

Visual C++
Windows Shell Programming

Dino Esposito

Wrox Press Ltd. 

Visual C++ Windows Shell Programming

© 1998 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without

warranty, either express or implied. Neither the authors, Wrox Press nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused either directly

or indirectly by this book.

Published by Wrox Press Ltd. 30 Lincoln Road, Olton, Birmingham, B27 6PA

Printed in USA
ISBN 1-861001-8-43

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee
the accuracy of this information.

Credits

Author Cover
Dino Esposito Andrew Guillaume

 Concept by Third Wave
Development Editor
John Franklin Design/Layout
 Noel Donnelly
Editors
Jon Hill Index
Chris Hindley Andrew Criddle

Technical Reviewers
Davide Marcato
Tommy Riddle
Kenn Scribner
Marc Simkin
Mark Stiver
Julian Templeman

Keep it simple: as simple as possible, but no simpler.
Albert Einstein

Photo of the ammonite courtesy of Claren Kidd at the
Laurence S Youngblood Energy Library, University of Oklahoma.

http://www-lib.ou.edu/depts/geol/lammonite.html

http://www-lib.ou.edu/depts/geol/lammonite.html

About the Author
Dino Esposito is a senior consultant who specializes in Windows and COM development. At
present, his work for Andersen Consulting focuses on the development of Web-based
applications. He's a frequent speaker at industry conferences such as Microsoft Developer Days
and occasionally holds seminars for Mondadori Informatica Education.

He also has extensive experience developing commercial Windows-based software, especially
for the photography world, and was part of the team who designed and realized one of the first
European image databanks.

Dino loves writing, and is a contributing editor to Microsoft Internet Developer for which he runs
the Cutting Edge column. He contributes to a number of magazines including Microsoft Systems
Journal, MSDN News, Windows Developer's Journal, Dr. Dobb's Journal and a number of Italian
magazines. He co-authored Professional IE4 Programming and authored Instant DHTML Scriptlets,
both published by Wrox Press.

Dino lives in Rome (Italy) with his wife Silvia and a six-month-old son, Francesco. Feel free to
contact him at desposito@infomedia.it.

Acknowlegements
Even though I appear smiling and relaxed on the cover, believe me, doing this book was no
picnic. It's been a pleasure, though. I've really enjoyed presenting my development experience
and telling you about all the pitfalls I've found along the way. My hope is that, with this book,
your coding will progress more quickly.

I said it wasn't easy, and didn't just mean for myself. Silvia, my wife, was incredibly patient
with me and many nights, at the end of a chapter, I found her solicitously awake. This book
considerably increased her capacity to sleep in spite of the typical but annoying noise of a
programmer: the unremitting clicking, plop and plonk, dialing and so on. There's nothing to
do, I really love you – and it's rhymed too!

No, Francesco, don't cry! Daddy loves you too. Francesco is now six months old and shows a
great interest for everything with buttons, from keyboards to remote controls and from
telephones to cameras. He's a very lively and precocious baby. Although his name doesn't
appear among the technical reviewers, he really gave a considerable contribution to the last
two chapters. (Jon, now you know the real reason why you got them so late…)

Jon Hill was the lead technical editor of this book and, let me say, did an excellent job testing
and re-testing the source code, providing countless pieces of good advice and, above all,
addressing the weak points in the original text. You'll never know about them, but believe me,
the book is now far more readable, rich and enjoyable. Thank you, Jon!

And thanks also to all the guys that reviewed the various chapters. In particular, I'd like to
mention Kenn Scribner who led me to discover and consider a number of neglected topics.
Thank you, Kenn; I appreciated your ideas very much.

Other people contributed to this book with their suggestions and technical tips. I want to say
thanks to Marco Losavio, Graziano Lorusso, Giuseppe Dimauro, Francesco Balena, Carlo
Pescio and Antonio Derossi.

Writing a book related to Windows necessarily involves pinging people at Microsoft, searching
for help, tips, references and so forth. Among others, I'd like to mention Scott Roberts, Andrew
Clinick and Michael Edwards who clarified a number of obscure points and helped me to find
up-to-date information. Scott was incredibly kind and patient and even answered my questions
over some weekends. I'm really grateful. I'll write it in Italian too: Te ne sono veramente molto
grato.

Other people at Microsoft provided assistance, directly or indirectly. In no particular order:
Josh Trupin and Joe Flanigen, for their appreciation and continued encouragement, and with
them all the staff at MIND and MSJ. Paula Ladenburg, for giving me the opportunity to appear
on MSDN and astound friends and colleagues with public full-text search engines. Joanne
Steinhart, for providing me with the colorful MIND mousepad that many times has captured
Francesco's attention and allowed me to work a bit more quietly.

Writing a book is just one aspect of my daily activity. Thus, I want to reserve a special mention
for the people at Andersen Consulting. In particular, I want to thank Bruno Ronchetti and
Giorgio Di Paolo for the opportunities they offered me and the patience they always
demonstrated.

Thanks also to Natale Fino and Roberto Palumbo at Infomedia. Their magazines are probably
the only chance I have not to forget how to write in Italian!

I love writing, but speaking is another thing that lets you touch what's going on in development
today. For this, I wish to mention Stefano Maruzzi and Alessandro Pedone at Mondadori
Informatica Education.

A word written a few lines above now is striking me: weekend. What's that? I think I'll have to
do some research to figure it out. When you work so hard month after month, sooner or later
you end up neglecting friends. To try to partially remedy this, I want to embrace in a common
thought Marco Lucani, Raffaele D'Orsogna, Roberto Raschetti and my brother Telly.

Last but not least, I would like to thank the person who is somewhat responsible for this book:
John Franklin. I enjoyed writing this book, despite the hard work. You and your team made it
really pleasant.

Thanks to you all

Dino

Table of Contents

Introduction 1
Everything Changes 1
What Does this Book Cover? 2
What You Need to Use this Book 2
Conventions Used 3
Tell Us What You Think 3
Source Code 4
Support 4

Chapter 1: What is the Windows Shell? 7
The Components of the Shell 8

The Program Manager 8
The Taskbar 9
The Desktop 9

The Structure of Explorer 9
Injection Points for Extensions 10
Extensions to Explorer 10
Why Program the Shell? 10

Where This Book Will Take You 11
The Plethora of Shell Versions 12
Where is the Official Documentation? 13
Summary 13

Chapter 2: The Structure of the Shell 15
The Pieces of the Shell 16

The Shell's Namespace 16
Folders 17
File Objects 18
PIDLs 19

The Shell's View 21

Table of Contents

 ii

Hooking the Shell 21
The Shell's Address Space 22
The Shell's Memory Allocator 22
The Shell's Taskbar 22

The Shell API Functions 23
General Windows Functions 24
Shell Internals 25
Taskbar Functions 25
File Functions 25
Folder Functions 26
Icon Functions 27

The COM Interfaces 27
Shell Interfaces 27
Namespace Interfaces 28
Hook Interfaces 29
Miscellaneous Interfaces 29

