Object

Set o = CreateObject("Shell. Application")

355

Chapter 12

In C++, the equivalent code would be:

#i ncl ude <condef. h>
#i ncl ude <exdi sp. h>

Colnitialize(NULL);

| Shel | Di spat ch* pShel | Disp = NULL;
HRESULT hr = CoCreatel nstance(CLSI D _Shell, NULL, CLSCTX_ SERVER,
11D | Shel | Di spatch, reinterpret_cast<LPVA D*>(&Shel | Di sp));

i f (SUCCEEDED(hr))

}
CoUninitialize();

However, before going any further with programming topics, let's have a look at the methods

exposed by the Shel | object.

Method

Description

Br owseFor Fol der ()

CascadeW ndows ()
Control Panel It en()

Ej ect PC()

Expl ore()

Fil eRun()

Fi ndConput er ()

Fi ndFi |l es()

Hel p()

M ni m zeAl | ()

A simplified version of the SHBr owseFor Fol der () API
function. It displays a tree-based window that lets you choose a
folder. It differs from the API function in that it doesn't support
the callback mechanism.

Arranges all the top-level windows in cascading fashion.

Launches a Control Panel applet. The method takes the name
of an existing CPL file and calls the Cont r ol _RunDLL()
function we saw in the previous chapter.

Undocks (‘ejects') the computer from its docking station. This
method only works on those computers that have an Eject
command on the Start menu.

Opens an Explorer-like window based on the specified folder.

Launches the Run dialog, as if you've clicked Run from the
Start menu.

Launches the Find Computer dialog, as if you've clicked Find |
Computer from the Start menu.

Launches the Find dialog, as if you've clicked Eind | Eiles or
Folders from the Start menu.

Displays a help window as if you've clicked Help from the Start

menu.

Clears the desktop and minimizes all the open windows (not
just top-level windows). This method has the same effect as
clicking the Show Desktop button on the taskbar (shell version
4.71 or higher), right-clicking on the taskbar and selecting
Minimize All Windows, or pressing Windows-M.

356

Scriptable Shell Objects

Method

Description

NanmeSpace()

Open()

RefreshMenu()
Set Ti me()

This takes a path name or a constant as input, and creates a
folder object. We'll cover Fol der objects later in this chapter.

Opens the specified folder as a separate window without an
Explorer-like left-hand pane.

Refreshes the Start menu to reflect possible changes.

Displays the dialog to set the current date and time. Calling this

method is the same as double clicking on the clock icon in the
tray area.

Shut downW ndows () Launches the procedure to exit Windows, as if you've clicked

on the Shut Down... command on the Start menu.

Suspend()

Suspends the computer. This method only works on those
computers that have a Suspend command on the Start menu.

Til eHori zontal ly() Horizontally tiles all the currently open top-level windows.

TileVertically() Vertically tiles all the currently open top-level windows.

TrayProperties() Launches the Taskbar Properties dialog, as if you've clicked on

Settings | Taskbar from the Start menu.

UndoM ni mi zeALL() Undo any changes carried out by a previous call to

M ni mi zeAl | (), restoring the windows on the desktop. This
method has the same effect as clicking the desktop button on
the taskbar, right-clicking the taskbar and selecting Undo
Minimize All, or hitting Shift-Windows-M. Note the double

uppercase L in the name!

W ndows () The documentation says that this, "Creates and returns a
Shel | W ndows object that represents a collection of all of the
open windows that belong to the shell". However, I have had

problems producing this behavior.

As you can see, many of the methods are just equivalents of the commands you find on the Start
menu and the taskbar's context menu, which just goes to show that the Shel | object is providing the
functionality of the Windows shell. Many of the methods are extremely simple and require no
arguments at all; let's take a closer look at those that do.

Methods of the Shell Object

Before looking at the details of the methods that have input or output parameters, note that all the
strings used in these roles are BSTRs and not LPSTRs. You can find Visual Basic documentation in
the Internet Client SDK, but for the pure IDL-derived C++ header defining all the functions, look at
the exdi sp. h header that's installed with the latest version of the Internet Client SDK.

357

Chapter 12

As usual for COM interface methods, all the functions return an HRESULT value that identifies the
error code. Visual Basic hides these from the programmer, so anything that the Visual Basic
documentation defines as a return value is actually an [out] parameter. In Visual Basic, any error
condition raises an exception that you can handle with the On Err or Got 0 construct.

BrowseForFolder()

This function returns a Fol der object, and takes the following arguments:

The handle of the parent window

A string to be used as the title of the dialog

Some options, which are the same as those used in SHBr owseFor Fol der ()
An optional folder to be used as the root for the browse operation

000D

The folder to be used as the root must be specified as a VARI ANT type, and can include a string or
one of the CSI DL_XXX constants we met in Chapter 5. The prototype is:

HRESULT Br owseFor Fol der (
long Hwmd, BSTR Title, long Options, VAR ANT Root Fol der, Fol der** ppsdf);

The following code demonstrates how to call the method in C++ using both a CSI DL_ XXX number
and a string to identify the root folder. By adding a #i ncl ude for at | base. h to the top of a source
file that contains this code, you get to use the ATL wrapper classes CCOmMBSTR and CConVar i ant
that make using BSTRs and VARI ANTs so much easier in C++.

If you want to test these listings, you can plug them straight into the code for creating an instance of
the Shel | object that I presented earlier. Note that as always with COM, if you're not using the
CConPt r <> class, you must Rel ease() any pointers you have acquired before calling
CoUninitialize().

#i ncl ude <atl base. h>

/1 Set up pointer, VAR ANT and BSTR

Fol der* pFol der = NULL;

CConVari ant vRoot (CSI DL_DRI VES) ; /1 My Conputer
CConBSTR bstrTitle(_ TEXT("M/ Conputer:")); /1 Dialog caption

[/ Call the nethod
HRESULT hr = pShel | Di sp- >Br owseFor Fol der (
reinterpret_cast<long>(hDl g), bstrTitle, 0, vRoot, &pFolder);

/'l Rel ease the pointer
pFol der - >Rel ease();

/1 Set up pointer, VAR ANT and BSTR

Fol der* pFol der = NULL;

CConVari ant vRoot (__TEXT("c:\\")); // The C Drive
CConBSTR bstrTitle(_ TEXT("My Disk C.")); // Dialog caption

358

Scriptable Shell Objects

ControlPanelltem()

This function takes as input a string giving the name (file and extension) of the . cpl file to run, and
again the string must be a BSTR. The prototype is:

HRESULT Control Panel It em(BSTR szDir);

Here's an example in C++ that again uses a BSTR created with one of the overloaded CConBSTR
class constructors:

CConBSTR bstr (__TEXT("desk.cpl"));
HRESULT hr = pShel | Di sp->Control Panel I ten{bstr);

Explore()

This method takes a VARI ANT that specifies the folder to open. The VARI ANT can contain a path
name as well as one of the CSI DL_XXX constants. The prototype is:

HRESULT Expl or e(VARI ANT vDir);
Here's an example:

/1 Set up the VARI ANT
CConVariant vDir(CSIDL_H STORY); /'l Hi story Fol der

/1 Call the nethod
HRESULT hr = pShel | Di sp->Expl ore(vDir);

NameSpace()

This function takes two parameters, the first of which is a VARI ANT that can be a path name or a
predefined constant identifying a special system folder. The second parameter is an output argument
that's filled by the method — a double pointer to a Fol der object:

HRESULT NarmeSpace(VARI ANT vDir, Fol der** ppsdf);
Here's a code fragment to show it in action:

Fol der* pFol der = NULL;

CConVari ant vDir(CSI DL_STARTMENU) ; /] Start menu
pShel | Di sp- >NanmeSpace(vDir, &pFol der);

/1 Do sonething with pFolder...

pFol der - >Rel ease();

Open()

As far as the syntax is concerned, this function is exactly the same as Expl or e() . The prototype is:

HRESULT Open(VARI ANT vDir);

359

Chapter 12

Windows()

This function takes no input parameters, but provides a pointer to an | Di spat ch interface as its
output. This parameter will give you access to the collection of currently open windows. The
prototype is:

HRESULT W ndows(| Di spat ch** ppi d);

Attributes of the Shell Object

The Shel | object has just two attributes: Par ent and Appl i cati on. They are implemented
through methods called get _Par ent () and get _Appli cation() respectively, which take a
double pointer to | Di spat ch and return an HRESULT.

Invoking the Shell Object

From the programmer's perspective, the Shel | object is important because it offers, among other
things, a quick and easy way to access the contents of any folder. All the other functionality we listed
above provides an interesting set of commands, but they tend not to be essential in most real-world
applications. However, I'll now show you how to make calls to the Shel | object, and in this context
there are four things we need to discuss:

Getting a pointer to the right interface
The use of the VARI ANT type

The use of Unicode strings

000D

Accessing and using collections

I'll start by showing you how things work in languages like Visual Basic and scripting languages, and
then we'll take a look at the C++ approach, which is a bit more complex. These examples show how
to call:

Q BrowseFor Fol der ()
Q Fi ndComput er ()
O NameSpace()

Using these as examples, I can present a complete overview of the techniques required to call the
methods of the Shel | object.

Using Visual Basic

In Visual Basic, you can use either early or late binding. That is, member names can be bound to
dispatch identifiers (DISPIDs) at runtime (late binding) or at compile time (early binding), the latter
of which makes calls into the interface faster. In early binding, you declare object variables with the
appropriate types early, thereby informing the compiler about which methods, properties and events
they support. For example:

Dims As New Shel |

360

Scriptable Shell Objects

By declaring s as a Shel | and not as an Obj ect, we've opted for early binding. This requires that
you add a reference to the library to your project, so that the compiler can easily check all calls to the
object. In the case of Shel | objects, the library is shdocvw. dl | . Here's how to store a reference to
a library, and a short example of code that illustrates early binding with Visual Basic.

References - vbShell.vbp

Available References: oK
[IMicrosoft Excel 5.0 Object Library ﬂ Cancel
[IMicrosaft Excel 5.0 Object Library
[CIMicrasoft Graph 8.0 Object Library
[Microsaft HTML Intrinsic Controls Browse. ..

oft Internet Conkbrols

[IMicrosoft MetShaw File TransFer Control Type Library ﬂ
[Micrasoft Office 5.0 object Library

[CIMicrosoft Cutlook 8.0 Object Model J Priority
[IMicrosoft PowerPoint &0 Object Library

[IMicrosoft Remote Data Object 2.0 ﬂ
[Micrasoft Remote Data Services 1.5 Library

[IMicrosoft Repository

[Micrasoft Script Contral 1,0

Hll‘ﬂicrosoft Scrintlet Component | _lj
A »

Microsoft Inkernet Contrals

Help

o)

Location: CiWINDOWSSYSTEMISHDOC Y\, DLL

Language: Standard

Dims As New Shell
s. Fi ndConput er

Late binding, on the other hand, means that we bind to the library at runtime. In the source code, we
declare a generic Obj ect variable that will be linked to the library of a specific object dynamically.
The code looks like this:

Dimo As bject
Set o = CreateObject("Shell. Application")
0. Fi ndConput er

In this case, we don't need to btnFindComputer btnBrowseForFolder btnNameSpace

include references to anything.
The following picture shows a
demonstration application I put

. Calling the Shell Object...

Find Computer MameSpace |
together using Visual Basic:
Selected folder:
IToday —— Textl
Start Menu iterns: Verbs:
C:AWINDOWS S tar MenuhPrograms &0pen
AN DO S WS kart MenusS py+ Ink. tDebug
tart MenutFegisty E ditor.Ink Add to &Zip
&Add to Regedit.zip
Listl Cuit ——+ List2
&Copy
Create &Shortout
iDelete
Phroperties

361

Chapter 12

The form has three buttons to call the three functions I mentioned above. Find Computer is linked to
this code:

Fi nds a conputer
Private Sub btnFi ndConputer_d i ck()
Dims As New Shel |
s. Fi ndConput er

End Sub
Which causes the following dialog to &1 Find: Computer M= E3
appear: Ele Edt Yiew Help

Computer M ame |

Mamed: I j

Stop
Mew Search

BrowseForFolder, on the other hand, displays the dialog that we examined in detail in Chapter 5. In
this example, I arranged for it to browse the My Comput er folder, like this:

Navi gates the History fol der
Private Sub bt nBrowseFor Fol der _d i ck()
On Error Resume Next
Dims As New Shell
Dimf As Fol der
Dimfi As Folderltem

Set f = s.BrowseFor Fol der (Me. hWhd, "My Conputer:", 0, ssfDRl VES)
Set fi =f.ltenms.ltem

' Show the selected path in a textbox
Text1l. Text = fi.Path

End Sub
Browse for Folder ﬂﬁ The method returns a reference to a Fol der
object, but if you want the path of the selected
4y Computer:

element, a Fol der isn't sufficient. Instead, you
have to use a Fol der | t emobject, which

' ey |pp5,] exposes a Pat h property. (We'll talk more abou
Fol der and Fol der |t emlater on.)

[F]

(=] Contral Panel
{28 DiaHlp Networking

Ok I Cancel

362

Scriptable Shell Objects

The special ssf DRI VES constant that you can see in the above listing is taken from a predefined
enumeration type called Shel | Speci al Fol der Const ant s. The values of this enumeration are
identical to the CSI DL_XXX constants we met in Chapter 5, but the type under discussion doesn't
include all the constants that are defined in shl obj . h. The missing ones (not counting the 'COMVON'

constants) are:

CSI DL_H STORY
CSI DL_COOKI ES

CSI DL_I NTERNET

CSI DL_| NTERNET _CACHE
CS| DL_APPDATA

CSI DL_ALTSTARTUP

CSI DL_PRI NTHOCD

[Sy Sy Wy Wy

However, should you need it, adding support for these is simply a matter of adding the following

constant declarations:

Const ssfH STORY = &H22

Const ssf COOKI ES = &H21

Const ssfl NTERNET = &H1

Const ssfl NTERNETCACHE = &H20
Const ssf APPDATA = &H1A

Const ssf ALTSTARTUP = &HLD
Const ssf PRI NTHOOD = &H1B

Feel free to adopt any other names for the constants. The values come straight from the

shl obj . h keader file.

The last of the three buttons, NameSpace, opens and returns a Fol der object that is based on the
path name or the ID specified. Then, it enumerates the items in that folder, displaying them in the

left-hand list box:

Enunerates the content of the Start Menu fol der

Private Sub bt nNaneSpace_d i ck()
Dims As New Shell
Dimf As Fol der
Dimi As |nteger
DimItem As Fol derltem

Set f = s. NameSpace(ssf STARTMENU)
For Each ItemlIn f.ltens
Listl. Addltem Item Path
Next
End Sub

The above code makes use of the ssSf STARTMENU constant, thereby retrieving the St art Menu

folder. Notice how easy it is to walk the contents of a folder once you have a reference to a Fol der

object — it's as easy as setting up a f or loop!

363

Chapter 12

Here's the code for the remainder of the Visual Basic project, showing the handlers for the other
controls:

Option Explicit
Add bt nFi ndConput er _d i ck()
' Add bt nBrowseFor Fol der _C i ck()
Add bt nNameSpace_C i ck()

' Displays the verbs for each folder item
Private Sub Listl_dick()

Dims As New Shel |

Dimf As Fol der

Dimfi As Folderltem

Dimfiv As Fol derltenVerb

Dimi As I|nteger

Set f = s. NameSpace(ssf STARTMENU)
i = Listl.Listlndex

Set fi =f.ltems.Iten(i)

List2.d ear
For Each fiv In fi.Verbs
Li st2. Addltem fiv. Nanme
Next
End Sub

The final portion of the source code, which handles clicks on the left-hand list box, deals with using
verbs, which we'll cover a little later on.

Using C++

Doing the same thing with C++ requires a little more work and increased lines of code, but the
approach is basically the same. The first problem we encounter is making sure to include all the
header files we need so that the project compiles and the CLSI Ds are properly declared, but that's not
usually foo tricky provided that you keep your wits about you!

All the declarations needed for using the Shel | object model can be found in exdi sp. h. The
following lines are sufficient to compile correctly a piece of software that makes use of the Shel |
object:

#i ncl ude <w ndows. h>
#i ncl ude <condef. h>
#i ncl ude <exdi sp. h>

Make sure you have the most up-to-date versions, because the ones that come with compilers and
other tools might not contain everything you need. For instance, Visual C++ 5.0 installs a version of
exdi sp. h in its i ncl ude subdirectory that doesn't contain any of the required definitions for the
shell's object model. The "correct" version of exdi sp. h is installed with the Internet Client SDK,
and is also distributed with Visual Studio 6.0.

364

Scriptable Shell Objects

The second problem is coping with the VARI ANTs, which add a level of complexity to COM
programming in C++. In Visual Basic, you can use either strings or numbers to identify a folder —
this flexibility relies on the fact that VARI ANTs can hold different data, but always expose the same
interface. However, using the ATL wrapper class CConVar i ant goes a long way to making

VARI ANT use easier in C++.

The third difficulty you run into when doing low-level COM programming is enumerating
collections. Support for doing this is built into Visual Basic, as demonstrated by code like this:

Di m pF As Fol der
Di m pFl As Fol derltem

For i =0 to pF.Itens. Count - 1
Set pFl = pF.ltens.lten(i)
Do sonet hi ng
Next

Generally in Visual Basic, a For . . . Each construct is faster than a For . . . Next because it
makes use of a hash algorithm to locate the ith item instead of scanning the items sequentially.
However, I've used For . . . Next here because it maps more closely to the programming
approach used in C++.

Doing this in C++ is more long-winded, but it isn't really more complex. In trying to convert the
fragment above to C++, we must consider three things:

Q Getting the | t e collection
Q Getting the Count property
Q Getting the ith element of the collection

To see how we can address these issues, let's consider a typical sample: enumerating the content of a
folder. The NanmeSpace() method provides us with a reference to a Fol der object:

Fol der* pFol der = NULL;
CConVari ant vDir(CSI DL_STARTMENU) ;
pShel | Di sp- >NanmeSpace(vDir, &pFol der);

We know from the Internet Client SDK documentation that the Fol der object has an attribute called
I t ems whose type is Fol der | t ens. Basically, Fol der |t ens is a collection of elements of type

Fol der I t em (I know that I still owe you complete coverage of the Fol der and Fol der|tem
objects, but bear with me; we'll do that shortly.)