Why the API? Why COM? 30
What Changed with Active Desktop 30

The New Shell View Object 31
Customizing a Folder 33

The New Taskbar Layout 34
Summary 35

Chapter 3: Working with Files 37
What Can SHFileOperation() do for You? 38
How SHFileOperation() Works 39

Available Operations 39
Pay Attention to the Double-NULL 40
Moving and Copying Files 41
Deleting Files 50
Renaming Files 52

SHFileOperation() Return Values 53
Two Poor Man's Utilities for Surviving Error Messages 54
Did Everything Really Work Properly? 56

Long File Names 56
File Name Mapping Objects 57

Demonstrating File Mapping 58
Using the Object 60

An Undocumented Structure 60
Towards a Solution 61

Summary 64
Further Reading 64

Table of Contents

 iii

Chapter 4: Investigating the Nature of Files 67
What SHGetFileInfo() Can Do for You 68
How SHGetFileInfo() Works 68

Specifying the Input File 69
Using Wildcards with SHGetFileInfo() 70
The Display Name 72

The Sample Program 72
The Flags of the Function 76

Getting Information for a Given File Type 77
Shell Icon Size 78
Using a PIDL 79

Getting Attributes for a File 80
Creating the 'Hand-held' Folder Icon 81

Binary Format of Executables 85
SHGetFileInfo() Return Values 87

Summary 88
Further Reading 89

Chapter 5: Browsing for Folders 91
Choosing a Folder 91

A More Modern Approach 92
The Prototype of SHBrowseForFolder() 93
Using SHBrowseForFolder() 94

What the Function Returns 95
Getting the Folder Icon 95

Using a Callback Function 96
Events You Can Detect 97
Messages You Can Send 98

Customizing the User Interface 98
Removing the Context Help Button 98
Adding a 3D Border to the Status Text 99
Changing the Dialog Caption 100
Moving the Dialog Window 101
Animating the Status Label 101
Validating Manual Editing 101

Specifying the Initial Folder 103
Specifying the Root Node 103

Using a Directory as the Root 104
Putting it all Together 106

That Crazy Little Thing Called PIDL 110
Freeing PIDLs 110
How to Use PIDLs 111

Searching by Display Name 112
Building an Enumerator Function 116

Table of Contents

 iv

The Callback Functions 122
The Sample Program 123

Searching by PIDL 124

Special Folders 125
System Support for Special Folders 125

Getting the Path to a Folder 127
Functions 127

Folder Settings 128
SHGetSettings() 128

Watch the File Extension 129
Make the Desktop More Active 130
How to Click a List View 130
Delete Confirmation 131

The Sample Program 131
Setting Preferences 132

Where are Preferences Stored? 132
Adding Custom Options to the Standard Dialog 133
When Custom Options Are Helpful 135

Summary 135
Further Reading 136
Chapter 6: The Shortest Path to Shortcuts 139
What are Shortcuts? 140

The Shortcut File Type 140
Creating Shortcuts 140

Using the IShellLink Interface 140
A Global Function for Shortcuts 142
Shell Scriptable Objects 143

Giving Shortcuts the Right Name 144
Deleting Shortcuts 144

Resolving Shortcuts 145
How Explorer Resolves Shortcuts 145

A Function for Resolving Shortcuts 145
Shortcuts and Special Folders 147

The Sample Program: Shortcut Manager 148
Selecting a Shortcut 148
Shell Drag-and-Drop 149
Displaying the Results 149

The Hotkey Common Control 151
Collecting Arguments for Creation 152

Giving Rules to the Hotkey 152
The Source Code 153

DoCreateShortcut() 153
DoResolveShortcut() 154
HandleFileDrop() 155
APP_DlgProc() 156

Table of Contents

 v

OnInitDialog() 157
Creating Shortcuts in System Folders 158

The SendTo Folder 159
The Recent Folder 160

Summary 160
Further Reading 160

Chapter 7: Shell Invaders 163
Notifying the Shell of Events 164

Notification Objects 164
Using Notification Objects 164
Putting it all Together 167
Explorer and Notification Objects 170
Towards a File System Monitoring Utility 171

SHChangeNotify() 171
Calling SHChangeNotify() 171
The Role of SHChangeNotify() 172
Using SHChangeNotify() 174

Invading the Shell's Memory Space 175
The Brute Force Approach 175

Why Hooks? 176

Invited into the Shell's Memory Space 182
SHLoadInProc() 183
A Minimal COM Object 183

How a COM Object is Made 184
The Role of DllGetClassObject() 184
The Role of DllCanUnloadNow() 185
Source Code for the COM Object 185

Registering the COM Object 186
Deregistering the Object 188

A Brand New Start Button 189
Getting the Button Handle 190
Replacing the Bitmap 191
Subclassing the Window 194
A New Menu 197

Creating Owner-Drawn Menus 198
Determining the Menu's Screen Position 199
Loading a New Menu 200
Collecting Menu Items Dynamically 201
Setting the Measurements 203
Drawing the Items 204
Executing Commands 208

Browser Helper Objects 209
Backward Compatibility 209
Activation Mechanism 210
Registration 210

Table of Contents

 vi

Structure of the COM Object 210
Communication with the Host 210
Usage 210
Registering Helper Objects 211
The IObjectWithSite Interface 211
Writing a Helper Object 211

An ATL COM Object 213
Helper Objects under Windows NT 217

Glossary of Techniques for Entering the Shell 217
Summary 218
Further Reading 218

Chapter 8: Program Executors 221
From WinExec() to CreateProcess() 222

A Comparison of WinExec() with CreateProcess() 222
Is CreateProcess() Manna from Heaven? 223

ShellExecute() 224
The Open Operation 225
The Explore Operation 226
The Print Operation 227

Printing to Ports 228
The Find Operation 228
A Frustrating Documentation Error 229
More Details of the Verbs 229

Verbs and File Handlers 229
Getting the Executable Name for a File 232

Flaws in FindExecutable() 233
Using Long File Names without Rules 234

ShellExecute() Tips and Tricks 236
Detecting the Default Browser 236
Connecting to a URL 237
Sending e-mail Messages 237
Printing Documents 237
Finding Files and Folders 238

ShellExecute() vs. CreateProcess() 238
Why You Should Use ShellExecute() to Run Programs 238

Extending ShellExecute() 239
ShellExecuteEx() 240

The Optional Members 241
Displaying a File's Properties Dialog 242
ShellExecuteEx() Return Values 243

Example: Program Executors 243
Multi-Monitor Support 245
Hooking on ShellExecute() 246

Table of Contents

 vii

Registering an IShellExecuteHook Handler 246
The IShellExecuteHook Interface 247

Returning from the Hook 248
Writing an IShellExecuteHook Handler 248

Editing the Registry Script 250
How the Hook Works 251

Summary 252
Further Reading 252

Chapter 9: Icons and the Windows Taskbar 255
What You Should Know About Icons 256

Creating Icons 256
Creating and Modifying Icons Programmatically 257

Drawing Icons 258
Animated Icons 258

Extracting Icons from Files 258
What About LoadImage() and LoadIcon()? 260
Which is the Best Way? 261

Assigning Icons to Dialog Boxes 261
Browsing for Icons 262

A SHBrowseForIcon() Function 262
How to Call SHBrowseForIcon() 266

The Tray Notification Area 267
Putting Icons in the Tray Notification Area 267

Notifying Mouse Events 269
Writing Tray Applications 269
Pay Attention to the Context Menu 271

How Many Icons are in the Tray Notification Area? 273
Detecting When the Shell Restarts 273

Restarting the Windows Shell 274

The Layout of the Taskbar 275
When a Window Goes in the Taskbar 275

Toggling the Visibility of the Taskbar 276
Flashing a Window 276

The Windows Taskbar 277
Getting the Taskbar's State Programmatically 277
Hiding the Taskbar 282

The ITaskbarList Interface 282
What ITaskbarList Promises to Do 283
An IDL Definition for the Interface 283
ITaskbarList Sample Program 284

Taskbar-Window Communication 286
Setting up a Menu 287
Determining the Menu Position 289

Summary 291

Table of Contents

 viii

Further Reading 291
Chapter 10: Windows Helper Libraries 293
The Versioning Epidemic 294

DLL Version Information 294
Version Number of a System DLL 295
Exposing the Version Number in your Own Functions 296

A More General Function 298
The Recycle Bin API 302

Structure of the Recycle Bin 302
Renaming Convention 303
The Recycle Bin View 304
Functions for Interacting with the Recycle Bin 304

Helper Libraries 305
The Registry Shell API 306

Table of Functions in the Registry Shell API 306
Manipulating Strings 307

Table of Functions for Manipulating Strings 307
Manipulating Path Strings 308

Table of Functions for Manipulating Path Strings 308

The Case for SHFormatDrive() 310
What the Function Does 310

SHFormatDrive() and Windows NT 311
A General Approach to Improving System Dialogs 311
Extending the Syntax of SHFormatDrive() 312

The Windows NT Dialog Box 313
An Automatic Function for Formatting Drives 314

Setting Volume Labels 315
Silent Formatting 315
Further NT Problems 316

The Sample Program 318
Summary 319
Further Reading 319

Chapter 11: Exploring the Shell 323
Explorer's Command Line 324

The /root Switch 325
Using Special Folders as the Root 325

What is rundll32.exe? 326
Functions Callable By rundll32.exe 326
What you can do with rundll32.exe 327

A RunDll() Function 328
Commonly Used Commands 330

The Explorer's Objects 331

Table of Contents

 ix

The Control Panel 332
Developing Control Panel Applets 332
Running Control Panel Applets 335
RunDll32.exe and RunDll() Trade-offs 336

The Printers Folder 337
Invoking Printer Commands 337
What the Function Returns 338

Dial-Up Networking 338
Offline Browsing 339

Scheduled Tasks 339
Windows NT Support for Scheduling 339
The Scheduling Agent 339
Tasks and Triggers 339

My Briefcase 340
Scrap Objects 341
A New Shortcut Handler 341

The User Interface 342
The Old Functions 342
The New Functions 345

How to Replace the Windows Wizard 347
Editing the Registry 348

Summary 349
Further Reading 349

Chapter 12: Scriptable Shell Objects 353
The Best Language to Program the Shell 354

Undocumented Shell Features 354
The Shell Object Model 355

Methods of the Shell Object 357
BrowseForFolder() 358
ControlPanelItem() 359
Explore() 359
NameSpace() 359
Open() 359
Windows() 360

Attributes of the Shell Object 360
Invoking the Shell Object 360

Using Visual Basic 360
Using C++ 364

The Folder Object 366
More on Folder Object Methods 367

CopyHere() 367
GetDetailsOf() 367
Items() 368
MoveHere() 368

Table of Contents

 x

NewFolder() 368
ParseName() 368

The FolderItem Object 369
Invoking an Item's Verbs 369

The FolderItemVerbs Collection 370
The FolderItemVerb Object 370

Accessory Objects 371
The ShellUIHelper Object 371

Adding to Favorites 372

Putting it all Together 373
Summary 379
Further Reading 379

Chapter 13: The Windows Scripting Host 381
Windows Batch Files — At Last 382

What Can the WSH do for You? 382
Running Scripts at Startup 382

Structure of the WSH Environment 383
How to Get the Windows Scripting Host 383
What is the Host? 383

The Host Command Line 383
Shell Support for Script Files 384
The Scripting Engine 386

Registering New Scripting Engines 386
Command Line Arguments 387

The WSH Object Model 387
The WScript Object 387
The WshShell Object 389

Shortcuts and URL Shortcuts 390
The WshNetwork Object 390
Helper Objects 391

The WshArguments Object 392
The WshCollection Object 392
The WshEnvironment Object 392
The WshShortcut Object 392
The WshUrlShortcut Object 393
The WshSpecialFolders Object 393

Accessing the Registry 394
Supported Types 394
Deleting a Registry Entry 394
Reading from the Registry 395
Writing to the Registry 397
Doing More with the Registry 398

Scripting the Local File System 398
Accessing Existing Objects 400

Table of Contents

 xi

Handling Events with the WSH 400
Defining an Event Handler 400
Steps to Creating an Event Handler 401

Adding New Objects to the WSH 401
Arranging an ATL Automation Server 402
Defining the Programming Interface 402
Clipboard Support 403

Copying Text 403
Reading Text 403

Drive Formatting 404
Browsing for Icons 405
Registry Key Enumeration 407

Enumerating Keys 407
Enumerating Values 408
Using Enumerators 409

Hooking a Program's Execution 411
Hints for Improving the WSH 412

Adding User Interface Support 413
Creating dialogs 413
The alert() Dialog Box 414
Drag-and-Drop on WSH Files 414

Reusability within the WSH 414
Summary 415
Further Reading 416

Chapter 14: Designing a Shell-Integrated Application 419
Shell-Integrated Applications 420
Documents and the Shell 421

Basic Document Functions 421
The 'Send To' Command 422

Registered Document Types 423
Shell User Interface for Documents 424
Document-Specific Commands on the Context Menu 424
Shell Extensions for Documents 425

How Programs are Affected 425
MDI versus SDI 426

Creating New Documents 426
The New Menu 427

Creating New HTML Files 428

Other Features 429
Application Paths 429
Automatic Startup of Applications 430

Another RunOnce Key 431
The Run Key 432
The RunServices Keys 432

Table of Contents

 xii

The Winlogon Key 433
Services in Windows 9x 433

Designing a Shell-Integrated Application 434
A Metafile Viewer 435

Windows Metafiles and Enhanced Metafiles 435
Displaying a Metafile 436
Printing and Converting a Metafile 438
Assembling the Viewer 441

Adapting the Application 443
The Importance of the Command Line 443
Why a Single Instance Application? 445
Dialog-Based Single-Instance Application 446

Adding Shell Support 447
Changing the Default Menu Item 450
Adding Context Menu Items for any File 450
Give a Folder a Custom Icon 451
Adding Recent Documents is Free 452