What we need to do, therefore, is to get a pointer to | t ems and then visit every item in the
collection, performing an action for each one, such as adding an icon to a list view control.

| ong nLengt h;

Fol derltenms* pFl Col | = NULL;
pFol der->Itens(&pFl Col |); /1 Visual Basic: Folder.l|ltens
pFl Col | - >get _Count (&Lengt h) ; /'l Visual Basic: Folder.|tens. Count

365

Chapter 12

The lines above demonstrate how to get the pointer to the Fol der | t ens collection, and its length.
At this point, we could arrange a loop:

for(int i =0 ; i < nLength ; i++)

I/l Get the ith elenent from pFlColl and
// do something with it

}

The Fol der | t ens object is a helper object; it exposes an interface that lets us browse a collection.
In particular, it has an | t en() member function that takes two arguments: a VARI ANT, and a pointer
to a Fol der | t emobject.

for(int i =0 ; i < nLength ; i++
CConVari ant varl ndex(i);

Fol derltent pFl = NULL;
pFl Col | - >l ten{var | ndex, &pFl);

/1 do something with it

pFl - >Rel ease();
}

You might be wondering why a function like | t en() , which is intended to return a reference to the
ith element of a given collection, needs a VARI ANT argument instead of a simpler i nt, Ul NT or

| ong. The answer is that collections usually allow you to access their elements by name as well as by
index. Given this, it's clear that | t emmust be ready to accept both numbers and strings, hence the
decision to use a VARI ANT.

Once we have a pointer to a Fol der | t em we have a pointer to a logical object that can tell us about
a file contained in a folder. We can ask it for the path, the size or the date, like this:

CConBSTR bstr;

TCHAR szFi | e[MAX_PATH = {0};

pFl - >get _Pat h(&bstr);

west ombs(szFile, bstr, MAX_PATH);

The filename can then be used to retrieve the icon for the document class and add an item to a list
view control, which is exactly what we'll do in the sample C++ program I'll be presenting shortly.
Before that, though, we need to take a closer look at Fol der and Fol derltem

The Folder Object

A Fol der object represents a shell folder that contains files or references to other types of objects.
Usually, you don't create folders directly but rely on the NameSpace() function, which creates them
starting from a path name or a virtual folder ID.

The Fol der object exposes four properties, two of which are the well-known Appl i cati on and

Par ent . The other two are Par ent Fol der and Ti t | e, whose purposes are (I hope!) self-
explanatory.

366

Scriptable Shell Objects

This table lists the object's methods:

Method Description
CopyHere() Copies one or more file objects into the folder.
Get Det ai | sOf () Returns column-based information about the specified folder item,

the same way it would be displayed in a shell view.

Itenms() The collection of Fol der | t emelements in the folder. This
collection is of type Fol der | t ens.

MoveHer e() The same as CopyHer e, but moves files.
NewFol der () Creates a new folder within the given folder.
Par seName() Creates a Fol der | t emobject from a name.

As you can see, the Fol der object gives you the same basic functionality that you get when
manipulating folders in Explorer.

More on Folder Object Methods

Let's look in more detail at the methods exposed by the Fol der object. We've already mentioned

I t ems(), which returns a pointer to a collection of Fol der | t emobjects, and explained how the
collection exports a property Count and a method | t em() to help you enumerate the elements, but
what about the rest?

CopyHere()

The method may be considered as a sort of wrapper around the API function SHFi | eCper ati on().
It copies one or more files (or file objects) from their original location to the current folder. The
source files may be strings, a Fol der | t emobject, or a collection of Fol der | t emobjects. The
operation can be controlled through the same flags that control SHFi | eOper ati on() (see Chapter
3).

The prototype of the CopyHer e() function is:

HRESULT CopyHer e(VARI ANT viltem VAR ANT vQptions);

GetDetailsOf()

This method is intended to give programmers the same information that users can get from the right-
hand pane in Explorer. Each folder may give you several columns of data; for file folders the columns

contain:
Q Name
Q Size
Q Date last modified
Q Type
Q Attributes

367

Chapter 12

The function retrieves this information for a given folder item, based on the column index number.
The only exception to this is for the infotip (the text of the tooltip that appears for some elements in
the shell), which is assigned an ID number of —1. Column IDs are zero-based, so for ordinary file
folders, for example, column 1 is the size. The information is always returned in the form of strings,
so the prototype of the method is:

HRESULT GetDetail sOF (VARIANT vitem int iColum, BSTR* pbs);

Items()

Retrieves the collection containing all the folder items in the folder; the prototype is:
HRESULT | tens(Fol derltenms** ppid);

The Fol der | t ens collection has the following interface:

Method Description

Item() Allows you to walk the various elements of the collection. An
element is a Fol der | t emobject.

The collection also has a _NewEnum() method that has a special meaning. In fact, every collection
object must expose a method named _NewEnumto let clients know that iteration capability is
provided. The _NewEnummethod returns a pointer to an object that supports the | EnumVARI ANT
interface.

MoveHere()

This method works the same way as CopyHer e(), the only (and obvious) difference between them
being that MoveHer e() moves files instead of copying them. The prototype is:

HRESULT MoveHer e(VARI ANT vitem VARI ANT vOptions);

NewFolder()

This method creates a new subfolder in the specified folder. It takes two arguments: the name of the
folder to be created, and a VARI ANT that is currently unused. The prototype is:

HRESULT NewFol der (BSTR bNanme, VARI ANT vUnused);

ParseName()

This method creates and returns a new Fol der | t emobject using the name passed in as the first
argument. The prototype is:

HRESULT Par seNane(BSTR bNane, Fol derltent* ppid);

368

Scriptable Shell Objects

The Folderlitem Object

The Fol der | t emobject represents an element in a shell folder. It exposes two methods and a
number of properties to let you know about the characteristics of the item. Let's start with a table of
the properties.

Property Description
Application Retrieves the | Di spat ch interface of the object.
Get Fol der Retrieves the Fol der object if the item is a folder.

| sBrowsabl e Returns a Boolean value denoting whether the folder item can be

browsed.

I sFil eSystem Indicates whether the folder item is a file system object.

| sFol der Indicates whether the folder item is a subfolder.

I sLi nk Indicates whether the folder item is a shortcut.

Modi f yDat e Returns a DATE value with the date and time of the last update to the
item. A DATE is an 8-byte floating-point number.

Name Returns a string with the name of the item.

Par ent Retrieves the | Di spat ch interface of the parent of the item.

Pat h Returns a string with the full path of the item.

Si ze Returns an unsi gned | ong value denoting the size in bytes of the
item.

Type Returns a string with the type of the item.

All these properties are read-only and implemented through methods called get _XXX() , where XXX
is the name of the property. All these functions return HRESULTs and accept pointers to output
variables to be filled with the data to return.

The methods exposed by Fol der | t emare:

Qa I nvokeVerb()
a Verbs()

Both of these are related to working with the verbs supported by the item.

Invoking an Item's Verbs

We talked about verbs in Chapter 8, and | nvokeVer b() executes a verb on the folder item. The
method is declared this way:

HRESULT | nvokeVer b(VARl ANT vVerb) ;

369

Chapter 12

While Ver bs() has the following prototype:
HRESULT Ver bs(Fol derltenmVerbs** ppfic);

The VARI ANT you can pass to | nvokeVer b() should be one of the strings returned by the
Fol der It emVer bs collection, which is accessible via the Ver bs() method.

The FolderitemVerbs Collection

Here's the programming interface of the Fol der | t emVer bs collection:

Method Description

Item() Allows you to walk the collection, the elements of which are
Fol der | t emVer b objects

In addition to this, there are three properties: Appl i cati on, Par ent and Count . The last of these,
as you might expect, returns the number of items in the collection.

The FolderltemVerb Object

The interface of the Fol der | t emer b object is extremely limited and contains just the method
Dol t () that takes no arguments.

Method Description

Dol t () Executes the verb on the folder item

Apart from this, the Fol der | t enVer b has the usual Appl i cati on and Par ent properties, plus an
attribute called Name that returns the actual verb name for the item:

HRESULT get _Name(BSTR* pbs);

The string returned here could contain an ampersand to indicate the menu item's accelerator key; the
string is exactly what appears on the context menu. It seems that this programming interface is not so
flexible after all! The Fol der | t emVer bs collection doesn't give you the real, absolute name of the
verb, but just the string that appears on the context menu. In other words, the Fol der | t enVer bs
collection provides you with a string like &Open instead of Open. Things get even worse with
localized versions of Windows, because the string you have to pass to | nvokeVer b() to execute a
given command (say, Open) is what appears to the user, and nof what is stored in the registry. In the
Italian version of Windows, for example, you should call this to open a document:

| nvokeVer b(" &Apri ") ;

As we discussed back in Chapter 8, a verb is a name for a command that
applies to a certain class of files. It can be static (stored in the registry), or
dynamic (added by a shell extension). A verb is a universal string and
shouldn't be dependent upon localization, nor contain ampersands. So what
we're calling a 'verb' here is slightly different from what we originally
defined in Chapter 8.

370

Scriptable Shell Objects

Accessory Objects

So far, we've examined the main (that is, most commonly used) objects in the shell's object model.
However, there are secondary objects too. In particular, you might be interested in the

Shel | Ul Hel per object, which implements the | Shel | Ul Hel per interface derived from

I Di spat ch. This interface lets you add directories or files to the Favori t es folder.

I actually demonstrated this in Chapter 6 — after all, adding a new 'favorite' is just a matter of creating
a new shortcut in a specified path. What Shel | Ul Hel per can also do is call the system dialog for
adding to Favorites:

Add Favorite

Thiz will add the page to your favorites. oK

) P i 2
el d e alsa ke e subscnite e this paae? Cancel

& No, just add the page to my favorites

Ve, but orlutellmemten this page iz updated

£ Yes) notifuime of updates andidownlzad e page for [EuEtamize, .
il =)

LR

Hame: IMs-dos_B [C) Create in »»

In addition, it allows you to handle channels, subscriptions and desktop components. (See the Further
Reading section for more details.)

The ShellUlHelper Object

The Shel | Ul Hel per object is also defined in the exdi sp. h header file. The server is identified by
CLSI D_Shel | Ul Hel per, and implements the | Shel | Ul Hel per interface, which exposes four

methods:

Method Description

AddChannel () Adds a channel to the local list. It takes the URL to a
channel definition (. cdf) file as input.

AddFavorite() Adds a file or folder to the list of favorite folders. The two
arguments it takes are the URL to the folder or file, and a
VARI ANT to describe the favorite.

AddDeskt opConponent () Adds a new desktop item by specifying its URL, the type
(image or web site), and the initial position on the screen.

I sSubscri bed() Verifies whether we're subscribed to a certain URL or not.

AddChannel () accepts a URL to the CDF file for a channel and stores it locally. Its prototype is:
HRESULT AddChannel (BSTR URL);

AddFavorite() shows the default dialog for adding a new file or folder to the list of your favorites.
It's declared this way, where the VARI ANT argument is the descriptive name of the item:

371

Chapter 12

HRESULT AddFavorite(BSTR URL, VARIANT* Title);

AddDeskt opConponent () registers a new desktop item. It takes the URL and a string denoting the
type of the component. This type can be the string 'l mage' or 'websi t e', and is followed by four
VARI ANTs that specify the initial position of the item:

HRESULT AddDeskt opConponent (BSTR URL, BSTR Type,
VARI ANT* Left, VARI ANT* Top, VARI ANT* Wdth, VAR ANT* Height);

A desktop item is not a file placed in the desktop folder. Instead, it is a web page hosted in a floating
frame or embedded in the HTML page that you can set as the desktop's background. The content of
this page is the content of the specified URL. Usually, these URLs are specialized pages that just
provide headlines and links to the actual data source. Each URL referred through a desktop item is
automatically subscribed to.

Finally, the | sSubscri bed() method returns a Boolean value according to whether we are
subscribed to the specified URL or not.

HRESULT | sSubscri bed(BSTR URL, VARI ANT_BOOL* pBool);

See the Further Reading section for references on how to develop desktop items, understanding . cdf
files, and manage channels and subscriptions.

Adding to Favorites

The following code fragment shows how to invoke the Add to Favorites system dialog from C++
code. As a reminder and a point of reference, the equivalent Visual Basic code is:

Dims As New Shel | U Hel per
s. AddFavorite "c:\"

For C++ programmers, adding the root of disk C to the Favori t es folder requires this code:

voi d AddDi skCToFavorites()

{
| Shel | Ul Hel per* pShell U = NULL;
/Il Creates the Shell U Hel per object
HRESULT hr = CoCreatel nstance(CLSI D _Shel | Ul Hel per, NULL, CLSCTX_ SERVER,
11 D | Shel | Ul Hel per, reinterpret_cast<LPVO D*>(&pShel | Ul));
i f (FAILED(hr))
return;
// Sets the title of the itemto add
CConVariant vTitle(__TEXT("My C Drive"));
// Causes the dialog to appear with the specified default settings
CConBSTR bstrPat h(__TEXT("c:\\"));
pShel | Ul - >AddFavorite(bstrPath, &Title);
/1 dean up
pShel | Ul - >Rel ease();
}

372

Scriptable Shell Objects

Putting it all Together

We've now examined several objects implemented in the Internet Explorer 4.x DLL shdocvw. dl | .
These objects let you drive the shell from programs in a way that you haven't been able to do before.
All the current examples that are around make use of Visual Basic as the programming environment,
and I introduced a Visual Basic example earlier in the chapter. Now I'd like to present a
demonstration application written in pure C++ code that shows how to deal with the shell's object
model at a lower level of abstraction.

Once again, it's time to start up the Wrox AppWizard and create a dialog-based project; I called mine
CppShel | . Here's the dialog we're going to implement:

IDC_FINDCOMPUTER IDC_BROWSEFORFOLDER IDC_MINIMIZE

Shell Console

{"Eind Computer BrowseFarFolder | Minimize &l |
IDC_PROPERTIES T askbar Properties ﬂameﬁpace | Add to Favarites 477 IDC_FAVORITES
Selected Folder: ‘ IDC_NAMESPACE
IDC_FOLDER ———

Start Menu ltems:

pellow red green magenta
' ————— IDC_LIST
cyan blue
The following table describes what the six buttons on the dialog do:
Button Action
Eind Computer Makes the Find Computer dialog appear.
Taskbar Properties Makes the Taskbar Properties dialog appear.
BrowseForFolder Browse the Hi st ory folder. The selected item will be
displayed in the text box below.
NameSpace Gets a reference to the St art Menu folder and enumerates
its content to the list view below.
Minimize All / This button minimizes all the opened windows, as if we had
Undo Minimize All pressed the Windows-M key combination. Then, the caption
changes to Undo Minimize All, and the effect is identical to
pressing Shift-Windows-M — that is, restoring the windows.
Add to Favorites Causes the Add to Favorites dialog to appear.

373

Chapter 12

As usual, implementing the application involves little more than writing handlers for the buttons. The
following source code includes some of the fragments used in the discussion above, and portions of it
appeared in my Cutting Edge column in the August 1998 issue of Microsoft Interactive Developer
(MIND). The title of that article is The Windows 98 Shell.

First things first, we need to make sure that the COM libraries are initialized while our dialog is
running, so add a couple of lines to W nMai n() to that effect:

/1 Enabl e common controls

I NI TCOVMONCONTROLSEX i ccex;

i ccex. dwsi ze = sizeof (I Nl TCOMMONCONTROLSEX) ;
i ccex.dwli CC = | CC_W N95_CLASSES;

I ni t CormonCont r ol sEx(& ccex);

/1 Initialize the COMlibraries
Colnitialize(NULL);

// Run nmin dial og
BOOL b = Di al ogBox(hl nstance, "DLG MAIN', NULL, APP_D gProc);

/1 Uninitialize COM
CoUninitialize();

Each of the buttons on the dialog will have its own handler function, so we can change
APP_DI gProc() to reflect that fact:

case VW _COVIVAND:
swi t ch(wPar am

{

case | DC_FI NDCOVPUTER:
OnFi ndConput er () ;
return FALSE;

case | DC_PROPERTI ES:
OnTaskbar Properties();
return FALSE;

case | DC_BRONSEFOLDER:
OnBr owseFor Fol der (hDl g) ;
return FALSE;

case | DC_NAMESPACE:
OnNaneSpace(hDl g) ;
return FALSE;

case IDC_M N M ZE:
OnM ni m zeAl | (hDl g);
return FALSE;

case | DC_FAVORI TES:
OnAddFavorites();
return FALSE;

case | DCANCEL:
EndDi al og(hDl g, FALSE);
return FALSE;

}

br eak;

374

Scriptable Shell Objects

There's nothing else for it; we'll just have to go through the handlers one at a time. Here's the first
(and one of the simplest), OnFi ndConput er () :

voi d OnFi ndConput er ()

{
| Shel | Di spat ch* pShel | Di sp = NULL;
HRESULT hr = CoCreatel nstance(CLSID Shell, NULL, CLSCTX_ SERVER,
11 D_I Shel | Di spatch, reinterpret_cast <LPVO D*>(&Shel | Di sp)) ;
i f (FAI LED(hr))
return;
pShel | Di sp- >Fi ndConputer ();
pShel | Di sp- >Rel ease();
}

Equally easy is OnTaskbar Properti es() — in fact, it just involves calling a different method of the
Shel | object:

voi d OnTaskbar Properties()

{
| Shel | Di spat ch* pShel | Di sp = NULL;

HRESULT hr = CoCreatel nstance(CLSID Shell, NULL, CLSCTX_ SERVER,
11D | Shel | Di spatch, reinterpret_cast<LPVO D*>(&pShel | Di sp));
i f (FAILED(hr))
return;

pShel | Di sp->TrayProperties();
pShel | Di sp- >Rel ease();

Gaining in complexity, OnBr owseFor Fol der () gets a pointer to the Shel | object like the
previous functions, but then goes on to call Br owseFor Fol der (), which retrieves a pointer to a
Fol der object:

voi d OnBr owseFor Fol der (HWAD hDl g)

{
TCHAR szTitl e[MAX_PATH = {0};
| Shel | Di spat ch* pShel | Di sp = NULL;
Fol der* pFol der = NULL;

HRESULT hr = CoCreatel nstance(CLSID Shell, NULL, CLSCTX SERVER,
11 D_|I Shel | Di spatch, reinterpret_cast <LPVO D*>(&Shel | Di sp)) ;
i f (FAILED(hr))
return;

/'l Set the root of the nanespace displ ayed
CConVari ant vRoot (CSI DL_HI STCRY) ;

/1 Displays the dial og
CConBSTR bstr Fol der (__TEXT("Hi story Fol der:"));
hr = pShel | Di sp->Br owseFor Fol der (
rei nterpret_cast<long>(hD g), bstrFolder, 0, vRoot, &pFolder);

375

Chapter 12

i f (pFol der)
{

// Get the display nane of the selected item
CConBSTR bstr;
pFol der->get _Title(&bstr);

/] Convert it to ANSI and display
westonbs(szTitle, bstr, MAX_PATH);
Set Dl gl t enText (hDi g, | DC_FOLDER, szTitle);

}

/1 Cean up
pFol der - >Rel ease();
pShel | Di sp- >Rel ease();

If a valid Fol der object is obtained, we call its get _Ti t| () method and display the name of the
folder on the dialog.