Drag-and-Drop Support 452
Customized Open Dialogs 453

Defining a New Template 453
New Dialog Features 455

Bookmarks to Frequently Used Paths 455
Icon and Tooltips for the Buttons 456
Tying the Code Together 457
Prevent the Renaming of Items 458
Tips for Preventing File Deletion 459

What is a Shell-integrated Application? 460
Summary 460
Further Reading 461

Chapter 15: Shell Extensions 463
Shell Extensions: Types and Tips 464

What are Shell Extensions? 464
Calling Shell Extensions 465

File Manager Add-ons 465
From File Manager Add-ons to Shell Extensions 465

How Explorer Calls Into Shell Extensions 466
Displaying a Context Menu 466

Types of Shell Extensions 467
Writing Shell Extensions 467

Using ATL 468
Our First Shell Extension 468

Adding Property Pages 468
Which Interfaces to Implement 468
Initialization of Shell Extensions 468

Table of Contents

 xiii

The IShellExtInit Interface 469
The IShellPropSheetExt Interface 472
Adding a New Property Page 473

Code for Initialize() 474
Code for AddPages() 475

Registering Shell Extensions 476
Testing Shell Extensions 478

Debugging under Windows NT 480
Unloading a Shell Extension 480

More on Property Page Shell Extensions 481
Modifying the Code to Support Multiple Selection 482

Context Menu 485
Implementing IContextMenu 485

Help Text for the New Item 485
A Behavior for the New Item 486
Adding a New Item 487

A Dependency List for Executables 489
Creating a Context Menu Extension 489
Getting an Executable's Dependency List 492
Registering the Extension 497

Adding a New Find Menu 498
Configuring the Registry 499
Finding the Running Processes 500

IContextMenu2 and IContextMenu3 500
Right-hand Drag & Drop 501

Registering Drag & Drop Handlers 502
Assigning Dynamic Icons 503

Different Icons for Different Color Depths 504
Initializing the IconHandler Extension 504
Retrieving the Icon 504
Details of the Example 506
Registering the Icon Handler 509

Monitoring Folders through ICopyHook 510
Implementing ICopyHook 511

What's ICopyHook's IID? 513
Logging the Operations 513
Registering a CopyHook Extension 514

Monitorable Objects 515
More on Copy Hooking 515

Dropping Data over a File 516
The DropHandler Extension 516

The IDropTarget Interface 516
Handling the Drop Event on TXT files 519

Adding Shell Support to Script Files 522
The Project and the Registration Script 523
Dropping Parameters over Script Files 523

Table of Contents

 xiv

DataHandler Shell Extensions 525
The COM Interfaces Involved 526

A Shell Extension Developer's Handbook 526
File Viewers 527

Starting a Quick View 528
How a Quick Viewer Gets Called 529

Writing a Quick Viewer 529
Showing the File 529
Pinning 531
Writing and Registering a File Viewer 532

Summary 532
Further Reading 533

Chapter 16: Namespace Extensions 537
An Overview of Namespace Extensions 538

What Does Writing a Namespace Extension Mean? 539
The Inner Structure of Explorer 541

Namespace Extensions vs. Shell Extensions 541
Primary Interfaces 541

An Activation Timeline 542
The Folder Manager 542
Enumeration of Items 545
The Shell View 548

Additional Interfaces 556
Getting Pointers to Additional Interfaces 556

The Concept of Folders 558
Folder Attributes 559

Flavors of Namespace Extensions 560
Rooted Extensions 561
Non-rooted Extensions 561
Rooted vs. Non-rooted 561

When to use Which 562
Junction Points 563

Using a File Type 563
Using a Directory 564

What you can do with a Namespace Extension 566
Designing Our Namespace Extension 566

What's a Folder Here? 567
Designing a Custom PIDL 567
How to Build a Window Enumerator 567
Designing the View 567

Implementing Our Namespace Extension 568
Common Features of Registry View and Windows View 568
The Windows View Project 569

Table of Contents

 xv

The PIDL Manager Class 570
Creating a PIDL 571
Extracting Information from a PIDL 572

The Windows Enumerator 574
Getting the Next Items 577

The Folder Manager 578
Comparing Items 579
Folder Attributes 581

The Window View 583
Style of the List View 585
Sorting by Columns 588
Browsing for Windows 590

Giving it a User Interface 591
Menu Modifications 592

Displaying Help Text 594
Associating a Context Menu with Items 595

Code for a Better Context Menu 597
Associating an Icon with Items 598

Installing a Namespace Extension 599
A Node on the Desktop 601
Adding an InfoTip 602
Adding a Removal Message 603

Making a Folder Deletable 603
Additional Attributes for a Folder 604
Browsing a Custom Folder 604
Putting this Example to Work 605

Uninstalling the Sample 605

Summarizing Namespace Extensions 605
What's a Web View? 606

The Shell View ID 607
The Default View 607

New Functions in IShellView2 608
What's New in IPersistFolder2 609

How a Web View is Structured 609
Getting in Touch with the Classic View Object 610
The Template of a Web View 611

Firing Events 611
From Custom to Customized Folders 611

Folder Customization 612
The Default Template 613
The Desktop.ini File 613
Creating a New Template 616

Hosting Applications through Namespace Extensions 619
The URL Folder Example 620

Summary 620

Table of Contents

 xvi

Further Reading 621
Final Thoughts 622

Appendix A: A Programmer's Toolkit 625
The Custom AppWizard 625

Why Can't an AppWizard Stand Alone? 626
A Quick Tour of a Custom AppWizard 626

The Wrox AppWizard 628
System Macros 635
Finalizing the Process 636
A Minimal Dialog-based Application 639
A Generic DLL 643
The Rest of the Code 644

Further Reading 649

Introduction

Welcome to Visual C++ Windows Shell Programming! With this book, you'll learn how to program the
Windows Shell, customize its behavior and integrate your applications with it. You'll discover how to
use and modify its features to best effect, and the way to call shell API functions whose
documentation is scant. Programming the shell isn't difficult, but few books explain the subject in its
entirety.

Everything Changes
In Windows 95 and Windows NT 4.0, Microsoft made the operating system's shell programmable and
highly customizable through a variety of different extensions, of which shell and namespace
extensions are just the tip of the iceberg. What's commonly understood by the expression 'shell
programming' also includes a bunch of API functions and registry keys that can transform your Win32
application.

The integrated web browser has blurred the distinction between local and remote objects — it presents
everything on your desktop using the same metaphor, which can be extended to encompass user
applications and documents. Integration with the new parts of the Windows shell is a key part of that
process.

So, the shell today doesn't just mean COM, extensions, and a user interface, but also a window on the
Internet, Dynamic HTML and scripting. The shell has become the meeting-point of a large number of
client-side technologies. Every programmer who is developing Windows-based code sooner or later
needs concrete and insightful samples of how to exploit the built-in features of the Windows shell.

This book covers the whole range of API functions in detail, often revealing bugs and undocumented
features. It delves deep into the world of Explorer, bringing to light things like hooks, the registry,
browser helper objects, shell extensions, namespace extensions and web views. It also looks at
Windows Scripting Host extensions and Shell Scriptable Objects.

Introduction

2

This book is for professional and home developers alike, and has three main goals:

! Providing a better understanding of the existing and often poorly documented shell API
! Giving ideas for new applications
! Showing what's new in Internet Explorer 4.x, the Active Desktop and Windows 98, and how these

fit with the existing shell

What Does this Book Cover?
In this book, I shall attempt to answer the following common questions:

! What is the shell API and how do I use it?
! How do I customize the Windows shell using the registry?
! How can I create special directories like the Recycle Bin or My Briefcase?
! What are the different ways to insert code into Explorer's address space?
! How do I handle icons, the taskbar and the Recycle Bin?
! What is the Windows Scripting Host and how can I use it?
! What are Shell Scripting Objects and Browser Helper Objects?
! How can I implement shell support for the documents my application handles?
! How can I customize the context menu of my documents?
! How do I use COM and ATL to alter shell behavior with shell and namespace extensions?
! How do I debug shell extensions?
! Can you explain the principles and techniques necessary for creating successful shell-integrated

applications?
! How do I customize a folder with Dynamic HTML?

Each aspect of shell programming will be clearly explained with the help of concrete examples
written using Visual C++ 6.0 and ATL 3.0. Some of the most interesting examples in this book are:

! Subclassing the Start button
! Creating and installing a new and enhanced shortcut handler
! New objects to work with the Windows Scripting Host
! A shell extension for assigning different icons to bitmap files according to the palette size
! Press a key and create a new folder in Explorer
! Showing open windows as a node in Explorer

What You Need to Use this Book
It goes almost without saying that in order to run the code in this book, you need a computer running
Windows 98, Windows 95 or Windows NT 4.0 (with Service Pack 4.0). With regard to the last two of
these, some of the examples require you to have installed the Active Desktop update that first
shipped with version 4.0 of Internet Explorer.

The code was developed and tested using Visual C++ 6.0 and ATL 3.0, although you should find few
problems using Visual C++ 5 if that's what is on your machine. The book also makes use of the
Windows Scripting Host and Internet Explorer 4.01 as hosts for some of the applications developed.

Introduction

3

Conventions Used
We use a number of different styles of text and layout in the book to help differentiate between
different kinds of information. Here are some examples of the styles we use and an explanation of
what they mean:

These boxes hold important, not-to-be forgotten, mission critical details that
are directly relevant to the surrounding text.

Background information, asides and references to information located elsewhere appear in text
like this.

! Important Words are in a bold font
! Words that appear on the screen, such as menu options, are in a similar font to the one used on

the screen — the File menu, for example
! Keys that you press on the keyboard, like Ctrl and Delete, are in italics
! All filenames are in this style: Pidl.cpp
! Function names look like this: SHBrowseForFolder()

Code that's new, important or relevant to the current discussion will be presented like this:

void CALLBACK TimerProc(HWND hwnd, UINT uMsg, UINT idEvent, DWORD dwTime)
{
 HWND hwndOK = GetDlgItem(g_hwndDlg, IDOK);

 // Simulate the Close button being pressed
 if(IsWindowEnabled(hwndOK))
 PostMessage(g_hwndDlg, WM_COMMAND, IDCANCEL, 0);
}

However, code that you've seen before, or which has little to do with the matter at hand, looks like
this:

void CALLBACK TimerProc(HWND hwnd, UINT uMsg, UINT idEvent, DWORD dwTime)
{
 HWND hwndOK = GetDlgItem(g_hwndDlg, IDOK);

 // Simulate the Close button being pressed
 if(IsWindowEnabled(hwndOK))
 PostMessage(g_hwndDlg, WM_COMMAND, IDCANCEL, 0);
}

Tell Us What You Think
We've tried to make this book as accurate and enjoyable as possible, but what really matters is what
the book actually does for you. Please let us know your views, either by returning the reply card in
the back of the book, or by contacting us via e-mail at feedback@wrox.com

Introduction

4

Source Code
All the source code from the examples in this book is available for download from the Wrox Press
web site:

http://www.wrox.com
ftp://ftp.wrox.com/
You can also find others to discuss any issues with on P2P at p2p.wrox.com.

Support
We've made every effort to make sure there are no errors in the text or the code. However, to err is
human and as such we recognize the need to keep you, the reader, informed of any mistakes as
they're spotted and corrected. The web site acts as a focus for providing the following information
and support:

! Errata sheets
! Information about current and forthcoming titles
! Sample chapters
! Source code downloads
! An e-mail newsletter
! Developer's Journal subscription
! Articles and opinion on related topics
! Subscription to the COMDeveloper newsletter

Please note that due to the age of this book, support from Wrox is no longer available.

http://www.wrox.com
ftp://ftp.wrox.com/

What is the Windows Shell?

A good definition of an operating system's shell is that it's the user interface provided by the system
to allow the user to carry out common tasks, such as accessing the file system, launching programs,
changing system-wide settings, and so on. MS-DOS had the ubiquitous command.com prompt to
play this role, but Windows has always been a graphical environment, and therefore its shell is, of
necessity, graphical too. Before the advent of Windows 95, the default Windows shell was the
Program Manager.

Program Manager was a kind of central console from which you could start applications, reorder and
regroup icons, and perform a few other duties. In other words, Program Manager was exactly what its
name suggests — a manager for all the programs gathered under the Windows umbrella. Existing side
by side with Program Manager was the File Manager, a system tool designed specifically for the
purpose of maintaining the file system.

With the advent of Windows 95, Explorer superseded these two old tools and encompassed the
functionality of both. If you want to, you can still find the File Manager buried deep in the folds of
Windows' system directory, but it's seldom used these days because it is considerably less user-
friendly than its successor.

A common misconception is that Explorer is just the program that starts up when you attempt to
browse the file system by clicking on My Computer or right-clicking the Start button. In fact,
Explorer is always up and running, from boot time until you switch off your machine. The thing
commonly perceived as being 'Explorer' is actually just a window created in a new thread that is
added to the Explorer process. Explorer is the executable module (called explorer.exe) that
implements the Windows shell.

Chapter 1

8

In this chapter, my aim is to briefly introduce the shell and Explorer. More precisely, I'll cover:

! The components of the shell
! The structure of Explorer

The Components of the Shell
There are many distinct components that contribute to the shell, but let's begin with the most obvious
ones: the desktop and the taskbar. From a conceptual point of view, the desktop is intended to be the
parent of all the objects that populate the Windows shell. In terms of implementation, the desktop is a
window of a particular system-defined window class (whose name is "#32769") and is the ancestor of
all windows that are created. The 'top-level' windows in which running applications are rendered are
(in most cases) children of the desktop window. Among the desktop's children, there is also an
interesting little sub-tree of windows, the root of which is called "Program Manager" — the name is no
accident.

You can examine the stack of existing windows, including those of the Windows shell and any
other application, at any time by using a tool such as Microsoft Spy++, which comes bundled
with Microsoft Visual C++.