OnNameSpace() is much bigger, but that's really more to do with the code necessary for outputting
icons to the list view than it is with the COM code. In operation, it's really quite straightforward, and
the pattern of calls should be familiar to you by now:

voi d OnNameSpace(HWND hDl g)

{
| Shel | Di spat ch* pShel | Disp = NULL;
Fol der* pFol der = NULL;

HRESULT hr = CoCreatel nstance(CLSI D _Shell, NULL, CLSCTX_ SERVER,
I D_I Shel | Di spatch, reinterpret_cast<LPVO D*>(&Shel | Di sp));
i f (FAILED(hr))
return;

// Set the folder to work with
CConVari ant vDir(CSl DL_STARTMENU) ;

/'l Get the Fol der object
pShel | Di sp- >NaneSpace(vDir, &pFol der);

/'l Prepare to enunerate the folder's content
| ong nLengt h;

Fol der I tens* pFl Col | = NULL;

pFol der->Itens(&pFl Col |);

pFl Col | - >get _Count (&nLengt h) ;

Il Prepare the list viewto fill

H MAGELI ST himl = | mageLi st_Create(32, 32, ILC_MASK, 1, 1);
HWAD hwndLi st = GetDiglten{hD g, |1 DC LIST);

Li st Vi ew_Set | mageLi st (hwndLi st, him, LVSIL_NORVAL);

// Enunerate the folder itens
for(int i =0 ; i < nLength ; i++)

/Il Get the ith folder item

CConVari ant varl ndex(i);
Fol der | tent pFl;

376

hr = pFl Col | - >l tem(var | ndex, &pFl);
i f (SUCCEEDED(hr))
{

CConBSTR bstr;

TCHAR szFi | e[MAX_PATH = {0};

Scriptable Shell Objects

/1l Get the ANSI version of the ith itempath

pFl - >get _Pat h(&bstr);
west onbs(szFile, bstr, MAX_PATH);

/1l Add the itemto the list view
LV_I TEM | vi ;

ZeroMenory (& vi, sizeof (LV_ITEM);
Ivi.mask = LVI F_TEXT | LVIF_I MAGE
lvi.pszText = szFile;

lvi.cchText Max = Istrlen(szFile);

/Il Get the icon and add to the list view

SHFI LEI NFO sfi ;

SHGet Fi | el nfo(szFile, 0, &sfi, sizeof (SHFILEI NFO, SHGF _I CON);
int ilconPos = | magelList_Addlcon(him, sfi.hlcon);

Ivi.ilmage = il conPos;
Li stView I nsertlten(hwndList, & vi);

}
pFl - >Rel ease() ;
}

pFl Col | - >Rel ease() ;
pFol der - >Rel ease() ;
pShel | Di sp- >Rel ease();

void OnM ni mi zeAl | (HWND hDI g)
| Shel | Di spat ch* pShel | Di sp = NULL;

HRESULT hr = CoCreat el nstance(CLSI D _Shel I,

We begin by creating a pointer to the Shel | object, and then use that in a call to the NameSpace()
function to get hold of a pointer to the St art Menu special folder. From there we can use the

I't ems() method to obtain a pointer to the Fol der | t ens object, and finally we acquire a

Fol der | t empointer with which to obtain the icons and path names. It really is just a matter of
picking your way through the hierarchy of objects.

Just two functions to go now, and they're starting to get smaller again. Depending on a global,
Boolean flag, OnM ni mi zeAl | () calls one of two methods of the Shel | object, and amends the
caption on the button accordingly:

NULL, CLSCTX_SERVER,

11 D_| Shel | Di spat ch, reinterpret_cast<LPVO D*>(&pShel | Di sp));

i f (FAILED(hr))
return;

377

Chapter 12

I/l Use a global flag to renmenber the current status
i f(!g_bM nim zed)

pShel | Di sp->M ni mi zeAl |l ();
// Change the button's caption

Set Dl gl tenText (hDig, IDC_M NI M ZE, "&Undo M nimze Al");
g_bM ni m zed = TRUE;

}
el se
{
pShel | Di sp- >UndoM ni m zeALL();
// Change the button's caption
Set Dl gl tenText (hDig, IDC_MNMZE, "& ninmze AIl");
g_bM ni m zed = FALSE;
}

pShel | Di sp- >Rel ease();

Finally, OnAddFavorit es() requires no new work at all, because we can just reuse the body of the
AddDi skCToFavorites() function that I developed earlier in the chapter!

voi d OnAddFavorites()

{

| Shel | Ul Hel per* pShel | U = NULL;

/'l Creates the Shell U Hel per object
HRESULT hr = CoCreatel nstance(CLSI D _Shel | Ul Hel per, NULL, CLSCTX_SERVER,
I I D_I Shel | Ul Hel per, reinterpret_cast<LPVO D*>(&pShellU));
i f (FAILED(hr))
return;

/! Sets the title of the itemto add
CConVariant vTitle(__TEXT("My C Drive"));

/] Causes the dialog to appear with the specified default settings
CConBSTR bstrPat h(__TEXT("c:\\"));
pShel | Ul - >AddFavorite(bstrPath, &Title);

/1 Cean up
pShel | Ul - >Rel ease();

That's all the code; but there's a whole slew of header files that you'll need to #i ncl ude in order to
get the project to compile — the list is condef . h, exdi sp. h, at | base. h, shl obj . h, and good old
resour ce. h. With these at the top of your file, the code will compile, link and run as described.

378

Scriptable Shell Objects

Summary

This chapter discussed scriptable shell objects from the points of view of both Visual Basic and C++.
You can exploit them if you have Internet Explorer 4.x and Active Desktop installed under Windows
95 or Windows NT 4.0, or if you're running Windows 98 or higher. These objects are documented
only in the Internet Client SDK (now part of the Platform SDK), and mainly for the benefit of the
Visual Basic programmer. I've tried to make up for the lack of documentation for C++ programmers,
particularly in the areas of:

Q The functions of the Shell's object model
Q The Fol der and Fol der | t emobjects
0 VARI ANTs and Unicode strings

Further Reading

For more detailed information on COM, you should consider some or all of:

Q Essential COM, Don Box, Addison-Wesley, ISBN 0-201-63446-5
Q Inside COM, Dale Rogerson, Microsoft Press, ISBN 1-57231-349-8
Q Professional DCOM Programming, Richard Grimes, Wrox Press, ISBN 1-861000-60-X

At the time of writing, the scriptable shell objects were documented only in the Internet Client SDK.
If you're looking for books or articles that can provide a different point of view, you may find the
going rather tough.

The Windows 9x shell is covered in an article of mine that appeared in the Cutting Edge column of the
August 1998 issue of MIND. The article provides an overview of the objects involved, and then
builds an embeddable COM component (that is, an ActiveX control) that works as the Explorer's left-
pane tree view. This control, which lets you choose a directory by expanding the nodes of a tree
view, can be inserted in any ActiveX-compliant application. It is written in Visual Basic and has an
interesting plus: it allows you to filter the directory names to display. In other words, you can use this
filter to show your customers only a specified portion of the disk. This source code is available for
download from MIND's web site at http://www.microsoft.com/mind.

Two related articles appeared in the MIND edition of July 1998. The first one is Adding Internet
Explorer Favorites to Your Application by Scott Roberts, which discusses some undocumented functions
for handling favorites and, above all, subscriptions. The second, Michael Heydt's Incorporating the
WebBrowser Control Into Your Program touches on some advanced uses of the WebBrowser control.

In this chapter, we also had to consider some topics relating to the Internet and the Active Desktop.
Once again, further information on channels and the CDF format can be found in the November 97
edition of MIND, in the Cutting Edge column, written by John P. Grieb. A high-level overview of
subscriptions, channels, and Active Desktop components is in MSJ, October 1997, in an article
entitled A Preview of Active Channel and Active Desktop for Internet Explorer 4.0 by Nancy Cluts and
Michael Edwards.

A tutorial on how to write Active Desktop components (Creating an Active Desktop Component by Josh
Hochmann) appeared in MIND in May 98, and last but not least, many of these topics are covered in
a single book: Wrox Press' Professional IE4 Programming, ISBN 1-861000-70-7.

379

http://www.microsoft.com/mind

13
The Windows Scripting Host

Many of today's Windows developers have previously programmed in the MS-DOS environment.
Almost all have a soft spot for batch files, those text-based command files that allow you to combine
multiple instructions in a single executable command. Batch files are easy to write, and follow a fairly
simple syntax.

However, some people claim that the syntax of batch files is too simple. The interpreter of . bat files
is smart enough to recognize some basic control elements, like i f, but it's a long way from providing
an up-to-date and powerful scripting environment.

Until now, though, Windows hasn't had a better mechanism — MS-DOS batch files are still
considered as executable files in Windows. With the introduction of the Windows Scripting Host
(WSH), though, things have finally changed. As I'll show in this chapter, the WSH provides support
for much more complicated operations than you could perform with . bat files, and this is mainly
due to the features of the embedded scripting engine.

In this chapter, I'll cover:

The origins of Windows batch files

The layout of the Scripting Host that provides a framework for shell scripting
The WSH object model

What you can do with the WSH

How you can enhance the power of the WSH with new Automation objects

0O000D

We will be using JScript and VBScript to write sample WSH applications, but provided that you have
(and distribute) an appropriate ActiveX-compliant scripting engine, you could use any other scripting
language.

Chapter 13

Windows Batch Files — At Last

The idea behind the Windows Scripting Host is quite simple. It is an environment that works as the
run-time engine for interpreting script files written in VBScript, JScript or any other script language.
The only proviso is that each language should have a parsing module that's compatible with the
Internet Explorer ActiveX scripting engine.

In practice, you write a single script file and the WSH runtime allows you to run it as if it were a
batch file or a typical Win32 binary. It's therefore quite reasonable to consider . vbs and . j s files as
new kinds of executable files, where . vbs files are ASCII files that contain a piece of VBScript code,
and . j s files are their JScript equivalent.

What Can the WSH do for You?

To grasp the importance of the WSH, consider it as a tool that allows you to describe a series of
operations programmatically, such as running external executables, or accessing Windows objects
like shortcuts, folders and even the registry. With WSH, any repetitive task can be saved to a . vbs or
. j s file, and invoked with a simple double-click at a later time.

There are a number of advantages that WSH-based scripts have over batch files:

Q They use more articulated and powerful programming languages that provide a variety of control
flow structures, variables, subroutines and arrays that you don't find in DOS batch files.

These features will be further enhanced with the release of version 5.0 of the
scripting engines, expected to ship with Internet Explorer 5.0. The major feature of
the new scripting engines is a built-in mechanism to catch errors and recover from
them in JScript, and a way to evaluate and execute code at runtime in VBScript.

O A second (but no less important) fact that makes the WSH incomparably more powerful than
batch files is the ability to access any registered COM server. First, this enables you to create
instances of any existing COM server in your WSH application and control it as you wish.
Second, you can design new COM servers specifically to extend the capabilities of the WSH run-
time environment. In the remainder of the chapter, I'll examine both of these approaches.

Running Scripts at Startup

In MS-DOS based systems, it's common to have a custom batch file that runs at the end of

aut oexec. bat and performs some more specialized processing. In most cases, this consists of a
keyboard-based menu that uses got 0 statements to move control to the required block of code. Well,
the same effect can be obtained with the WSH. Once you've written the code to execute at startup,
you can store it in the St ar t up folder and have it run during each user's logon.

382

The Windows Scripting Host

Structure of the WSH Environment

The Windows Scripting Host environment is an integrated module that embeds an ActiveX scripting
engine in the Windows shell. By implementing a handful of COM interfaces, you can give any Win32
application the ability to be driven by scripts. The application should be an Automation server that
exposes its own objects to the outside world, and there are many examples in the literature of how to
accomplish this. (See the Further Reading section for more information.)

In the Windows shell, there exists a program that is capable of interpreting VBScript and JScript
source code. The underlying principle is the same as that which makes Internet Explorer able to run
scripts from within HTML pages. Internet Explorer, Internet Information Server and the WSH
manager embed a parsing module that is compatible with the ActiveX Scripting specifications.

The difference between these three applications is the object model that each imposes upon the
hosted module. In other words, from the script's point of view, Internet Explorer and the WSH differ
in the object model that they build around the same scripting engine.

Microsoft has released an ActiveX component called Script Control that works as an embeddable
object that provides a scripting engine for your applications. As a result, you can register your
own objects and have your program become scriptable automatically (assuming that your program
already exposes Automation objects). The Script Control is available from Microsoft's scripting
site: http://msdn.microsoft.com/scripting.

How to Get the Windows Scripting Host

The Windows Scripting Host module is a standard part of the Windows 98 operating system. It is also
available for Windows 95 and Windows NT 4.0, but it's not included with Internet Explorer 4.x and
the Active Desktop. Instead, you can get it from Microsoft's scripting site (as above).

Installation is as simple as indicating a path where files must be stored. Basically, the WSH package is
composed of a couple of executables, plus some COM modules that contain the objects that form the
WSH object model.

The setup also registers two new classes of files: . vbs and . j S. These are associated with some shell
verbs, so that you can open (run) and edit such files.

What is the Host?

The Windows Scripting Host is composed of two files called wscri pt. exe and cscri pt. exe,
which are located in the W ndows and the W ndows\ Command directories respectively. The latter is
a console application and runs inside a DOS window, while the former is a Windows program.

The Host Command Line

Both hosts share the same command line, which is:

wscript scriptfile [//options] [/argunents]
cscript scriptfile [//options] [/arguments]

383

http://msdn.microsoft.com/scripting

Chapter 13

The opti ons here are listed in the table below; note that you need to use a double slash to prefix
each one. Arguments to script files, on the other hand, must be prefixed with a single slash. The
following command is an example of how to run a script file for a maximum of two seconds. Once
this time has elapsed, the script terminates, whether the operation has actually completed or not:

wscript nyfile.js //T:2

The T switch is one of several accepted by both hosts; indeed, the lists are almost identical, as the
following table demonstrates:

Switch Description

B Runs the script in a non-interactive, batch mode. It suppresses all message boxes
and anything that requires the user's intervention.

| Runs the script in interactive mode and prompts the user if necessary. Execution
terminates at the end of the code, and there is no limit on its duration. This is the
default setting.

| ogo A banner is shown at startup. This option is only valid for cscri pt. exe (for
which it is the default setting), and is unsupported by wscri pt . exe.

nol ogo Doesn't show a banner at startup. This option is only valid for cscri pt. exe,
and is unsupported by wscri pt. exe.

T: nn The script can run only for the specified time, expressed in seconds. The
interruption is realized through a specific method of the ActiveX Scripting
engine, and may be considered absolutely thread-safe.

? Displays the program's usage.

From the command line standpoint, cscri pt and wscri pt are nearly the same and differ only in
the | ogo and nol ogo switches. A script file run through the cscri pt module will always make a
DOS window appear in the background.

Shell Support for Script Files

After the Windows Scripting Host has been installed, . vbs and . j s files are recognized and
properly handled by the shell. This means that you can double-click these files and have them run
immediately from Explorer. This feature comes simply from having the open verb added to the
registry, an approach that we saw in Chapter 11. Under this path:

HKEY_CLASSES_ROOT
\.js

and this one:

HKEY_CLASSES_ROOT
\.vbs

384

The Windows Scripting Host

the Def aul t value contains the name of the key that stores all the shell information — Jsfi | e and

Vbsfil e respectively. Following on, this path:

HKEY_CLASSES_ROOT

\jsfile
\'shel |
\ open

\ command

points to the command line that executes when you click a . j s file, which is the same as the one

specified for . vbs files:

Windows 9x:
Windows NT:

C:\ W NDOWMB\ W5Cr i pt . exe "94" 9%
C: \ W NNT\ Syst enB82\ WScri pt. exe "9%d" %

The % stands for the file name, while the % means that the program is also passed any command
line arguments in the call. If you simply double-click on a VBScript or JScript file in Explorer, the

actual command line will be:
C.\ W NDOWB\ W5cr i pt . exe fil ename

On the other hand, if you run the VBScript or
JScript programmatically with

Shel | Execut e() or Shel | Execut eEx(), or
even via the Run dialog box, you can specify
additional parameters or options. For example,
the following picture shows a way to invoke a
JScript file passing arguments:

The context menus for JScript and VBScript files
have two 'open' commands: Open runs

wscri pt. exe, while Open with MS-DOS
Prompt (Open with Command Prompt in NT)
runs CScri pt. exe. Furthermore, JScript and
VBScript files both have a custom property
page, which is added to the Properties dialog:

Run !

el Type the name of a program, folder, document. or Intemet
resource, and Windows will oper it far pou.

Open; IS criptFile.jz “First Argument™ "Second Argument' :j

Ok I Cancel | Browse. . |
Windows Scripting Host EHE I

General I

™ Stop scripts after specified number of seconds:
seconds

=

[v Display logo when scripts executed in M5-D0S prompt

Bezetin [iefaul: |

Cancel | Ll |

385

Chapter 13

The page lets you set a fixed number of seconds as the maximum execution time. Any settings you
change are saved to a . wsh file, which has the following format:

[ScriptFile]
Path=c:\nyfile.js

[Opti ons]

Ti meout =2

Di spl ayLogo=1
Bat chMbde=0

In some senses, a . wsh file is a like a shortcut for script files. When they're dealing with these files,
both cscri pt and wscri pt first try to extract the contents of the Pat h entry, and then run what
they find. The Scri pt Fi | e section defines the target, while Opt i ons describe the status of the
command line switches.

The Scripting Engine

The WSH uses the extension of the script filename to decide which parser to load. Logically, a . vbs
extension means that the script was written in VBScript, while . j s indicates JScript. The WSH
natively supports only these two languages because they are the ones supported by the ActiveX
scripting engine that ships with Internet Explorer. Provided that you have a valid parser for another
scripting language at your disposal — Perl, for example — you can use it to write Windows batch files.

Registering New Scripting Engines

To register a new scripting engine, the following steps are required:

Q Identify the extension of the files handled by the new engine. For example, . pl for Perl files.
Create an entry for them in the registry similar to the format of those we discussed earlier.
Add a Scri pt Engi ne key whose Def aul t value points to another key.

This second key will contain the CLSID of the module implementing the ActiveX scripting parser
for the new language.

[M my |

So, continuing with the Perl example I've been using, the registry will include a key like this:

HKEY_CLASSES_ROOT
\.pl

The Def aul t value of this key will point to another key called, say, pl fi | e, which will have a
whole sub-tree of keys beneath it:

HKEY_CLASSES_ROOT
\plfile

\defaul ticon

\'scri pt engi ne

\'shel |
\ open
\edit
\print

386

The Windows Scripting Host

This comprises all the verbs needed (open, edi t, pri nt), the default icon, and a scri pt engi ne
key. The Def aul t value of the latter should contain a reference to another key that will identify the
parser. In this case, that could be PScri pt :

HKEY_CLASSES_ROOT
\ pscri pt
\clsid

Under this key will be stored the CLSID of the module that contains the ActiveX scripting compliant
parser for Perl.

Command Line Arguments

As I mentioned earlier, a WSH script can take command line arguments. You can specify these one
after another, making sure that they are separated by blanks, and that strings with spaces that should
be considered as a single parameter are enclosed in quotes. For example:

wscript ScriptFile.js First "Second Argunent”

You can access the collection of command line arguments from within the script code by using a
specialized collection object called WshAr gunment s. (See The WshArguments Object.)

The WSH Object Model

There are a number of predefined objects used by the Windows Scripting Host, and together they
form the WSH object model. They allow you to perform a range of actions anywhere in the Windows
shell.

The main objects are W5cr i pt, WshShel | and WshNet wor k. The first comprises the WSH engine,
while the other two represent the Windows shell and the network respectively. As you'll discover
later on, WshShel | is quite different from the Shel | object we saw in the previous chapter.

WshShel | and WshNet wor k must be instantiated before use, but this step is unnecessary for
WScr i pt because it is an object that's implemented in both wscri pt and cscri pt. Consequently,

it is already running when it's needed, and there's no need to re-instantiate it.

All the remaining objects are coded into another component called wshom ocx, and need to be
loaded each time you want to use them.

The WScript Object

This object is the root of the WSH's collection of objects. It provides properties and methods to get
information about the command line arguments of the invoked script. Moreover, it lets you create
new objects and terminate existing ones.

The following tables list the properties and methods supported by the WScr i pt object.

387

Chapter 13

Property Description

Application Retrieves the | Di spat ch pointer for the W5cr i pt object.

Argunent s Returns the collection of arguments for the scripts. The
collection is a WshAr gument s object.

Ful | Nane Retrieves the fully qualified name of the scripting host.

Interactive

Nane
Pat h

Scri pt Ful | Nanme

Specifies whether the execution mode is 'interactive' or 'batch'.
This is a read/write property, and undocumented. (See below.)

Retrieves the name of the scripting host.
Retrieves the path of the scripting host.

Retrieves the fully qualified name of the current script file.

Scri pt Name Retrieves the file name of the current script file.
Ver si on Returns a string with the current version of the scripting host.
Method Description

Creat eObj ect ()

Creates a new object with the specified ProgID.

Di sconnect Cbj ect () Releases the specified object.

Get Obj ect () Retrieves an object with the specified ProgID.

Echo() Displays messages in a window (wscri pt) or a DOS box
(cscri pt). It is affected by the status of the | nteracti ve
property. (See below.)

Quit() Stops execution of the script.

I nteractive is an undocumented, read/write property that accepts and returns a Boolean value. It
is initially set with the value of the | command line switch, but you can change it programmatically.

Interestingly, when | nt er acti ve is set to Fal se, Wscri pt . Echo() won't work, but you can still
display messages through the methods of the WshShel | object that we'll cover in a moment.

The method that's absolutely central to W6cr i pt is Cr eat eObj ect (), which you can use to create
new object instances. The prototype is:

Wscri pt. Creat eQbj ect (sProgl D, [sPrefix])

The sPref i x argument is a string used to identify the names of event procedures that are relevant to
the object. We'll see this again in a later section dedicated to events.

Get Obj ect () is defined like this:

WBcri pt. Get Obj ect (sPat hnanme, [sProgl D], [sPrefix])

388

The Windows Scripting Host

It retrieves an object that's specified using either a filename or a ProgID. The sPr ef i x argument
plays the same role as it did for Cr eat eObj ect ().

Because the WSH exposes a Cr eat eObj ect () method, we're obviously supposed to use it to
create new objects. However, using the straight VBScript Cr eat eObj ect () or the JScript
Act i veXObj ect () method works just as well. In fact, it turns out to be a bit faster because
WBcri pt sCreat eObj ect () method relies on its script counterpart.

The WshShell Object

This object represents the Windows shell, but it's very different from the Shel | object we examined
in the previous chapter. It is missing quite a bit of functionality, but on the flip side it has a variety of
additional methods too. Despite the similarity in their names, they should be considered as two very

different components.

WshShel | has just a couple of properties. One is called Envi r onnment and retrieves the collection
of system environment variables, and the other property is Speci al Fol der s, which returns a

collection of the shell's special folder names.

The methods span various functions: from shortcuts, through the registry and process spawning, to
special folders. An instance of WshShel | can be created using WScri pt, as follows:

Set s = WBcript. CreateObject ("Wscript. Shell")

Here's the complete list of WohShel | methods:

Method Description

Creat eShortcut () Creates an empty WshShor t cut or
WshUr | Short cut object to be filled and saved as
a shortcut or a URL shortcut, respectively.

ExpandEnvi ronment St ri ngs() Expands variables enclosed by a pair of %symbols.

Popup() Shows a message box. You can use this to display
messages even if the W5cri pt. I nteractive
property is set to Fal se.

RegDel et e() Deletes a key or value from the registry.
RegRead() Reads a key or value from the registry.
RegWite() Writes a key or value to the registry.
Run() Launches and synchronizes an executable.

I'll focus on the registry functions in Accessing the Registry; in the meantime, let's quickly look at the
Run() and ExpandEnvi ronment St ri ngs() methods. The prototype of Run() is as follows:

Run(sConmand, [i W ndowType], [bWiitOnReturn])

389

Chapter 13

Beyond the command line, you can specify the type of the output window (minimized, maximized,
normal, hidden). Valid values are summarized below; as you can see, they are a subset of the SW XXX

constants:
Constant Description
0 Hides the window (like SW HI DE).
1 Displays the window and gives it the focus (like SW_SHOANORMAL).
2 Minimizes the window and gives it the focus (like SW SHOAM NI M ZED).
3 Maximizes the window and gives it the focus (like SW MAXI M ZE).
4 Displays the window without giving it the focus (like
SW_SHOWNOACTI VATE).
6 Minimizes the window without giving it the focus (Like SW.M NI M ZE).

If the bWai t OnRet ur n flag is set to Tr ue, it blocks the calling script until the spawned program has
terminated. Any environment variable included in the command line string is automatically
expanded.

The Run() method is implemented through a call to Shel | Execut eEx() . This means that we can
also pass it the name of a file that has a registered open verb. It also means that it silently supports
any object implementing | Shel | Execut eHook that is installed. I'll say more about this later on, in
the section called Hooking a Program's Execution.

The ExpandEnvi r onment St ri ngs() method takes and returns a string. The input string is text
with environment variables enclosed in %symbols, while the output contains the expanded string.

sWnDir = ExpandEnvironnment Strings("Wndows is at %N ND R%)

If the environment string doesn't exist, the method returns an undefined object. Consequently, you
should ensure that you get the outcome you require before proceeding.

Shortcuts and URL Shortcuts

The Cr eat eShort cut () method receives a filename and returns objects whose type depends on the
filename's extension. If the extension is . | nk, then the returned object is a WshShor t cut , whereas
if the extension is . ur | the returned object is a WshUr | Shor t cut . If any other extension is
specified, you'll get a run-time script error. The basic difference between a shortcut and a URL
shortcut is that the latter points to a remote URL. WshUr | Shor t cut is also a bit simpler than
WshShor t cut . (More details in the Helper Objects section.)

The WshNetwork Object

Remote printers and network connections are the subjects of this object. An instance of Ws6hNet wor k
is created through WScr i pt :

Set n = WBcript. CreateObject ("Wscri pt. Networ k")

390

The Windows Scripting Host

The following table provides a list of the methods that it supports:

Methods Description

AddPri nt er Connecti on() Runs the Wizard to add a new printer connection.

EnunNet wor kDri ves() Allows you to enumerate the network drives by
returning a collection. (See Helper Objects.)

EnunPri nt er Connecti ons() Allows you to enumerate all the printer connections
by returning a collection. (See Helper Objects.)

MapNet wor kDri ve() Establishes a connection with a network drive.

RemoveNet wor kDri ve() Removes a connection with a network drive.

RenmovePri nter Connecti on() Removes a connection with a network printer.

Set Def aul t Pri nter () Defines the new default printer. If it's a remote

printer, you must specify its full UNC name (say,
\\'server\Printer XYZ).

There are also three properties for this object, whose roles are self-explanatory:

Q Comput er Nane
Q User Domai n
Q User Nane

Helper Objects

The WSH object model also includes six other helper objects. The first point to note about these is
that you can't create any of them directly. They don't have a ProgID, and they can be used only when
returned by methods/properties of other objects. The objects are:

Object Returned by

WshAr gunment s WScri pt. Argunents

WshCol | ecti on WshNet wor k. EnumNet wor kDri ves(),
WshNet wor k. EnunPri nt er Connecti ons()

WshEnvi r onnent WshShel | . Envi r onment

WshShort cut WshShel | . Creat eShort cut ()

WshUr | Short cut WshShel | . Creat eShort cut ()

WshSpeci al Fol ders WshShel | . Speci al Fol ders

Apart from WshShor t cut and WshUr | Shor t cut , the others are all special types of collection. Thus
their programming interfaces are pretty similar, at least syntactically.

391

Chapter 13

The WshArguments Object

This collection comprises all the command-line arguments for a running script, and you get access to
it through the Ar gument s property of the WScr i pt object. The component has the usual properties
of a collection: | t emand Count . | t emallows you to get the value of the i th argument (the list is
zero-based), while Count returns the total number of arguments.

There's also a Lengt h property that is maintained for compatibility purposes — it's equivalent to
Count . The following VBScript code snippet shows how a script can display its command line.

For Each item|In Wscript. Argunents
' Displays the various itens on the command |ine
WBcri pt. Echo item

Next

The WshCollection Object

This object is a generic collection, and is returned mainly by methods of WshNet wor k.

The WshEnvironment Object

A reference to this object, which has a method called Renove() is returned by the
WshShel | . Envi ronment property. Count, Lengt h and | t emlet you walk the items of the
collection.

The items in this collection are environmental variables, like W NDI R or PATH. While you can pass
the | t emmember an index, it is particularly useful to call | t emwith strings that identify a variable
by name:

Set s WBcri pt. Creat e(oj ect ("WBcri pt. Shel ")
Set e = s. Environnent

WBcri pt. Echo e. | ten("PATH")

Wscri pt. Echo e. Renove(" PATH")

The WshShortcut Object

WshShort cut is a component that allows you to define and save a . | nk shortcut to disk. Shortcut
creation takes two steps: you first create a WshShor t cut object, and then you must fill in its
properties and save it to disk. The first stage is accomplished by the

WshShel | . Creat eShort cut () function:

Set s = Whcript. CreateObject ("Wscript. Shel |")
Set I nk = s.CreateShortcut ("nydi skc. | nk")

I nk. Target Path = "c:\"

| nk. Save

When calling Cr eat eShort cut (), you specify the name of the final . | nk file. Next, you fill in the
various attributes of the shortcut and save it by calling WehShor t cut . Save() . If you want to create
a shortcut in a special folder, just get the path name and pass a fully-qualified name to

Creat eShortcut (). To obtain the physical path of a special folder, you should make use of the
WshSpeci al Fol der s object, which we'll see in a moment. Here's a full list of WshShor t cut 's
properties:

392

The Windows Scripting Host

Property Description

Argunment s A string that contains the arguments of the shortcut's target.
Descri ption The shortcut's description string.

Ful I Nane Retrieves the full path name of the . | nk file.

Hot key A string that contains the representation of the hotkey that starts

the shortcut.

I conLocati on A string that contains the path and index of the icon location.

Path and index are comma-separated. An example would be
c:\wi ndows\system shel 1 32.dl1I, 13

Tar get Pat h This can be a folder, an executable, or a file to run using
Shel | Execut e() .

W ndowSt yl e Denotes the SW XXX style of the window.

Wor ki ngDi rectory The directory from which to start the executable.

The WshUriShortcut Object

This works in the same way as WshShor t cut , but supports only the following two properties:

Property Description

Ful | Name Retrieves the full path of the . ur| file that contains the shortcut.

Tar get Pat h Retrieves the URL to which the shortcut points.

It also supports the Save() method to store the shortcut on disk.

The WshSpecialFolders Object

Finally, this object is a kind of wrapper built on top of the SHGet Speci al Fol der Pat h() API
function that we saw in Chapter 5. It's a collection that includes the | t em Count and Length
members, with the same features we examined earlier. The following fragment demonstrates how to
create a shortcut in the Favori t es folder:

Set s W5cri pt. Creat eCbj ect ("Wscri pt. Shel I ™)
sPat h s. Speci al Fol ders("Favorites")

sPath = sPath & "\ nydi skc. | nk"

Set I nk = s.CreateShortcut (sPat h)

| nk. Target Path = "c:\"

| nk. Save

As you can see, it is a slightly different version of the previous sample that created a shortcut to c: \ .
A reference to WshSpeci al Fol der s is returned by the WshShel | . Speci al Fol der s property.

393

Chapter 13

Accessing the Registry

The Windows Scripting Host also gives you the ability to access the registry smoothly, for reading or
writing both keys and values. This is an important feature, because the ability to manipulate the
registry really boosts and empowers your applications. As I have pointed out in previous chapters,
the API for accessing the registry is cumbersome and designed at too low a level of abstraction,
although things have improved with the lightweight API, which I looked at in Chapter 10.

The WshShel | object contains three methods for programmatically modifying the status of the
system registry. They are:

O RegDelete()
Q RegRead()
O RegWite()

The syntax of these methods is quite simple, and reminiscent of the syntax of the new SHxxx()
functions we met in Chapter 10, rather than the original registry API. Basically, you are required to
specify the key or the value on which to work, and the buffer from which to read or write.

Supported Types

The Win32 registry programming interface allows you to store and read a variety of different data
types — see the Win32 documentation for details. However, the WSH object supports only the five
most popular, which are:

Q REG_SZ - strings

REG_DWORD — 32-bit unsigned values

REG_BI NARY — binary data

REG_EXPAND_SZ — strings that contain expandable macros such as %\ NDI R%

REG_MULTI _SZ — an array of null-terminated strings, doubly null-terminated (supported for
reading but not writing)

000D

In script code, all variables are treated as VARI ANTs, while the registry methods listed above
ultimately make use of the low-level registry API that requires a specific type. Consequently, some
type conversions are necessary, but the WshShel | object performs them automatically.

Deleting a Registry Entry
The RegDel et e() method has the following syntax:

WshShel | . RegDel et e sKeyOr Val ue

There's no need to mention explicitly that a given string is a key or a value — just pass a fully
qualified registry path to the function. If the path ends with a backslash, it is considered to be a key;
otherwise it is handled as a value.

These WSH methods and the Win32 registry API have fundamentally different programming
interfaces at this level. The Win32 registry API has different functions for dealing with keys and
values. Furthermore, WSH methods want the root node, say HKEY_LOCAL _MACHI NE, specified
within the string and not as a separate parameter, as the Win32 API functions require.

394

The Windows Scripting Host

Differences between Windows NT and Windows 9x

The RegDel et e() method ends up calling the registry functions RegDel et eKey() and

RegDel et eVal ue(), and while the latter works the same under Windows 9x and Windows NT,
RegDel et eKey() exhibits different behavior on each. When a key is deleted in Windows 9x, its
sub-tree is also removed. In NT, a key is deleted only if it is empty (that is, it has no child keys). This

behavior is upheld by the RegDel et e() method.

The number of values a key holds is irrelevant to the question of whether it is considered empty —
a key can be deleted provided that it doesn't include sub-keys, even if it contains values.

Reading from the Registry

To read from the registry, just call RegRead(), passing a fully qualified name that refers to a key or
a value with the same logic as discussed above: a final backslash denotes a key, otherwise it's a value.

There's no need to specify the type of the data you want to read. It is sufficient that you declare a
valid variable to store the result. It's always the object's infrastructure that takes care of getting the

raw data and returning it, packaged as a VARI ANT. The function works like this:

v = WshShel | . RegRead(sKeyOr Val ue)

Getting System Information from the Registry

Here's a brief example (which I've called syst em vbs) that reads version and registration

information about the installed copy of Windows.