The Program Manager window has
been retained for compatibility
purposes only, as you'll see in a
moment. It envelops a structure like the
one shown in the figure:

Immediately below the Program Manager, there's a window whose class name is
SHELLDLL_DefView. This window encompasses the default view object in Windows 95 and
Windows NT 4.0. In practice, this window is responsible for enumerating the content of a standard
folder, which is always rendered through a ListView control — one of the Windows 95 and NT 3.51+
common controls. In fact, the SHELLDLL_DefView window includes a ListView (whose class name
is SysListView32) and a Header control (whose class name is SysHeader32) that is used only for
the ListView's report view.

With the introduction of the Active Desktop in Internet Explorer 4.0 and Windows 98, the default
view object has changed, gaining some Internet-based browsing capability. We'll be looking more
closely at view objects and the changes they have undergone in the next chapter.

The Program Manager
As I mentioned earlier, the Program Manager window is still present for reasons of compatibility. It's
just possible that an application inadvertently ported from 16-bit to 32-bit could be broken in the
absence of such a window (of class Progman). In the Win16 (that is, the Windows 3.1x) world, the
only way to communicate with the shell was through Dynamic Data Exchange (DDE). This layer of
code has been maintained in Windows 95 and even Windows 98. Why? Once again, it's for
compatibility purposes.

What is the Windows Shell?

9

For more details about DDE interface programming and the shell, I recommend that you have a look
at the documentation available with the Internet Client SDK, which contains the most up-to-date
information. DDE is an old technology, and Microsoft has supplied plenty of documentation for it,
which is the reason why I won't be covering it here.

The Taskbar
A primary component of the Windows shell is the taskbar, but this is really just a window owned by
the Explorer process. Each time you need to kill the Explorer process (I'll say more about this in
Chapter 9), you'll cause the taskbar to disappear and reappear. Each time it reappears it is a brand
new window, with a different HWND handle. Thus, it is advisable that you never store its HWND for
future reference. The taskbar is also the window that owns the Start menu, the tray area with the
clock, and even those button-like controls that represent running applications.

The taskbar really is nothing more than a window, so you can perform upon it any action you might
carry out on any other window — moving, hiding, subclassing, etc. In Chapter 7, I'll show how to
subclass the taskbar and the Start button, while in Chapter 9, I'll address how to hide the taskbar and
programmatically restart the shell. This latter feature turns out to be really useful when you're
developing shell and namespace extensions, which we'll look at briefly in the next chapter and
thoroughly in Chapters 15 and 16.

The Desktop
Have you ever wondered where the shortcuts on the desktop come from, and who owns them? I must
confess that I was initially quite convinced that an Explorer module took care of regularly drawing
the icons, taking account of user settings for their placement, color, status, and so on. This module
would have drawn on top of the desktop background, over any wallpaper that the user might have
set.

That's not the way it works. Instead, the shortcuts are just icons displayed by an ordinary ListView.
Of course, this ListView has a variety of rather unusual styles, but it's definitely just a ListView. A
consequence of this is that it's not hard to grab a handle to it and send some messages, as I'll prove in
an example in Chapter 9.

The Structure of Explorer
Explorer is the application that plays the role of the system's shell. When we talk about shell
extensions, we're talking about blocks of code that are detected, loaded and ultimately executed by
Explorer.

Explorer can be considered as a sort of development environment — a kind of microcosm of the
Windows environment. Think about it for a moment: it has its own set of functions and dialogs; it lets
you write specific applications that integrate with the existing infrastructure; it can host applications
and documents. It can even be scripted with any of the Active Scripting-compatible languages
(VBScript, JScript, Perl, and so on). I'll be covering all of these features in this book.

Chapter 1

10

Injection Points for Extensions
The File Manager that shipped with Windows 3.1 had a very nice but underused feature: it was
capable of loading a DLL at runtime, and executing a registered function with a specific prototype.
This means that there were well-defined points in the source where the code itself was 'aware' of some
possible actions that could be carried out by the user. Put another way, it means that the File
Manager had support for extensions — when executing certain actions, it looked for registered
extensions, and loaded and ran them.

We find exactly the same principle behind Explorer's shell and namespace extensions — the
difference is purely one of detail. File Manager used to load global functions from traditional DLLs
with predefined prototypes, but Explorer makes this process more elegant. Specifically, it employs
COM interfaces (which can be thought of as a collection of predefined and fixed function prototypes)
and in-process servers (essentially DLLs).

Of course, COM interfaces and in-process servers are more than just a collection of functions and
DLLs but their use makes Explorer's process more elegant and powerful than the old, DLL-based
process.

Extensions to Explorer
Basically, there are two types of extensions in Explorer's world: shell and namespace extensions.
Their names are a little confusing. Explorer is the Windows shell, so both types could be considered
shell extensions. On the other hand, while shell and namespace extensions both contribute to
'extending' the capabilities of Explorer, there are some differences between them.

A shell extension is a custom behavior that applies to all files of a given type when they are displayed
in Explorer's view. Given this, we could call them, "shell view extensions". The custom behavior is
triggered by a number of specific events such as dragging-and-dropping, right clicking to bring up a
context-menu, drawing an icon, or displaying the Properties dialog. You can define your own
handler for any of these events. For example, you can decide the icon to be displayed for a given
.bmp file, add a preview page to the Properties dialog for all Windows metafiles, or even add a new
function to an executable's context menu. I'll cover all these examples in Chapter 15.

A namespace extension can be one of two types, depending upon what you link it to. If you associate
a namespace extension with a type of file, then it is functionally equivalent to a context menu
extension, albeit with significantly more complicated code. However, if you associate a namespace
extension with a folder, then that folder will become a custom folder. Your code will decide the
content, the icon for Explorer to display, subfolders, sorting, context menus, and so on.

Why Program the Shell?
This is a very reasonable question. The simple answer is, "To make our applications better and
richer," but that's a bit glib. We do it to integrate our modules with the system, or to automate some
tasks for which there's no key combination, interface, or menu command. We do it to administer the
system in a more flexible and powerful way. We do it to deliver more user-friendly applications. At
least, these are the reasons why I program the Windows shell; I'm sure that, in time, you'll find there
are many other reasons to do it.

What is the Windows Shell?

11

Where This Book Will Take You
There are two ways to program the shell: using API functions and using COM interfaces. The two
methods are not mutually exclusive, nor do they overlap. They are two different approaches and
address two different areas of functionality. I'll say more about this in the next chapter, but in the
meantime let's take a look at the direction the book will be taking in later chapters.

You know that shell programming requires the use of both API functions and COM interfaces. The
API functions let you access the basic functionality of the shell, such as working with files, browsing
folders, executing programs, and handling icons and shortcuts. The COM approach springs into life
when you want to enhance and refine the basic shell's behavior with custom extensions.

This book will cover the API functionality first, digging deep into function prototypes, possible gaps
in the documentation, and uncovering bugs. In general, my goal is to shed light on all the obscurities
that you might have found. Chapters 3 to 9 are devoted to specific groups of APIs that span across
the range of typical shell operations. In particular, Chapter 3 will tell you about
SHFileOperation()— a function for copying, moving, deleting, or renaming files. Chapter 4
unveils the secrets of SHGetFileInfo(), the system-provided means to get both system and shell
information about files (attributes, icons, type, display name). Chapter 5 in turn provides you with a
crash-course on the internal organization of folders, covering settings, browsing, and special folders
like Favorites and SendTo.