' SYSTEM VBS
' Reads version and registration information fromthe registry

' Create the WshShel | object
Set s = WBcript. CreateObject ("Wscript. Shell")

Regi stry Path constants

RP_SYSTEM = "HKLM Syst eml Current Cont r ol Set\ Contr ol \ Product Opti ons\"
RP_PRTYPE = " Product Type"

RP_NTVERS = "HKLM Sof t war e\ M cr osof t\ Wndows NT\ Current Ver si on\"
RP_W NVER = "HKLM Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ "

' System nane constants

W N_NTWORK = "W ndows NT Workstation"

W N_NTSERV = "W ndows NT Server"

' Read about the product type

On Error Resune Next ' Because the key doesn't exist under W n9x
sProdType = ""

sProdType = s. RegRead(RP_SYSTEM & RP_PRTYPE)

' Determine the OS version
sel ect case sProdType

case "W nNT"
sRegPat hVer = RP_NTVERS
sBuf 0 = W N_NTWORK
sBufl = s. RegRead(RP_NTVERS & "CurrentVersion") + "."
sBuf2 = s. RegRead(RP_NTVERS & " Current Bui | dNurber ")
sBuf 3 = s. RegRead(RP_NTVERS & " CSDVer si on")

395

Chapter 13

case "Server NT", "LanManNT"
sRegPat hVer = RP_NTVERS

sBuf 0 = "W ndows NT Server"
sBuf 1 = s. RegRead(RP_NTVERS & " Current Version")
sBuf 2 = s. RegRead(RP_NTVERS & "Current Bui | dNunber")
sBuf 3 = s. RegRead(RP_NTVERS & " CSDVer si on")

case ""

sRegPat hVer = RP_W NVER

sBuf 0 = s. RegRead(RP_W NVER & "Versi on")
sBuf 2 = s. RegRead(RP_W NVER & " Ver si onNunber")
SBUF3 = "---omme e "

end sel ect

Read registration info
sBuf 4 s. RegRead(sRegPat hVer & "Regi st eredOaner")
sBuf 5 s. RegRead(sRegPat hVer & "Regi st eredOrgani zati on")

Di splay the result

WBcri pt. Echo sBuf0 + " " + sBufl + sBuf2 + vbCrLf + _
sBuf 3 + vbCrLf + vbCrLf + _

sBuf4 + vbCrLf + _

sBuf 5

Cl ose
WBcri pt. Quit

The code relies only on registry information to ascertain the underlying platform. In Win32 code,
almost all of this information would be returned by the Get Ver si onEx() function. Interestingly,
however, there's an exception: that API function doesn't distinguish between the Workstation and
Server editions of Windows NT. For this information, you need to access the registry. Let's see how
the above code performs this trick.

Under Windows NT, the following registry path contains a value called Pr oduct Type:

HKEY_LOCAL_MACHI NE
\ System
\ Cur r ent Cont r ol Set
\ Cont r ol
\ Product Opti ons

If this key doesn't exist, then we're running Windows 95 or Windows 98. Pr oduct Type can contain
three possible strings:

Value Description

W nNT Windows NT Workstation
Server NT Windows NT Server

LanManNT Windows NT Server working as a primary or backup domain controller

Once you know the operating system, you can easily manage the differences in the registry structure
between Windows and Windows NT. The most important is that version and registration information
is stored under

396

HKEY_LOCAL_MACHI NE
\ Sof t war e
\'M crosoft
\ Wndows NT
\ Curr ent Ver si on

under Windows NT, and

HKEY_LOCAL_MACHI NE
\ Sof t war e
\'M crosoft
\ W ndows
\ Curr ent Ver si on

The Windows Scripting Host

under Windows 9x. Other differences exist in the values each key provides. Both versions of the
registry support Regi st er edOawner and Regi st er edOr gani zat i on, but Windows NT stores
information about the installed service pack in the CSDVer si on values, while

Current Bui | dNunber stores the build number. This information isn't available under Windows 9x,
where we have Ver si on and Ver si onNunber values to store the actual operating system name and

its full version number.

The following picture shows the output of the syst em vbs script on my Windows 95 and Windows

NT machines:

Wwindows MT YWorkstation 4.0.1381
Service Pack 3

Dino Esposito
Expoware Soft

“windows 95 4.00.950

Dino Esposito
Expoware Soft

Windows Scripting Host E3 |l Windows Scripting Host I

Note that you can use acronyms to refer to some of the registry root nodes. In the above example,
I've used HKLMinstead of HKEY_LOCAL_MACHI NE. The other valid acronyms are:

Acronym Equivalent Root Node
HKLM HKEY_LOCAL_MACHI NE
HKCR HKEY_CLASSES_ROOT
HKCU HKEY_CURRENT_USER

Of course, it's perfectly possible to access other nodes like HKEY_USERS and
HKEY_CURRENT_CONFI G but they don't have acronyms — you have to use their full names.

Writing to the Registry

You can write new content to the registry from within the WSH environment by using the
RegW it e() method. The syntax is shown overleaf:

397

Chapter 13

WshShel | . RegWit e(sKeyOr Val ue, vVal ue, [iType])

The method automatically creates any missing keys that appear in the path. If you pass a key as the
sKeyOr Val ue argument, then the vVal ue content is written to the Def aul t value of the key itself.

With i Type, you can specify the type of the value you're about to write from one of the
aforementioned REG_XxX types, with the exception of REG_MULTI _SZ. The default for this
parameter is REG_SZ, namely a string. This occurs even if you actually pass a number as the vVal ue
parameter.

Set s = Whcript. CreateObject ("Wscri pt. Shel |")
sRegPat h = " HKLM Sof t war e\ Expowar e Soft\"
s.RegWite sRegPath & "Wsh\", "WBH exanpl es"

Doing More with the Registry

If you need to extend the WSH programming interface for the registry, then you should consider
writing a new COM component that exposes the functionality you're missing. There are at least a
couple of things you might want to do with the registry that the current programming interface
doesn't allow.

Firstly, you may need to handle more data types. However, such a requirement would be quite
unusual, unless you need to handle little or big-endian numbers, or an array of strings.

Secondly, you might require your server to provide enumeration of keys and values. Further
possibilities are connecting to a remote registry, implementing a change notification mechanism, or a
save/restore key method. In general, by designing a COM server you can port to the WSH
everything that the Win32 API lets you do with the registry.

In the Adding New Objects to the WSH section of this chapter, I will write such a COM server, which
will provide key and value enumeration.

Scripting the Local File System

Scripts can't call into API functions, so they need specialized objects to provide access to the local file
system. Both VBScript and JScript come with some useful objects for working with files, folders and
drives. They are:

Scripting Object Description

Fi | eSyst emObj ect Manages file and folder operations, and creates text files
Fol der Returns information on a file system folder

Drive Returns information on a drive

File Returns information on a file

Di ctionary A high-performance collection object

Text Stream Renders an I/0 stream of text

398

The Windows Scripting Host

An updated version of these objects — the Microsoft Scripting Runtime — is available on Microsoft's
scripting web site.

For more information about these objects, you should refer to the documentation in the MSDN
Library.

Because the Windows Scripting Host environment is somewhat closed, and something that will be
used mostly on an intranet (or perhaps even on a standalone PC), concerns about unsafe access to the
disk diminish in their importance. In light of this, Fi | eSyst emObj ect can be a really useful and
quite powerful tool to use when programming the WSH.

Here's a short example showing what you can do with Fi | eSyst emObj ect . The following code
displays a message box with the status of each drive in the system:

Set fs Creat eObj ect (" Scri pting. Fi |l eSyst enCbj ect")
Set dc fs.Drives
For Each d in dc
s =s &d.DrivelLetter & " - "
If d.DriveType = Renpte Then
n = d. Shar eNane
El sel f d.|sReady Then

n = d. Vol umeNane
n =n+ vbCGrLf + "Free: " + FormatNunber (d. FreeSpace/ 1024, 0) + " KB"
n = n + vbCrLf
El se
n =n + vbCrLf
End | f
S =s &n & vbCrLf

Next

W5cri pt. Echo s

Windows Scripting Host I

A -
Free: 162 KB

C-MS-DOS_E
Free: 74.304 KB

D - FROGRAMS
Free: 168.056 KB

E-DATA
Free: 74992 KB

F-MSDMCD30D2
Free: D KB

399

Chapter 13

Accessing Existing Objects

The Windows Scripting Host is a fully COM-aware environment. This means that you can invoke and
use any correctly registered COM server from the host. What I have described so far are the objects
distributed with the WSH package, and in a certain sense, they form the WSH object model.
However, in my opinion, what constitutes the WSH object model is somewhat debatable. The two
viewpoints are:

Q Everything that exposes an Automation interface can be called from the WSH, and may be
considered part of its object model.

O The WSH object model is just a handful of interfaces that set up communication with the ActiveX
scripting engine. Apart from the WECr i pt object, everything else might be considered to be a
related COM server, but not necessarily a part of the object model.

You can access any existing Automation server by using the W5cr i pt . Cr eat eObj ect () method
or, for more efficiency, VBScript's Cr eat eObj ect () method. For example, you can drive the

Shel | objects we discussed in the previous chapter from WSH scripts. The following example shows
how to display the taskbar property dialog from a WSH script:

Set s = WBcript. CreateCbject("Shell. Application")
s. TrayProperties

Of course, you can do exactly the same for your own COM servers (see Adding New Objects to the
WSH).

Handling Events with the WSH

The typical way of handling events on the client side is by defining a procedure whose name follows
a special convention. The name is composed of two elements: a prefix that identifies the object that

raised the event, and the name of the event. This scheme is common in visual environments, such as
Visual Basic, where the event that reveals a click on Buttonl is handled through a procedure called

Buttonl _Click.

With the WSH, things work the same way. If the server fires an event named Col | apse, and the
object that represents that server is called Tr eeVi ewNodel, then the client-side procedure that
handles it is called Tr eeVi ewNodel_Col | apse.

Defining an Event Handler

Normally, the name of an object is assigned automatically and modified via the Property Editor or
some such tool. With the WSH, we can't rely on visual tools and need a programmatic way to assign
an object its internal name.

When you create a new object with the Wscr i pt . Cr eat eObj ect () call, it's possible to specify an
optional parameter as well as the ProgID of the server:

WBcri pt. Creat eQoj ect (sProgl D, [sPrefix])

400

The Windows Scripting Host

The sPr ef i x parameter is a string like My Obj _ that will be used as the prefix for the procedure
name of any event that is raised by the object being created (it takes the place of Tr eeVi ewNodel_
in the example given in the previous section).

Steps to Creating an Event Handler

If you know that the server exposes events in which you might be interested, then it's necessary to
specify the second parameter in the W5cr i pt . Cr eat eObj ect () call. Once you've assigned a prefix
to the object, you can handle any event with an appropriately named procedure. The prototype will
be exactly that required by the event's syntax. In practice, the WSH environment composes the name
of the procedure that might be the handler, and tries to locate it. If successful, the event is handled
executing code on the caller's side.

Note that the prefix must be unique for every possible copy of the same object. Also, it's
recommended that it end with an underscore character.

To support events in Windows Scripting Host sources, you must create your objects with
WScri pt. CreateObject ().

Adding New Objects to the WSH

As we've seen, the Windows Scripting Host environment comes with a number of built-in objects,

and these are intended to provide WSH users with a significant subset of the functionality available
outside the WSH. For example, the network object allows you to know about remote printers and
shared disks, while the shell component provides shortcut capabilities, environment variables, process
launching and registry manipulation.

These objects are enough to get you started, but sooner or later you will need more objects. If the
COM component you need exists on the machine, you can simply instantiate and use it, provided of
course that you know its methods. Alternatively, you can write your own custom objects to extend the
WSH object model, and this is what I'll do in the remainder of the chapter.

In particular, I'll be building an Automation server to provide support for areas in which the WSH is
weak:

Q Clipboard support
Q Drive formatting
Q Registry enumeration

In addition, I'll redesign and integrate into the WSH a couple of the examples we've built in previous
chapters:

O How to browse for icons (Chapter 9)
QO Using custom names to run programs or files (Chapter 8)

401

Chapter 13

Arranging an ATL Automation Server

The WSH can call the methods of any COM Automation server, implemented in whatever language

you choose. In this case I chose C++ and ATL, so to start it off, use the ATL COM AppWizard to
create an in-process DLL project called WshMor e.

Next, use the Object Wizard to add a simple ATL object called WshFun, ensuring that the interface is
called | WshFun and that it's a dual interface. All we need to do now is fill in the functions. It should

be a breeze!

Defining the Programming Interface

This interface is not going to be a model of good design — I just want to show you some of the things

that it's possible to do. Here's a list of the functions that we'll be adding to the | WshFun interface

over the next few sections:

Function Area Description

CopyText () Clipboard Copies a text string to the clipboard. Makes use
of the CF_TEXT format.

Past eText () Clipboard Reads text from the clipboard. Makes use of the
CF_TEXT format.

AddExecut eHook() Shell Adds and removes entries from the . i ni file

Execute used by the | Shel | Execut eHook module (see

Chapter 8) to create new keyboard shortcuts for
launching executables.

Br owseFor | con() Icons Displays the dialog I created in Chapter 9 to let
you pick up an icon from a given file.

Format Drive() Drive Opens up the system dialog for drive
formatting.

Fi ndFi rst Key() Registry Given a base path, enumerates the first key.

Fi ndNext Key() Registry Continues enumerating the keys of the above
path.

Fi ndFi rst Val ue() Registry Given a base path, enumerates the first value.

Fi ndNext Val ue() Registry Continues enumerating the values of the above
path.

In the forthcoming sections, I'll examine these methods more closely by discussing their syntax,
digging through their implementation details, and by providing examples of their use.

402

The Windows Scripting Host

Clipboard Support

The clipboard is a system tool that can be used for temporary data storage, but scripting languages
don't usually provide you with a means of handling it. As you know, the Windows clipboard is a kind
of repository for data in a variety of formats, including custom ones. However, the methods I'll be
writing make use only of the simplest format, CF_TEXT, which renders plain text.

The methods to be added are CopyText () and Past eText () and, as their names suggest, they let
you copy text to, and read it from, the clipboard. Because the function declarations utilize BSTR
strings, some string conversions inside the bodies of the methods need to be performed.

Copying Text
The syntax of | WehFun: : CopyText () is:

HRESULT CopyText ([in] BSTR bText);

This simply accepts the text to be copied, and always returns S_OK. The function takes a BSTR string
as its input parameter, creates a memory handle to contain the data, packages it, and stores it on the

clipboard.

STDVETHODI MP CWshFun: : CopyText (BSTR bText)
{
USES_CONVERS! ON;

TCHAR pszText [MAXBUFSI ZE] = {0};
| strcpy(pszText, OLE2T(bText));

HANDLE hData = G obal Al | oc(GHND, MAXBUFSI ZE) ;

LPTSTR psz = static_cast <LPTSTR>(d obal Lock(hbDat a));
I strcpyn(psz, pszText, MAXBUFSI ZE);

d obal Unl ock(hDat a) ;

Opend i pboar d(NULL) ;
Set d i pboar dDat a(CF_TEXT, hDat a);
Cl osed i pboard();

return S_OK;
}

I defined MAXBUFSI ZE as a constant equal to 32768, giving us a 32K buffer. I've also used ATL's
OLE2T() macro to convert strings from BSTRto LPTSTR. Using CopyText () from within VBScript
or JScript will mean writing code like this:

Dimo

Set o = WBcri pt. Creat eObj ect ("WshMore. WshFun. 1")

0. CopyText "I'mthe |WhFun interface"
Reading Text

Past eText () is a method that retrieves any content in CF_TEXT format from the clipboard and
returns it as a string. The method declaration is:

HRESULT PasteText([out, retval] BSTR* pbRetVal);

403

Chapter 13

This method doesn't take any input parameters. Instead, the value placed in pbRet Val is passed to
the script as the return value of the method. The listing below shows the implementation.

STDVETHODI MP CWshFun: : Past eText (BSTR* pbRet Val)

{
USES_CONVERSI ON,
I/l Get a nmenory handle fromthe clipboard
Opend i pboar d(NULL) ;
HANDLE hData = Get d i pboar dDat a(CF_TEXT) ;
Cl osed i pboard();
/1 Extract the content
LPTSTR psz = static_cast<LPTSTR>(G obal Lock(hData)) ;
TCHAR pszText [MAXBUFSI ZE] = {0};
| strcpyn(pszText, psz, MAXBUFSI ZE);
d obal Unl ock(hDat a) ;
/'l Returns a BSTR
*pbRet Val = T2BSTR(pszText);
return S_OK;
}

I've created a BSTR by using the ATL macro T2BSTR(), which takes an ANSI string as input. Unless
you're using ATL class wrappers like CCOmBSTR in your code, once you've called Past eText () you
should free the BSTR with a call to SysFreeSt ring(). Here's an example in plain C++:

I WshFun* pWshFun = NULL;
hr = CoCreatel nstance(CLSI D WshFun, NULL, CLSCTX | NPROC_SERVER,
I I D_I WhFun, reinterpret_cast<LPVO D*>(&WshFun));
i f (FAILED(hr))
return;

BSTR bstr;

pWshFun- >Past eText (&bstr);

MessageBox(Get Focus(), bstr, _ TEXT("PasteText"), MB_OK);
pWshFun- >Rel ease() ;

SysFreeString(bstr);

And here's another example in VBScript:

Dimo, s

Set o = Wecri pt. Creat eCbj ect ("WshMore. WshFun. 1")
S = 0. Past eText

MsgBox s

Drive Formatting

Because the Windows Scripting Host is a scripting environment inside the Windows shell, and works
in much the same manner as DOS batch files, accessing the file system is sometimes necessary. I've
already introduced Fi | eSyst emObj ect as a good solution to this problem.

However, while Fi | eSyst emObj ect provides you with a huge collection of functions and
properties, it isn't a tool for formatting disks. However, in Chapter 10, I covered SHFor mat Dri ve()
function in detail. As part of this example, I will provide access to it through a COM method. The
prototype is shown at the top of the next page:

404

The Windows Scripting Host

HRESULT Format Drive([in] int iDrive);

For the sake of simplicity, I've discarded all the enhancements to the function that I made in Chapter
10, and as a consequence the source code for this method is pretty straightforward:

extern "C' int WNAPI SHFornatDrive(long, long, long, |ong);

STDMETHODI MP CWshFun: : Format Dri ve(int iDrive)
{

int irc = SHFormat Drive(0, iDrive, 0, 0);
return (irc <0 ? SO : EFAL);

The function returns a Boolean value to denote the success or failure of the operation. In particular, it
has a non-zero value if the function actually formats the disk, and zero otherwise (including the case
where you cancel the dialog).

As we discussed in Chapter 710, SHFor mat Dri ve() is included in theshel 1 32.1i b
import library, but there isn't a proper entry in shel | api . h or any other header file. I have
therefore added a declaration to the code, prefixing it with ext ern ™ C" to ensure
compatibility.

Here's an example of how to call the new method from within JScript code:

/] Format drive A

var o;

0 = WBcri pt. Creat elbj ect ("WshMre. WhFun. 1");
0. Format Dri ve(0);

To indicate the drive to format, you should use the common, zero-based notation: 0 is drive A, 1 is
drive B, 2 is drive C, and so on.

Browsing for Icons

Creating shortcuts is a typical application of the WSH. An interesting function would be a system-
provided dialog to let you visually choose the icon to assign to the shortcut. We've already discussed
the source code necessary for such a dialog — see Chapter 9 for the details, and Chapter 11 for a
concrete example of its use.

In this example, I'm going to show you how to make this functionality available to Windows Scripting
Host applications. The method is:

HRESULT BrowseForlcon([in] BSTR bFile, [out, retval] BSTR* pbRetVal);

405

Chapter 13

The bFi | e argument denotes the file to
browse for icons, which may be changed at
runtime by clicking the dialog's browse
button.

Choose an icon

Ishell32. di

80 icon(z] faund.

When you select an icon, the method returns a string with the name of the file and the index of the

selected icon, separated by a comma:

Vizual Basic

C:\WINDOwWS WProgman. exe 8

The source code of the method calls into SHHel

per.dl | (see code for Chapter 11), a helper library

that collects many of the functions we have built so far. This DLL contains the
SHBr owseFor | con() function, whose source code was developed in Chapter 9.

#i ncl ude "shhel per. h"

STDMVETHODI MP CWshFun: : Br owseFor | con(BSTR bFi | e,

{
USES_CONVERSI ON,;
TCHAR pszFi | e[MAX_PATH = {0};
| strcpy(pszFile, OLE2T(bFile));
HI CON hl con;
int ilndex = SHBrowseFor| con(pszFil
i f(ilndex >= 0)
{
TCHAR szBuf [MAX_PATH + 10] = {0};
wsprintf(szBuf, _ TEXT("%, %d"),
*pbRet Val = T2BSTR(szBuf);
return S_OK;
}
return S_FALSE;
}

406

BSTR* pbRet Val)

e, &hlcon);

pszFile, ilndex);

The Windows Scripting Host

In this case, the ANSI-Unicode conversion is necessary because the SHBr owseFor | con() function
requires an ANSI string. The following snippet shows how to call the Br owseFor | con() method
from within VBScript code.

Dimo, s

Set o = WBcri pt. Creat eObj ect ("WshMore. WshFun. 1")
S = 0. BrowseForlcon("shell32.dl1")

MsgBox s

Registry Key Enumeration

As I mentioned earlier, the built-in registry support in the WSH doesn't include key and value
enumeration. However, if you need to do something to a certain registry sub-tree, such methods can
be really useful. I'll provide two different enumerators, one for keys and one for values.

The low-level Win32 API functions and the new shell utility API (see Chapter 10) have a similar
approach to this issue. You need to specify an incrementing variable to identify the nth item, be that a
key or a value. The RegEnunval ue() and SHEnunKeyEx () functions are generic loops driven by a
Boolean guard that interrupts at the end of the list of keys or values.

For my implementation, I shall take a slightly different approach by defining a couple of methods
called Fi ndFi r st Xxx() and Fi ndNext Xxx() . The prototypes are:

HRESULT Fi ndFirstKey([in] long hk, [in] BSTR bRegPat h,
[out, retval] BSTR* pbRetVal);
HRESULT Fi ndNext Key([out, retval] BSTR* pbRetVal);

HRESULT Fi ndFirstValue([in] long hk, [in] BSTR bRegPat h,
[out, retval] BSTR* pbRetVal);
HRESULT Fi ndNext Val ue([out, retval] BSTR* pbRetVal);

I've maintained the same syntax as the Win32 API, so registry paths are identified by root node and
path in separate parameters. Note that the WshShel | methods use a fully qualified path, which is
parsed to get the root node. This technique makes it easier to use acronyms like HKLM

The | WshFun interface requires you to pass an HKEY value (namely a | ong) and the remaining path
as a string. Each pair of functions works together; the Fi ndNext Xxx() function continues on where
Fi ndFi rst Xxx() stops. In practice, all that changes is the index of the enumeration, which is set to
0 during the call to Fi ndFi r st Xxx(), and increases by one for each call to Fi ndNext Xxx (). To
keep the programming interface simple, the registry arguments are cached so they don't need to be
specified each time.

Both enumerations have the same internal structure and are built on the top of two helper functions:
Get Nt hKey() and Get Nt hVal ue().

Enumerating Keys

The Get Nt hKey () function opens the specified key and extracts the ath child key, if any. This name
is returned through the pbRet Val output argument. SHEnumKeyEx() (which is implemented in
shl wapi . | i b) is used simply because it uses fewer arguments than RegEnunKeyEx() .

407

Chapter 13

DWORD CWshFun: : Get Nt hKey(l ong hk, BSTR bRegPath, int ilndex, BSTR* pbRetVal)

{
USES_CONVERSI ON,;
TCHAR szRegPat h[MAX_PATH = {0};
| strcpy(szRegPat h, OLE2T(bRegPath));

HKEY hkey;
RegOpenKeyEx(rei nt er pret _cast <HKEY>(hk),
szRegPat h, 0, KEY_ALL_ACCESS, &hkey);

TCHAR szKey[MAX_PATH] = {0};
DWORD dwSi ze = MAX_PATH,
DWORD rc = SHEnunKeyEx(hkey, ilndex, szKey, &dwSi ze);
i f(rc == ERROR_SUCCESS)
*pbRet Val = T2BSTR(szKey);
RegCd oseKey(hkey);
return rc;

The skeleton of the Fi ndFi r st Key() /Fi ndNext Key() enumeration is in a pseudo-loop that spans
two functions and maintains state with a few global variables.

DWORD g_dw ndex = O;
BSTR g_bRegPat h;
LONG g_hk;

STDMETHODI MP CWshFun: : Fi ndFi r st Key(l ong hk, BSTR bRegPath, BSTR* pbRet Val)

{
g_dw ndex = 0;
g_bRegPat h = bRegPat h;
g_hk = hk;
DWORD rc = Get Nt hKey(hk, bRegPath, g_dwi ndex, pbRetVal);
return (rc == ERROR SUCCESS ? S OK : S FALSE);
}

STDVETHCODI MP CWshFun: : Fi ndNext Key(BSTR* pbRet Val)
g_dw ndex++;

DWORD rc = Get Nt hKey(g_hk, g_bRegPath, g_dw ndex, pbRetVal);
return (rc == ERROR SUCCESS ? S OK : S FALSE);

Get Nt hKey() is called with an index of 0 during Fi ndFi r st Key(), and with an incremented
value inside Fi ndNext Key() . The registry path is saved for further use in Fi ndNext Key() .

Enumerating Values

Enumerating values is an almost identical process. The Get Nt hVal ue() function relies on
SHEnumnval ue() to list all the leaves of a specified key:

408

The Windows Scripting Host

DWORD CWshFun: : Get Nt hVal ue(l ong hk, BSTR bRegPath, int ilndex, BSTR* pbRetVal)

USES_CONVERSI ON;
TCHAR szRegPat h[MAX_PATH = {0};
| strcpy(szRegPat h, OLE2T(bRegPath));

HKEY hkey;
RegOpenKeyEXx(rei nt er pret _cast <HKEY>(hk) ,
szRegPat h, 0, KEY_ALL_ACCESS, &hkey);

DWORD dwType = 0;
TCHAR szKey[MAX_PATH = {0};
DWORD dwSi ze = MAX_PATH;
DWORD rc = SHEnunVal ue(hkey, ilndex, szKey, &dJwSize, &dwType, NULL, 0);
i f(rc == ERROR_SUCCESS)
*pbRet Val = T2BSTR(szKey);
RegC oseKey(hkey) ;
return rc;

Note that SHEnumval ue() can return the type of a given value, as well as the current content and its
size. Pass NULL instead of &dwType if you aren't interested in this information.

The skeletons of Fi ndFi r st Val ue() and Fi ndNext Val ue() are similar to the analogous
functions for keys:

STDMETHODI MP CWshFun: : Fi ndFi r st Val ue(l ong hk, BSTR bRegPath, BSTR* pbRet Val)

{
g_dw ndex = 0;
g_bRegPat h = bRegPat h;
g_hk = hk;
DWORD rc = CGet Nt hVal ue(hk, bRegPath, g_dw ndex, pbRetVal);
return (rc == ERROR_SUCCESS ? S_OK : S_FALSE);
}

STDMETHODI MP CWshFun: : Fi ndNext Val ue(BSTR* pbRet Val)
g_dw ndex++;

DWORD rc = Get Nt hVal ue(g_hk, g_bRegPath, g_dw ndex, pbRetVal);
return (rc == ERROR SUCCESS ? S OK : S FALSE);

Don't forget that to use the SHEnunKeyEx () and SHEnunmval ue() functions, you will need to link
to shl wapi . | i b to compile this code successfully.

Using Enumerators

Let's see how to make use of these enumerators in WSH applications. This sample is in VBScript, and
demonstrates how to list the keys under

HKEY_LOCAL_MACHI NE
\ Sof t war e

409

Chapter 13

And the values of:

HKEY_LOCAL_MACHI NE
\ Sof t war e
\' M crosoft
\ W ndows
\ Cur r ent Ver si on

The script first enumerates the keys, and then incrementally composes a string to be displayed. Each
string is separated by a couple of carriage return and linefeed characters (ASCII 13 + ASCII 10),
which cause each key to appear on a different row. The same logic is then applied to the values of a
given path.

Some constants for Root Nodes
Const HKCR = &HB0000000 ' HKEY_CLASSES ROOT

Const HKCU = &H80000001 ' HKEY_CURRENT_USER
Const HKLM = &H80000002 ' HKEY_LOCAL_MACH NE
Const HKU = &HB80000003 ' HKEY_USERS

Const HKPD = &H80000004 ' HKEY_PERFORVANCE DATA

Dimo, s, b
Di m sVal ues, sKeys
Set 0o = Create(bject ("WshMre. WhFun. 1")
' Enuner ates keys
s = o. Fi ndFi r st Key(HKLM " Sof t war e")
if Len(s) > 0 then
b = True
while b
sKeys = sKeys + s + vbCrLf
s = 0. Fi ndNext Key
if Len(s) = 0 then
b = Fal se
end if
wend
end if
MsgBox sKeys

Enuner at es val ues
s = o. Fi ndFi rst Val ue(HKLM " Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on")
if Len(s) > 0 then
b = True
while b
sVal ues = sValues + s + vbCrLf
s = o. Fi ndNext Val ue
if Len(s) = 0 then
b = Fal se
end if
wend
end if
MsgBox sVal ues

To simplify things, I've defined some constants that map to the actual values of the registry root
nodes. As you know, HKEY values are nothing more than | ongs, and the constants used here
reproduce the exact values of some of them. These values have been taken from wi nr eg. h, a file
that you will find in the i ncl ude directory of any Win32 compiler.

410

The Windows Scripting Host

The following picture shows the two messages produced by the Visual Basic

above code. The first window refers to keys, the second to values.
Clazzes InztallT ype
Of course, the output depends upon the actual content of the Microsaft S etypFlags
registry, and upon the operating system. This screenshot was gggcription EE‘QEEETEE
taken under Windows 95. ODEC RegisteredDwner
Clients FiegisteredJrganization
Synaptics Productld
SygtemSoft Licensinglnfo
Adobe Subergionturnber
INTEL IrventaryF ath
MarketScape ProgramFilesDir
CommonFilesDir
MediaPath
ConfigPath
SystemPoot
OldwinDir

ProductMame
FiretinstallD ateTime
Wergion

Yersiont umber
BoatCount

Plus! YersionMNumber
ProgramFilesPath
SM_AcceszanesMame
PF_AccessaniesM ame
WwiallPaperlir

Hooking a Program's Execution

The final method that we'll add to the | WshFun interface provides a direct and programmatic way to
add a keyboard shortcut to the | Shel | Execut eHook handler that I built in Chapter 8. By defining
and properly installing a COM module that implements the | Shel | Execut eHook interface, you
have the ability to hook on each command line that passes through the Shel | Execut e() and

Shel | Execut eEx() API functions. In particular, this means that you can gain control over each
program launched via the system's Run dialog, or the WshShel | . Run() method of the Windows
Scripting Host.

In Chapter 8, I exploited this feature to add 'keyboard shortcuts' — to run not epad. exe, for
example, you could type in ninstead of the full path. Then, to launch Notepad, you simply call:

Set s = WBcript. CreateCbject("Wscript. Shell™)
s.Run "n"

It is the | Shel | Execut eHook handler that retrieves the list of mappings and resolves the specific
command. My handler looks for the command in a file called showhook. i ni located in the c: root
directory. This file is a typical . i ni file, with content like this:

[goldlist]
n=c: \ wi ndows\ not epad. exe

The | W6hFun method, AddExecut eHook(), just adds an entry to, or removes an entry from, this
file:

411

Chapter 13

HRESULT AddExecut eHook([in] BSTR bShortcut, [in] BSTR bExeFil e)
Its source code is straightforward; it just calls Wit ePrivateProfileString():

const LPTSTR EXECUTEHOOK = __ TEXT("c:\\showhook.ini");
STDVETHODI MP CVéhFun: : AddExecut eHook(BSTR bShortcut, BSTR bExeFil e)

{
USES_CONVERSI ON;
TCHAR szEntry[MAX_PATH = {0};
| strepy(szEntry, OLE2T(bShortcut));
TCHAR szFi | e[MAX_PATH = {0};
I strcpy(szFile, OLE2T(bExeFile));
WitePrivateProfileString(__TEXT("goldlist"), szEntry,
(I'strlen(szFile) ? szFile : NULL), EXECUTEHOXK);
return S_OK;
}

By specifying an empty string as the name of the file (the bExeFi | e argument), you cause the entry
identified by bShort cut to be completely removed. Here's how to use the method:

Dimo
Set 0o = CreateObject ("WhMre. WhFun. 1")
0. AddExecut eHook "r", "regedit.exe"

The lines above add a new entry that launches the Registry Editor if you ask to run a program called
r:

r=regedit.exe

The above example concludes our trip around the Windows Scripting Host environment.

Hints for Improving the WSH

The WSH is a system module that provides considerable assistance to both programmers and system
administrators, but it is by no means perfect. In particular, there are a couple of areas where it is
noticeably lacking. They are:

QO User interface
Q Code reusability

To build really useful and powerful scripts, you need a way to set up complex and articulate dialogs,
and to have some kind of reusability mechanism. In this final section of the chapter, I'll discuss some
ways to accomplish this. However, I'm not going to provide explicit solutions here, simply because
such solutions (and the technologies involved) are a bit beyond the scope of this book (though I will,
of course, provide exhaustive references).

412

The Windows Scripting Host

Adding User Interface Support

Any serious development environment allows you to create and design dialogs. Without dialogs, it's
difficult to get input from users and to make your applications more friendly and usable. WSH scripts
are an improvement upon dear old MS-DOS batch files, but we also definitely need a replacement for
old-fashioned, keyboard-based menus.

Creating dialogs
There are no facilities built into the WSH for creating a generic dialog, so you have to rely on
features of the scripting language, or external objects. VBScript provides a function called
| nput Box () that lets you accept a string interactively. It's used like this:

strResult = | nput Box(strMessage, strTitle, strDefault)
This function allows you to define the
message that you wish to appear, the R

dialog's title in the caption bar, and the

default value. Cancel |

Hello, world

The above figure, for example, is produced by the following call:
I nput Box "Enter sone text", "Dialog", "Hello, world"

Unfortunately, this function is seldom enough. What's needed is an object that works as a generic
dialog provider, and lets you specify a template for the interface. Furthermore, it should be so clever
that it allows you to embed code to coordinate the various interface components, and to drive them.
In other words, this object should be capable of interpreting the following pseudo-code:

dlg = Createoj ect ("D al og. Provi der");
dl g. Set Dl gl t eniText (" obj ect 1", textl);
dl g. Set Dl gl tem nt (" obj ect2", numl);

dl g. Show() ;
MessageBox(dl g. Get DI gl t enTText (" obj ect 1"));
dl g. d ose();

In addition, the dialog template must be easy to draw. A potential answer to this demand is Dynamic
HTML, by using which you:

Can use an attractive, HTML-based user interface

Don't force people to learn a new scripting language to describe dialogs
Can mix interface components and code

Can design the dialog template with maximum ease and power

Have a straightforward way to identify objects on the template

oooopo o

Can update the content at any time

413

Chapter 13

An example of such a component is given in my Cutting Edge article in the December 1998 issue
of MIND.

To reinforce the idea, consider that the Internet Explorer 4.x Dynamic HTML object model presents
a method called showModal Di al og() that takes the name of an HTML page and displays it in a
modal dialog. The About window of Internet Explorer 4.0 is built with the same logic. This dialog is
based on the ShowHTMLDi al og() function exported by msht mi . dl | — the core of Dynamic
HTML.

The alert() Dialog Box

Beware of a possible pitfall when using JScript with WSH applications. A common misconception is
that JScript has a few functions for displaying standard dialogs, namely al ert (), pronpt (), and
conf i rm(). Unfortunately, this is incorrect, since all these are actually methods of the Internet
Explorer 4.0 wi ndow object. They aren't implemented in the JScript runtime engine, and
consequently aren't available in the WSH. If you need to display some information, then use the
WScri pt. Echo() or WshShel | . Popup() methods.

Even though al ert () is always associated with JSscript, it is just a window method that is every bit
as accessible from VBScript:

<htm >

<script |anguage="VBScript" for="w ndow' event="onl oad">
w ndow. al ert "Hello, world!"

</script>

</htm >

Drag-and-Drop on WSH Files

A WSH file, be it a. vbs ora. s document, is often an application that takes its own set of
parameters. Wouldn't it be nice if we could drop data onto the files and set the parameters that way?
To enable drag-and-drop over files throughout the shell, a shell extension is required. I'll look at this
in Chapter 15.

Reusability within the WSH

Another evident weakness of the WSH is its limited support for reusability. What is needed is the
ability to write script code that is reusable and 'componentized'. The solution is a mix of COM and
script, and goes under the name of XML Scriptlets.