Shortcuts are featured in Chapter 6, where you will learn about creating and resolving shortcuts, and
infrequently used fields. In Chapter 7 we enter Explorer's address space and discuss the other side of
customization: what you can do safely without Explorer being aware of it. In particular, I'll show you
how to replace the Start button with a new button and a different menu! Once you have done this,
you have full control over the Windows system. The remaining chapters, 8 and 9, will tell you about
program spawning, icons and the taskbar. I'll demonstrate how to add new buttons with their own
menu to the taskbar, programmatically.

The second part of the book is based on those Explorer features that require COM interfaces, but this
doesn't begin until Chapter 12. In the middle there are two chapters that bridge the gap between the
shell functions and Explorer's interfaces. Chapter 10 covers the new SDKs that have been added with
the most recent shell updates and requires Windows 98, or Windows 95/Windows NT 4.0 with Active
Desktop installed. Chapter 11 provides an overview of shell objects such as My Briefcase,
Control Panel and Printers and prepares you for the concept of custom folders. Scrap objects
and the RunDLL32 utility are also covered in this chapter, and there is a full description of Explorer's
command line.

In Chapter 12 I'll introduce the shell's object model — the first attempt to move a small subset of API
functions into (dual) COM interfaces. This is a feature that, as a minimum, requires Active Desktop to
be installed. What's interesting is that this object model allows you to access some functions (mostly
system dialogs) that are otherwise unavailable.

Chapter 13 introduces the Windows Scripting Host. In a nutshell, this is the runtime engine that (at
last!) lets you write Windows batch files. Technically speaking, it is a separate entity from the shell
but there's a strict logical relationship between them. The Windows Scripting Host exposes an object
model that you can program using VBScript, JScript or any other scripting language. I shall extend
this model by adding useful new objects.

Chapter 1

12

In Chapter 14 I shall begin to focus on the application and the reasons that might lead you to adopt
shell or namespace extensions. I shall explain what a shell-integrated application actually is, and why
shell extensions represent the best way to fuse your modules to the system's shell. In Chapter 15 I'll
show how to write shell extensions to customize context menus, icons and properties, and how to
debug them. Chapter 16 covers namespace extensions and includes an example that adds a new
expandable node to Explorer's tree view, rendering the entire stack of currently extant windows in
terms of folders.

Our trip around the Windows shell ends with a look at folder customization with Dynamic HTML
and scripting. This is not purely for fun — it appears to be the easiest way to create namespace
extensions!

The Plethora of Shell Versions
These days, you can't write a book about shell programming without first explaining the range of
shell versions covered. In this case, it's easy — I'll cover every version that has appeared on Earth,
from August 25, 1995 (the date that Windows 95 shipped) onwards. My approach will generally be
task-based so I'll concentrate on functionality and warn you when a given feature requires a specific
shell version. If you're running Windows 98, or IE 4.0x and the Active Desktop shell update on either
Windows 95 or Windows NT 4.0, you won't have problems with any of the examples. Some of them
may not work properly, however, if you haven't installed the Active Desktop updates, whether or not
you have IE 4.0x installed.

The following table summarizes the shell version numbers for each platform. The version numbers
refer to the shell32.dll file. You can check the version yourself by looking at the Version page of
the DLL's Properties dialog, or dropping shell32.dll into the version testing utility that I'll build
in Chapter 10!

System Internet Explorer Active Desktop Version

Windows 95, NT 4 – – 4.00

Windows 95, NT 4 IE 4.0 – 4.00

Windows 95, NT 4 IE 4.0x – 4.00

Windows 95, NT 4 IE 4.0 Yes 4.71

Windows 95, NT 4 IE 4.01 Yes 4.72

Windows 95, NT 4 IE 4 SP1 Yes 4.72

Windows 98 – – 4.72

The greater part of the functions and COM interfaces are already available with version 4.00 of the
shell. More interesting is to see what changes with the newer versions. Version 4.71, which
corresponds to the first release of the Active Desktop, bundled with IE 4.0, added functions such as:

! SHGetSettings()

! SHGetSpecialFolderPath()

! SHInvokePrinterCommand()

! SHEmptyRecycleBin()

What is the Windows Shell?

13

! SHGetFreeDiskSpace()

! SHQueryRecycleBin()

! SHGetNewLinkInfo()

And some new COM interfaces, including:

! IURLSearchHook

! IQueryInfo

! IPersistFolder2

! IContextMenu3

! IInputObject

! ITaskbarList

! IDeskBand

Version 4.72 seems not to have changed anything in the programming interface.

There are some strange anomalies, however. For example, IShellView2 is commonly associated
with Web View and the Active Desktop, but it's defined in the shlobj.h file that came with Visual
Studio 97 in early March 1997. (IE 4.0 and Active Desktop shipped in fall '97.) Is IShellView2
supported by version 4.00, then? The answer is probably yes, but I really don't know for certain.

SHGetSettings(), SHEmptyRecycleBin(), and SHQueryRecycleBin() aren't marked as
version 4.71 functions, even in the Visual Studio 6 documentation. Nevertheless, they aren’t version
4.00 functions — just try to use them on the retail version of Windows 95, and see what happens!

A complete list of the currently supported interfaces and functions can be found in the Visual C++
online documentation and the Internet Client SDK. See the next section for more information on
documentation.

Where is the Official Documentation?
To conclude, I'll point out where you can find the relevant official Microsoft documentation.
Function prototypes, a syntax overview, and a few samples can be found in the MSDN library (under
Platform SDK\User Interface Services\Shell and Common Controls\Windows Shell API). Also, the
Internet Client SDK (which is, at the time of writing, available from
http://www.microsoft.com/workshop/essentials) is a good source of information on all the most
recent changes and version differences. Finally, the MSDN library also includes a few examples taken
from MSJ and MIND articles and reprinted from books. (See the Further Reading sections at the end of
each chapter.)

Summary
In this chapter I've outlined what we're going to be doing in the forthcoming chapters, and why. In
particular, I've tried to explain:

! The nature and the structure of the shell
! Differences between the various shell versions
! Where to find the documentation that I'm aiming to extend

http://www.microsoft.com/workshop/essentials

The Structure of the Shell

Under the umbrella of 'shell programming' are a number of API functions and COM interfaces. This
heterogeneous collection of 'commands' allows you to program the Windows shell in different ways.
Functions and interfaces are not two equivalent approaches that provide the same functionality.
Instead, they provide different functionality at different logical levels.

API functions cover the basic operations a user might want to perform on the objects that populate
the shell: files and folders. The COM interfaces give you the chance to extend, enhance and even
customize the standard behavior of the various constituent objects, including that of the shell itself.

Grouping the functions and interfaces in a task-oriented manner will give us the chance to look at the
shell as a whole. We can consider it rather as we would an object, with properties and methods. In
this chapter, I'll attempt to identify what functional group each function or interface falls into. As a
result, you should gain a better grasp of the shell's programming interface that will help when you're
looking for that 'missing' piece of functionality.