An XML Scriptlet is a text file that follows the XML syntax. It describes a COM object, and embeds
pieces of script code (VBScript or JScript). This code is interpreted and presented to the outside
world as if it was binary COM code. In other words, the XML Scriptlet (which is made up of

<scri pt > tags) appears to be a regular Automation object to any COM-aware client, including the
WSH! Thus, you can write Automation servers in pure VBScript or JScript, and solve the reusable
script code problem.

Scriptlets and XML Scriptlets are covered in detail in my book Instant DHTML Scriptlets,
also published by Wrox Press, ISBN 1-867007-38X.

414

The Windows Scripting Host

Summary

The WSH is a desktop-level scripting engine that you can use to automate repetitive actions,
following the logic of DOS batch files. By combining the power of today's scripting languages with
the use of COM components, the WSH is ideally suited to making your applications richer and more
user-friendly.

I haven't provided a full and detailed explanation of all the properties and methods of all the
Windows Scripting Host objects — the Internet Client SDK already does a good job of that. Instead,
I've tried to focus on the technology and the way in which you can use it.

At present, I see two main fields of application for the WSH: as an administration tool on Windows
NT platforms, and as a user-development platform for both Windows 9x and Windows NT. This
means that system administrators and end users could both take advantage of the built-in scriptable
objects that the system provides, as well as those of third-party vendors. If you're selling a suite of
related and integrated programs, you should think of providing objects to let your users automate
tasks like putting together features that come from different programs.

In this chapter, I've covered:

What the Windows Scripting Host is

How to get it, and how it works

The WSH object model

How to access generic COM components

How to write COM components to extend the WSH object model
Hints on how to improve the WSH

[W iy Ry Wy |

415

Chapter 13

Further Reading

Related articles and documentation about the Windows Scripting Host can be found in the MSDN
library and in an article of mine called Windows Scripting Host that appeared in the June 1998 issue of
MIND. In the printed version of the July/August 1998 issue of MSDN News, there is a centerfold
with a diagram of the complete WSH object model.

There are a number of useful sources of information about script languages other than VBScript and
JScript. For Perl, there's an article by Jeff Zado entitled Active Scripting with Perlin MIND, August
1997. Other references are available at http://www.mks.com. If you're interested in REXX support,
look at http://service.software.ibm.com/dl/rexx/orexx-d, while late-breaking news about the ActiveX
engine for Python is at http://www.python.org/windows. Because the WSH requires a good
knowledge of scripting languages, you will find Instant VBScript by Alex Homer and Darren Gill, and
Instant Javascript by Nigel McFarlane to be of use.

For XML Scriptlets, you can refer to an article entitled Server Scriptlets in MIND, May 1998. More
recently I wrote an article for MSDN News called Writing COM Objects with Scripting Languages. It
appeared in the November/December 1998 issue.

For information on hosting an ActiveX scripting module in your applications, read Don Box's Say
Goodbye to Macro Envy with the ActiveX Scripting Engine in MIND, February 1997. It provides you with
all the details and explanations you need. Steve Zimmerman covered the same topic from a different
angle in the August 1997 issue of MIND, and I also recommend that you take a look at the

SPRUUI DS sample available with the Internet Client SDK.

This chapter also included some ATL code, and to learn more about that I recommend Beginning ATL
COM Programming (Wrox Press, ISBN 1-861000-11-1). A good overview of COM development with
ATL, by Don Box, appeared in MS]J, May 97. Both show the joy that can be yours when you write
your COM servers using ATL.

Finally, ATL necessarily points to IDL. If you are having problems with the various attributes of that

language, then you may want to read Understanding Interface Definition Language: A Developer's Survival
Guide by Bill Hludzinski, published in MSJ, July 1998.

416

http://www.mks.com
http://service.software.ibm.com/dl/rexx/orexx-d
http://www.python.org/windows

A A
—

Designing a Shell-Iintegrated
Application

There are a number of facilities an application can provide to make it more integrated with the shell
and the underlying system. In this way, the users can treat your documents and programs as they
would the rest of the system. For instance, right clicking on a file to display a list of available
functions is common nowadays. Windows provides each file with a default collection of functionality,
such as Open With..., Properties, Copy and the like. Why not add more specific functions that are
peculiar to specific documents? In order to do this, you have to customize the context menu of the
document class.

Another example of an application that is well integrated with the shell might be the following:
suppose that your program has the ability to create empty documents. Your users would appreciate
an item in the system New menu to let them create a new document on the fly, in any folder. To do
this, you have to enter some information in the system registry.

Of course, these are particular cases, and there are many other usability features that you, as a
developer or an application designer, should take into account. In this chapter, we'll cover all those
aspects of application design and development that help to integrate your software with the system's
shell seamlessly, making your product that bit more professional. This includes:

How to customize the context menu
How to register a new file type

How to design and programmatically handle a command line

0O00Oo

How to program customized Open dialogs

We'll design a document-based, fully-featured application that you might just find useful. The
application will display and print all the kinds of metafiles that Windows supports, from the
traditional (*. wnf), through placeable metafiles, right up to enhanced metafiles (*. enf). We'll apply
all the theory we've previously discussed, and end up with full shell support for metafiles.

Chapter 14

Shell-Integrated Applications

The first thing to be clear about is exactly what constitutes a shell-integrated application. When I use
the phrase, I'm talking about a Win32, document-oriented program that provides at least a certain
number of features that relate to the system's shell.

There's an excellent overview of this topic in an old MSJ article by Jeff Richter (see Further
Reading for details).

So much for the simple answer — let's now discuss the three groups of features that define a shell-
integrated application. To me, shell support means:

A registered icon and type name for any document the program handles
A custom context menu for documents that the program handles
Possibly one or more custom entries in the system's New menu

A single-instance program

A new entry in the Recent document folder for each opened document

[S iy W Wy |

Full support for long file names, especially when it comes to user's documents
To these basic features, we could add the following ones, which are used less frequently:

One or more custom entries on the system's Send To menu

One or more custom entries on the Start and/or Programs menu

One or more custom entries in the Favorites folder

One or more new shortcuts on the desktop

An application desktop toolbar to collect all the main functionality of the program

Customized versions of some of the system's common dialogs

| Iy Sy Ny Wy

Registering the application to start automatically when the user next logs on

A third group of features is today mostly restricted to the work of specialized installers, like

InstallShield and WISE. They are:

Copying shared files to a system-wide common path

Installing the application under the Program Files folder

Providing an uninstall program

Exploiting the shell's application path names to define the paths where files can be found

ODO00D

This set of requirements comes from the guidelines for Windows logo compliance. However, at a
higher level of abstraction they are rooted in what is, for the Windows world, a new idea: in order to
open and use a document, the user should not need to know what program actually loads and
displays it. Instead, they simply have to locate and double-click on the descriptive icon and name that
have been allocated to that document. (In fact, depending on your Active Desktop settings, a single
click might suffice to open a document from the shell!)

420

Designing a Shell Integrated Application

Documents and the Shell

With the release of Windows 95, documents gained a more central role in the system's shell. The
document has become the actor, while the program that actually handles it is reduced to a mere
executor. Even their location on the hard drive suggests a lowering of their status: programs get
grouped under the Pr ogr amFi | es folder, each one in its own sub-folder, with a sub-tree of
directories in which DLLs and other helper files are stored. Many of these folders are hidden —
further confirmation that programs have a secondary role with respect to documents.

- ¥C6Demo

J File Edit Wiew Go Favoites Toole Help

S % Cw X .
Back Foriard Up Cut Copy Paste | Undo | Delete Properties | Wiew
| Address 2 C:/CEDemo =
All Folders x Mame | Size | Tupe Modified -
= hy Computer - @ Fi_Complete File Falder 28/08/98 21.50
=9 3% Floppy (&) Ft4_MFCLogon File Folder 28/08/38 21.50
Ms-dos_B [C:] 3KB GIF Image 09/04/98 10.02
23 Multimedia Files @ [GETH 1KB ‘web Page 22/05/98 7.41
My Documents % manufacturing BYTEE Active Streaming Format File 10/06/98 1425
23 MyStarthenu i Manufacturing 42KB Microzoft PowerPoint Presentation 16/06/98 9.15
Program Files % marketingtzales E15KB Active Streaming Format File 10/06/98 14.29
{23 Frogrammi MarketingindS ales 42KB Microzoft PowerPoint Prezentation 16/06/38 3.15
@ Recycled 2] ReadMe KB Test Document 28/08/98 2158
£ YCEDemo - P PR, =
[\wehshae Jad | KX [»
|1 object(z] selected |2,4BKB by Computer i

Looking at the screenshot above, you can see that documents have their own specific icons and
descriptions. Better than that, each document has a dedicated context menu from which you can
execute a number of shell functions. Some of these could apply to any kind of document and
therefore appear in all context menus, but others are particular to a single document type.

Basic Document Functions

The Windows shell provides a number of menu verbs for free, which are:

000D DO

Copy, Cut, Paste
Delete

Rename

Create Shortcut

Properties

421

Chapter 14

In addition, there are always at least a couple of other menu commands. Either Open or Open With...
will be there, but the two are mutually exclusive — the latter appears only if you have no program
registered to open the document, and brings up the following dialog if selected:

Dpen With HE|

Click the program you want to uze to open the file ffaztun.ffa’
If the program you want iz nat in the list, click Other.

Description of * fia' files:
|
Chooze the program you want to use:

P BACKUP ﬂ
B

@Feow

% binder

(=rea

Crdialer

¥ encel =]

v Always uze this program to open this file

1] I Cancel | Other. .. |

The action of the Open command, on the other hand, depends upon what you store in the registry, as
we'll discuss shortly.

The 'Send To' Command

The other command you'll always see in one form or another is Send To, which displays a sub-menu
with a list of possible destinations for the selected document. A 'destination' is a program that will
receive the given filename on the command line. The picture below, for example, shows how the
Send To menu lets you set a file to be the attachment in a new e-mail message.

Explore

Open

Add o Zip

Add to My Documents.zip

& &

d =5 3% Floppy (4

Cut :\ﬁ Desktop as Shortcut
Copy
Baste

B ail Recipient U

@ u Briefcaze

Create Shorteut ﬁ Py Documents

Delete A

o i iy ’
Fisienie ‘Web Publishing Wizard
Froperties

Through the commands I've listed in this section, the shell guarantees a minimum level of support for
any kind of document you may have on your PC. It's up to you, as seasoned user or software
engineer, to extend this basic behavior with more document-specific and appropriate features.

422

Designing a Shell Integrated Application

Registered Document Types

Everything that relates to the configuration of the shell is stored somewhere in the system registry, so
any path you take to modify the shell's appearance or behavior must pass through it.

In order for the shell to recognize and properly handle a certain kind of document, it must be of a
registered type. A type of document is identified by its file name extension, and all the registered
document types are stored under the HKEY_CLASSES_ROOT registry node:

& Registry Editor i =]

Begistry Edit View Help

- dsw ;I MName | Data

- dsx — [Default] "Microzoft Internet Mail Message
-2 .dun Content Type "message/feg22"

.
{7 .ebs
-0 em
e
-1 exe
-
1) fav
-3 it

{27 .tnd -
C ;I_I 4 |

| Iy ComputersHEEY_CLASSES_ROOT . eml

ail=

An entry for the file extension (. ext) points to another key under the same node whose name is
stored in the Def aul t value of . ext . In the above figure, for EML files (Microsoft Internet Mail
Message, the Outlook Express e-mail file format), we have the value:

M crosoft Internet Ml Message
If you want to get at all the registered information for this type of document, you must start digging

at:

HKEY_CLASSES_ROCT
\M crosoft Internet Ml Message

&' Registry Editor el =10l x|
Registy Edit “iew Help

{:I Media Type d Mame | Data

B2 mhtrifile [Default] "Outlook. Express Mail Message"

23] Intemet M ai -l

- Defaullcon

EHID shel
P - open
. -0 Microzoft Intemet Mews Message

{:I Wicrosoft ActiverPlugin -
<I | s s |

| My Computer\HKEY_CLASSES_ROOT%Microsoft Internet Mail Message

a2

Under this key, you can store information that applies to three areas:

Q The user interface
Q The context menu
Q Shell extensions

423

Chapter 14

Shell User Interface for Documents

By the title of this section, I mean the collection of graphical attributes we might want to set for a

document — these are typically the icon and the type name. The Def aul t | con key lets you assign
an icon to identify all the files with this extension throughout the shell. The Def aul t value of this
key contains a string that looks something like this:

C: \ PROGRAVB\ THEPROG. EXE, 0

Note once again that this information is not stored in the . ext key, but in the one that . ext

points to.

The string that identifies the default icon is made up of a full path name, a comma and an index

number. The icon to be shown is the one with the given index in the given file — remember that an
icon index always starts at zero. Furthermore, if the index is a negative number, then it denotes the
resource ID instead, so for EML files the Def aul t | con string is:

C: \ PROGRAM FI LES\ QUTLOOK EXPRESS\ M5l MN. EXE, - 4

And as we saw above, the Def aul t value of the main key (M crosof t I nternet Mai | Message
in the sample above) contains the string to be used as the type name of the document.

To modify these settings, you don't have to be an expert Windows programmer. Any seasoned
Windows user could change the description of EML files, or the icon that represents them. However,
inserting keys to register documents programmatically is completely different from manually modifying
the registry. We need to focus on what your software should do to integrate its documents with the

shell automatically.

Document-Specific Commands on the Context Menu

The key called shel | can contain a number of sub-keys, each of which relates to a specific command
that will appear on the document's context menu. The keys under shel | are called verbs (in this
case, the verb is open), and the Def aul t values of the keys contain the string that will be shown on
the context menu. If this value is not set, the name of the key itself is used.

So: we have a verb called open,
but it's quite possible for the menu
command to have a different
name. Since we're discussing e-
mail messages, how about having
Read instead of Open on the
menu? If you change the contents
of the Def aul t value and then
bring up the context menu, you'll
see the result:

424

EX Exploring - My Documents =100 x]

J File Edit “iew Go Favoites Tools Help |
L R a2 @« X .
Back Farward Up Cut Caopy Paste Unda Delete Properties Views

J Address I@ C:y Dacuments j

AllFaolders X

:«Zﬂ Deskiop -
= B My Camputer
-4 3% Floppy (&)
=] IC:]
5 My Documents

L 171 MuGbarthd e il
< | B

| S\zel Type

| Modiied |

KR Nutnnk Frrress Mail
Read

&) AddtoZip
) Addto Greetings from NY.zip

SendTo 3

Cut
Copy

11/11/9817.29

Create Shartcut
Delete
Rename

Praperties

Designing a Shell Integrated Application

The context menu shows Read, but the actual behavior doesn't change at all, because that's
established in the Def aul t value of the command sub-key. Every verb must have a command sub-
key that contains the executable's path and command line, plus any other necessary settings. It's very
important to specify a valid command line with the proper switches, and a %l to denote the name of
the file to work on:

C. \ PROGRAM FI LES\ OQUTLOOK EXPRESS\ MsI MN. EXE" /ent : %4

The line above shows the command line for EML files on my machine — whether you see the same
will depend upon whether you have installed Outlook Express.

Shell Extensions for Documents

By modifying the registry, you can add static verbs to the document's context menu. Any static verbs
you define will always be displayed, and will always execute the same command line.

A more flexible and dynamic behavior can be obtained by using shell extensions, which we'll cover in
the next chapter. For now, let's just say that a shell extension is a piece of code that runs in Explorer's
address space and gets called each time Explorer needs to do some 'customizable' actions, such as
painting an icon, or displaying a context menu. Your piece of code is given a chance to decide
dynamically what menu items to add, and what to do in response to user clicks.

All the shell extensions for a given document class are listed under the shel | ex key, which is placed
at the same level as the shel | key.

How Programs are Affected

We've now touched upon a number of features that affect documents, and at the beginning of this
chapter I stated explicitly that documents are the kings of the Windows shell. However, we can't get
away from the fact that in the end, documents are still displayed through programs — the question is,
how and to what degree are programs affected by our efforts at shell integration?

Well, there are two major points. First, users may click repeatedly to open different documents, or
even multiple copies of the same document. When this happens, the program is called repeatedly,
and so to avoid a proliferation of windows you may want to allow only a single running instance.
Second, programs' command lines gain importance, because static verbs are usually implemented
through switches on the command line. You should endeavor to expose the most important functions
in a very modular way.

In Chapter 11, we covered the RunDLL32 module, which represents a good way of calling DLL
functions with a fixed prototype through a command line. In both these cases, the program's
functions must be clearly isolated and easily callable from external modules.

When someone clicks on a document in the Windows shell, the program is called. Each time the
program starts, it checks for other running copies of itself. If any are found, then one is passed the
control and the command line, while the current instance quits. I'll say more about this later in the
chapter, when I come to discuss the sample application.

425

Chapter 14

MDI versus SDI

MDI and SDI are the two typical designs for file-based Windows applications. MDI stands for
Multiple Document Interface, and denotes a program that can open several documents at the same
time, displaying each in a separate window. SDI, on the other hand, is an acronym for Single
Document Interface — an SDI program opens only one document at a time. Traditionally, major
Windows applications have been MDI — the Office suite is a prime example of this. Applets such as
Notepad and Paint, on the other hand, are SDI.

From the shell's point of view, the choice of MDI or SDI really isn't an issue. When you dig a little
deeper, however, you begin to realize that to examine the difference between MDI and SDI is to
open a window onto a much broader comparison: an application-centric versus a document-centric
environment.

The MDI schema is governed by the application, which opens and manages the various 'child'
documents. Conversely, the SDI interface is more document-centric: you see a single document
surrounded by the tools that are available to utilize and modify it.

Since the launch of Windows 95, Microsoft has been recommending the development of SDI
applications wherever possible, but it seems that most people — myself included — have paid little
attention to that advice.

From the information available at the time of writing, it seems that the next version of the Office
suite — Office 2000 — will employ an SDI interface. If confirmed by the final release, I think this
development will herald a real change in Windows applications design.

Creating New Documents

Whenever you right click on an Explorer 1 Folder

window that's displaying the contents of a folder, @ Shortout

you're presented with a menu like the one in the (] TextDocument
figure: @ Microsoft Word Document

Bitmap Image
@ Wave Sound

Wiew 3
= @ Briefcaze
Customize this Folder.. @ WinZip File
Arrange loons » ﬁ Microzoft Excel Worksheet
[Lire U [oms Microsoft PowerPoint Presentation
ﬁj Microsoft Office Binder
Refresh
@ Image Composer Document
Paste] Picture It Image
iFaste S cut @ Microsoft Access D atabase
Undo Delete

@ Other Dffice Documents...
[2 “isual B asic Project

r. A
Froperties |

The New command lists all the document types that can be created via the shell. When you select
one of the listed types of document, the shell calls the registered application and asks it to create a
new document with a name that's formed from the type name of the document (as it appears in the
menu), prefixed by the word New. For example, if you choose to create a new bitmap image, the file
name will default to New Bi t map | mage. bnp.

426

Designing a Shell Integrated Application

The New Menu

Each item that appears in the New menu (except for Folder and Shortcut) has a related file class for
which a Shel | New key exists, under the following registry path:

HKEY_CLASSES_ROOT
\. ext
\ Shel | New

The contents of the Shel | New key determine what appears on the New menu, and what happens
when someone clicks on it. When you think about it, there are actually four ways of creating a new
document through the shell. You can create:

Empty, zero-length documents
Documents that are copies of a default document

Documents whose contents come from binary data stored in the registry

0oo0Oo

Documents created by special external programs, such as Wizards

Naturally enough, these options require different registry settings:

Value Content

Nul I File The empty string.

Fi | eName The name of the file to be used as the template. Such files are assumed to
reside in the W ndows\ Shel | New directory.

Dat a A chunk of binary data, read from the registry.

Command The command line needed to create the document.

The following screenshot shows the setup on my machine for BMP files:

&' Reagistry Editor

Begistry Edit Yiew Help

{7 .bas =] [Mame | Data

-] .bat I |[28] (D efault) [value nat set]
[bee 3] NulFile

{:' bep
-2 .bfe

D BHx
£ bmp
- ShelEx

A s | ol
A

| My Computers\HKEY_CLASSES_ROOT brap\ShellMew

Normally, you'll want to use Nul | Fi | e if your application can handle empty and zero-length files.

Fi | eNane is the approach chosen by Word and Excel, and is useful if you have complex, compound
files for which even empty files need a certain, minimal structure. In this case, you prepare a standard
file (whether empty or not), save it to the Shel | New subdirectory of the W ndows directory, and
assign its name and extension to the Fi | eName value. Each time someone attempts to create a new
file of that type, a copy of the template is created. See Further Reading to get references about Office
97 file format specifications.

427

Chapter 14

Dat a is a value that may contain binary data to be flushed to the newly created file, making this case
little different from the one we've just been discussing. With Fi | eNane, the template is a separate
file; with Dat a, it is a chunk of data stored in the registry.

We met the Command value in Chapter 11 while discussing replacing the standard handler for
creating shortcuts. If this value is present, then the shell is limited to running the specified command
line, and assuming that it will be able to create a new document of the required type. This option has
been specifically created for Wizards and step-by-step document creation.

We'll now look at an example in which we add a command to the shell's New menu that will create a
brand new HTML file with minimal content.

Creating New HTML Files

I'm assuming that you have a program on your PC that is registered to handle HTML files. When you
need to create a new HTML document from scratch, you usually either:

O Run a visual HTML editor (Microsoft FrontPage, for example)
O Run Notepad or some other plain text editor

Like most of the rest of the Windows world, when I need to write an HTML page, I resort to
Notepad. However, an HTML file is not just another ASCII file. It needs tags to delineate it as a valid
document that a browser can successfully handle. A minimal HTML file may look like this:

<ht nl >
<body>
</ body>
</htm >

Save this code to a file called, say, ht m 4. ht mand place it in your W ndows\ Shel | New (or
W nnt\ Shel | New) directory. Then, open the Registry Editor and add a Shel | Newkey to:

HKEY_CLASSES ROOT
\.htm

This newly created key must also be given a Fi | eNane string value:

& Registry Editor

Begisty Edit Miew Help
] hhp ;I Mame | Diata

-~ hlp o [Defaull] [walue not zet]
i [aB] FileMame “htmld. b
-~ hpp

0 hgx
=3 htm
-] ShellEx

. 3 it _,I;I . |

| My ComputersHKEY_CLASSES_ROOTS htmtShellew

szl

428

Designing a Shell Integrated Application

Once you have saved these settings, you should be able to (3 Folder

right-click on the desktop and produce something like this: m Sharout
Test Document
@ Microsoft Wword Document
Bitmap Image
@ Wave Sound
@ Briefcase
3 wirzip File
Active Desktop » 387 Microsalt Excel Warksheet

Anangs lcons ¥ Microsaft PowerPoint Presentation

Line Up lcons) Page

Fa— 8] Microsolt Difice Binder
| @ Image Composer D ocument

Paste 18] Ficture I Image

Paste Shortcut R Microsoft Access Database
UndoDelste

@ Other Dffice Documents...
» ﬁ Wisual Basic Project

Properties

The picture shows what happened on my PC after I changed the description of the htm file
registry key from the original string to Web Page. Any new file created from this menu item will be
called New V\eb Page. ht m

Note that you can add an item to the New menu only if that file type is correctly registered.

Other Features

There are a couple of other features to take into account when it comes to design and coding a good
shell-integrated application. They are:

Q Storing a list of the directories where helper modules like DLLs can be found

Q Arranging for an automatic re-run upon next logon

The first feature might seem to be more relevant to setup programs, but not all installers do exactly
what you need, and in those cases you must write your own extensions and delve deep into registry
paths.

The second feature is typical of Explorer and a few other applications. If the application is still
running when you shut down the system, the shell will automatically restart it the next time that you
log on. Let's see how to code this behavior.

Application Paths

Almost all Windows applications are composed of more than one file. Typically, there's an EXE file
and one or more DLLs (not to mention all the system DLLs, such as ker nel 32. dl | and
user32.dl1).

The helper DLLs must be copied somewhere by the installer. They can go in the program folder or
elsewhere, but Microsoft strongly discourages you from copying DLLs to one of the main system
folders, like W ndows or W ndows\ Syst em If you do decide not to put them in the same directory
as the EXE, the chances are that sooner or later you'll get an error message informing you that the
system is unable to locate a given DLL.

429

Chapter 14

Why then would you decide not to put the DLLs in the same folder as the EXE? Well, your
application could be part of a suite in which many programs share the same helper DLLs. It's
wasteful to give each component its own copy of the files, so instead you could create a common
folder and place everything that's shareable in there. The problem now is making the shell aware of it
— when you launch an application that needs a certain library, you must make sure that the path to
the library is globally visible.

MS-DOS based programs (and Windows programs too) used to rely on the PATH environment
variable. A similar, but shell-oriented replacement for this is the so-called application path. To use
one, you should add the following registry key after installing your application (let's call it
program exe):

HKEY_LOCAL_MACHI NE
\ SOFTWARE
\' M crosoft
\ W ndows
\ Cur r ent Ver si on
\ App Pat hs
\ Program exe

The Def aul t value of the key contains the full path name of the executable. If present, the Pat h
value lists all the paths where any other files can be found:

&' Registry Editor

Begistry Edit Miew Help

- nzplayer.exe ﬂ MHame | Data

- OUTLOOK.EXE [Default] "C:A\Program Files\FiealsPlayerrvplayer. exe"

- POWERPNT.EXE [ab] Path "C:\Program FileshRealPlayer CAwWINDDWSASYS TEM”

T player. ex

nE:

L0 schdpl3? exe
-0 SIGNUPEXE
-] wab.exe
- wabmig.exe
- wangimg.exe
- Winword. exe
([WORDPAD EXE Ij
<] D L |]

| My Computer\HEEY_LOCAL MACHINESS OFTWARE \MicrosoftVwindows\Currenty ersion'app Pathshrvplayer.exe

Automatic Startup of Applications

When a particular user logs on, Windows will attempt to read the following key:

HKEY CURRENT USER
\ Sof t war e
\'M crosoft
\ W ndows
\ Current Versi on
\ RunOnce

If the key exists, any programs whose names are stored in its values will be executed. After
examination, all entries are deleted, so they are executed once and only once. We therefore have the
ability to code applications that are capable of executing the next time a particular user logs on.

430

Designing a Shell Integrated Application

Note that this is only at the next logon, not at each subsequent logon. Applications that are run
every time a particular user logs on have entries under the Run key in the above location.

Automatic execution is not totally a feature of the system; programs must cooperate in order for it to
occur. In particular, a program must add itself (and/or any other application) to the RunOnce key,
and the right moment to do this is in response to the WM_ENDSESS| ON message. Of course, it's
possible to do this at any time, but since our goal is getting persistence across sessions, we should
create the entry only if we're still running when the user shuts down the current session or logs off.
This is when the WM_ENDSESSI ON message arrives.

The information about the application to be run should be entered in the registry in the following
format:

I D = program namne

You need to create a value whose content is the path name of the executable. The ID must be unique,
but apart from that the name you give it is not too important. The next figure shows an example:

& Registry E ditor

Registry Edit Miew Help

{7 Mexml d Mame | Data
-0 Mulimedia (2] (Detauit [value not st)
-] Notifieationtgr [2B] Natepad "cvwindowsinotepad. exe’”
-1 Policies
-1 ProfileR ecanciliation
-0 Run
= Ll
-{Z1 Taskman
-0 Wehcheck -
Kl | o [« | »]

| My ComputersHKEY_CURRENT_LISER'SoftwarehMicrosoftiindows'Current/ersion'RunOnce 2

The entries are taken sequentially, in the same order that they were entered — that order doesn't
necessarily coincide with the output of the Registry Editor, where the entries always appear in
alphabetical order. The programs are spawned asynchronously, one after another. If you have a
registry entry like the one shown above, you'll find that Notepad opens up on your desktop when you
log on.

Another RunOnce Key

There's another, rather more powerful RunOnce key located under the following path:

HKEY_LOCAL_MACHI NE
\ SOFTWARE
\' M crosoft
\ W ndows
\ Curr ent Ver si on
\ RunOnce

431

Chapter 14

The syntax for using this key is exactly the same as before, but there are three big differences in the
way it works. They are:

Q The contents of this key are considered when any user logs on.
Q The various registered programs execute synchronously — the next entry runs only when the
previous one has finished.

O The programs registered under this key execute before the programs registered under the same
sub-key of the HKEY_CURRENT_USER node.

See Further Reading for a reference to a document that details the Windows startup process.

If you have a program registered under HKEY_LOCAL_MACHI NE\ . . . \ RunOnce, then at the next
logon or reboot, Notepad will appear on the desktop bde¢fore the taskbar and the desktop icons. More
importantly, you won't see them until you terminate the process by closing the window.

The Run Key

The Run key, which I mentioned briefly in the above discussion, also exists both under
HKEY_LOCAL_MACHI NE and HKEY_CURRENT_USER. Run and RunOnce follow identical logic,
except that the latter deletes each line it reads from the registry. Items under the Run key are
executed every time someone logs on.

The RunServices Keys

Under Windows 95 and Windows 98, there are two keys that allow you to simulate NT services — that
is, modules that run before the user logs on. These keys are:

HKEY_LOCAL_MACHI NE
\ SOFTWARE
\' M crosoft
\ W ndows
\ Cur r ent Ver si on
\ RunSer vi ces
\ RunSer vi cesOnce

Once again, their syntax is the same as the other keys we've been examining in this section.
RunSer vi ces runs applications before every logon, while RunSer vi cesOnce does the same thing
for only the nextlogon. The programs are executed asynchronously, and might terminate after the
user actually logs on. In any case, all the services must be executed before the system starts
considering the RunOnce and Run keys.

The following table shows the exact order in which Windows considers the registry keys during the
startup process:

Step Key

1 HKLM . ..\ RunSer vi cesOnce (unsupported under NT)

2 HKLM . ..\ RunServi ces (unsupported under NT)

3 User Logon. The user may log on before all the services start.

432

Designing a Shell Integrated Application

Step Key

4 All the services started and the user logged on.

5 HKLM ...\ RunOnce

6 All the registered programs completed.

7 HKLM . ..\ Run

3 HKCU\ . . .\ Run

9 Programs contained in the St art up folder for the current user.
10 HKCU\ . . .\ RunOnce

The Winlogon Key

If you simply need to display a message before any user logs on, you can exploit the entries of the
following key:

HKEY_LOCAL_MACHI NE
\ SOFTWARE
\' M crosoft
\ W ndows
\ Curr ent Ver si on
\ W nl ogon

The Legal Noti ceCapti on and Legal Noti ceText values let you define the title and the text of a
system message box that will appear before any user logs on.

Services in Windows 9x

Under Windows NT, you can write services to accomplish certain tasks that require special system
privileges. An NT service is a Win32 application with a particular structure and behavior. Aside from
the specific implementation details, the main features of a service can be summarized as follows:

Q A service runs before any user logs on

O A service continues running even after a user logs off

Q A service has no user interface and is not interactive

Q A service gets special treatment from the operating system — for example, it can be started
automatically and run under any user account, including the System account

QO A service runs in a separate, virtual desktop, which is different from the desktop used by the

applications

Q A service can be stopped or paused

Windows NT has a special component called Service Control Manager (SCM) to manage the running
services. Because this interface is very powerful, there's no need under Windows NT for registry keys
like RunSer vi ces or RunSer vi cesOnce. See Further Reading for more information about writing
NT services.

433

Chapter 14

The interesting thing from our point of view is that by exploiting the RunSer vi ces key you can
simulate NT services, obtaining roughly the same behavior. A Windows 9x service is in every way a
normal Win32 application (no matter whether it's a GUI or a console application) that's simply
registered in the RunSer vi ces key to run before each logon.

By calling the Regi st er Servi ceProcess() API function, you can register the current process (or
any other running process) as a service, causing it to continue working even after the user has logged
off. This function is not exposed through any import library, though, so you need to load it
dynamically via Get Pr ocAddr ess(), which is contained in ker nel 32. dl | .

The following table lists the differences between Windows NT and Windows 9x services. A complete

example of a Windows 95 service is referenced in Further Reading.

Windows NT Service

Windows 9x Service

Win32 application that exposes a
Servi ceMai n() function

Runs before logon

Continues running after logoff

A GUI or console application with no user
interface

Can run under the System account
Runs in a separate desktop

Can be stopped or paused.

Traditional Win32 application

If registered under RunSer vi ces, runs
before logon

If registered as a service with
Regi st er Servi ceProcess(), continues
running after logoff

A GUI or console application with no user
interface

Unsupported
Unsupported
Can be stopped only by calling

Term nat eProcess()

That a service must have no user interface is not a system requirement, but simply a reasonable
and strong recommendation.

Designing a Shell-Integrated Application

So far, we've examined the major points that make a real-world application integrate successfully with
the shell. Now it's time to look at a concrete example, where we'll be translating all the principles and
rules into practice.

The first requirement for a shell-oriented application is that it be a file-based program. This means
that the application must, broadly speaking, work as a wrapper built around a certain kind of
document. Its menus should faithfully render the actions you might want to make with the documents
it handles. So, to design a shell-integrated application, it's important that you are clear which
functions are to be exported through the shell.

434

Designing a Shell Integrated Application

Secondly, these functions must be coded in as modular a fashion as possible, and must be accessible
through the command line, through a RunDLL32 interface or by means of a shell extension. Let's see
how this advice applies in a case study.

A Metafile Viewer

The application we will develop is a metafile viewer. I've chosen this example for two reasons:

Q Itis a significant, file-based application
Q There's no system utility in Windows to view WMF and EMF files

To expand upon the second point, the only current way to view metafiles is to turn on the View | as
Web Page option for the folder, and relying on the embedded thumbnail control. (Of course, it's not
that hard to find a shareware utility out there, but it remains to be proven that such utilities offer an
adequate level of shell support.)

My example is a simple, dialog-based application that allows you to choose, display, print and
convert any valid Windows metafile. The screenshot below shows the initial appearance of the
sample program, a Wrox AppWizard generated dialog-based application called WWFVi ew:

Metalile Viewer
ID_FILE_OPEN — = [pen.
ID_FILE_SAVEAS —— Save fs...
ID_FILE_PRINT ——— Print..
ID_FILE_EXIT —— Exit

IDC_METAFILE

We'll first examine how to make the application operational in terms of actually being able to display
metafiles, and then we'll see how to enhance its code to help with context menu customization.

Windows Metafiles and Enhanced Metafiles

A metafile is a collection of graphic instructions, called records, which execute one after another in
order to produce a picture. Until the advent of Win32, there were two types of metafiles:

O Windows metafiles
O Placeable metafiles

The Office 97 clip art files, for instance, are all placeable metafiles, and both these types are given the
usual . wnf extension.

Detailed coverage of metafiles is beyond the scope of this book, so you should resort to the MSDN
Library for advanced and exhaustive articles. See also the Further Reading section.

435

Chapter 14

The file format of Windows metafiles changed with the advent of the Win32 platform. Win32
promotes the newer . enf format (enhanced metafiles), but continues to provide support (albeit of a
rather poor kind) for the old WMF files.

This drawback aside, the API for enhanced metafiles is noticeably richer than the corresponding one
for WMFs. Interestingly, among the Win32 common controls is one (the Pi ct ur e control) that's
capable of displaying an enhanced metafile, starting from its handle. Opening and displaying an EMF
is therefore pretty straightforward, but unfortunately, doing the same for an old WMTF file is not that
easy. Thankfully, I discovered a tool for the purpose on the Microsoft web site at:

http://support.m crosoft.conf downl oad/ support/nslfil es/ enneta. exe

I was therefore able to use this example as a reference while building my own metafile viewer.

Displaying a Metafile

The wnf vi ew. exe program will recognize three types of metafile:

O Windows
QO Placeable
Q Enhanced

The first two are assumed to have a . wnf extension, while the last should have . enf . Whatever the
original format of the currently opened file, the program always uses enhanced metafiles internally.
The following code shows how to open and display a metafile, no matter what its original format.

LEETEEELEEE i i i
/1 Needed to handl e 16-bit placeable netafiles

#pragma pack(push)

#pragma pack(2)

typedef struct{

DWORD dwKey;
WORD hnt ;
SMALL_RECT bbox;

WORD w nch;
DWORD dwReser ved;
WORD wCheckSum

} APMHEADER, *LPAPVHEADER;
#pragma pack(pop)
NN NN

/'l CGets the handl e and displays the specified netafile
voi d D spl ayMet aFi | e