In this chapter, we'll be covering:

! Definitions that we'll be using throughout the rest of the book
! Functional groups of shell API functions
! Functional groups of COM interfaces implemented by the shell and its inhabitants
! How the structure of the shell has evolved with the introduction of Active Desktop

By the end, you should have a better understanding of where the book is taking you, and a clear
picture of how the kind of functionality that is available to you as a shell programmer.

Chapter 2

16

The Pieces of the Shell
While we can't say that the Windows shell is object-oriented in practice, there are certainly some
'objects' that we can identify when looking at its structure. These 'objects' have attributes that sound
like 'properties', and can they perform actions that sound like 'methods'. It's just that they rely on API
functions to let you get and set them. A typical object is the folder.

If the shell isn't object-oriented, then neither is there an all-encompassing object model, although
once again we can draw analogies. We can imagine a certain infrastructure that looks like a hierarchy
of objects. Put another way, we have a collection of objects that work together in a manner
represented by the following diagram:

Basically, the shell is composed of folders. A folder is a container of child elements, including sub-
folders — these elements are usually called folder items. The root folder is called Desktop, and its
children include things like My Computer, Network Neighborhood, Recycle Bin, and possibly others
depending on your PC's settings. The collection of all folders is called the shell's namespace.

The Shell's Namespace
Conceptually, a folder is something fairly similar to a directory in a file system, but it may or may not
be bound to a real, physical directory. If it isn't bound in this fashion, it's called a virtual folder. We
can distinguish two main categories of folders: ordinary folders (also named "file folders" or
"directories"), and custom folders. Naturally enough, the items contained in a file folder are files, and
their attributes are name, type, size, date last modified, and so forth. The items contained in any other
type of folder may be files — usually with another, extended set of attributes — but could also be
something completely different, like printers or network nodes.

The Structure of the Shell

17

Folders
How is a folder implemented? A folder is actually a shell 'object' whose behavior is coded into a
COM module that exposes a common interface to the Windows shell. By means of this connection, a
folder can tell the shell how to design its content, what icon to use to identify it, and what text to
employ to describe it. This is what, for example, My Computer does to look like a folder. It has a
layer of code that detects all the drives available on the PC, and adds a sub-tree to the Explorer's
view for each one.

Each different type of folder has a different layer of code to provide its behavior. For file folders, this
means scanning the file system, retrieving files and sub-folders, and displaying them through a list
view control. The Printers folder, on the other hand, counts the connected and installed printers and
displays an icon for each of them. You can have folders of virtually any type and with any behavior.
File folders (that is, directories) are just one of all the possible types.

From all the folders that aren't file folders, the shell documentation picks up on a relatively small
subset that it calls special folders. In fact, these are custom folders that the Windows shell provides by
default, and they differ from file folders in the following ways:

! They can contain files and other 'objects'
! They can provide a different view of their content
! They can choose not to be bound to a physical directory
! They are part of a system-defined group for which the SDK offers a specific set of functions

A list of the special folders can be found in the Win32 SDK documentation, and later on in Chapter 5
of this book. Just as I said earlier, a special folder is a folder of a particular type with its own COM
module to provide its behavior. Because this COM module is the reason for a new node being added
to the shell's namespace, it is termed a namespace extension.

A special folder is intended to make system information available via a suitable user interface. In
most cases, this means that the folder provides a view of its content that's more or less consistent with
the typical view offered by a file folder. The precise kind of information, of course, depends upon the
type of the folder.

Like ordinary file folders, special folders can contain files. However, they usually represent them in a
slightly different way, showing different attributes. This occurs because a special folder assigns a
special meaning to a file, and isn't treating it as a normal entry in the file system. (If this wasn't true,
they wouldn't be that special...) The Recycle Bin, for example, holds ordinary but hidden files.
Because the folder is intended to show the current list of files marked for deletion, it brings attributes
like the original location, and the date of deletion to the fore.

Chapter 2

18

Most (but not all) of the special folders are tied to a physical directory on one of your disks. Normally
this is a read-only directory whose content is all that is needed to display the intended information in
the most suitable way.

Another way to look at it is this: most of the special folders need a directory in which to store their
data. This directory may be located anywhere in the disk, and represents the junction between the
folder and the rest of the shell — the location in the namespace where the special folder is placed. The
content of this directory is not necessarily shown as a list of files. Instead, the code associated with the
folder takes care of interpreting and displaying it in a way that best suits its intended role.

The ability to have a folder that can contain absolutely anything leads us to another couple of
important concepts that we'll be dealing with extensively in the chapters to come: file objects and
PIDLs.

File Objects
A 'file object' is an item contained in a generic folder — a file, a record, a block of memory, a
connected device, and so on. 'Folder items', 'elements of a folder', and 'file objects' are all equivalent
expressions to refer to the individual items within a folder. If the folder is a file folder, then a file
object is nothing more than a file. The word 'file' is therefore a bit more specific than 'file object',
because it refers to a precise entry in the file system. A file is a file object, but a file object is not
always a file.

There's a subtle problem hidden behind these generalized concepts of folders and folder items. How
can we safely and uniquely identify each item in the shell's namespace? If the shell coincides with the
file system (as it does in Windows 3.x) then the fully qualified name of the file is an excellent
guarantee of uniqueness. You can't possibly have two files with the same name and path. However,
when a folder becomes something more general than a directory of files, a more general way of
identifying its items is needed.

The Structure of the Shell

19

PIDLs
A PIDL is a data structure that's meant to identify an item contained in a folder uniquely. A PIDL —
the acronym stands for pointer to an identifier list — is more versatile than a fully qualified file name.
It has to guarantee the uniqueness of the item not just within the folder, but also throughout the
shell's namespace. More importantly, it must be able to handle files and file objects transparently. To
understand the structure and the role of PIDLs, let's analyze the binary structure and compare it with
the path names that they replace.

A fully qualified file name is just a string, but it's a string with a very particular format. It's a
concatenation of substrings, each of which identifies a level in the file system's hierarchy. You have
the drive name, then the directory name(s), the filename, and finally the extension, all separated by
backslashes. What you perceive to be a fully qualified file name is no more than a pointer to these
concatenated elements — a pointer to a string in this case. Conceptually, you could see it as a pointer
to an array of structures, each of which identifies an element of the path name.

The figure illustrates the relationship between a path name and a PIDL. At the same time, it gives an
idea of how an identifier list is organized in memory. From the programmer's point of view, a PIDL is
implemented using an LPITEMIDLIST type, which is just a pointer to an ITEMIDLIST structure.

typedef struct _ITEMIDLIST
{
 SHITEMID mkid;
} ITEMIDLIST, *LPITEMIDLIST;

The intermediate objects that make up the various parts of a path name map to the item identifiers of
a PIDL. They're rendered through a SHITEMID structure:

typedef struct _SHITEMID
{
 USHORT cb;
 BYTE abID[1];
} SHITEMID, *LPSHITEMID;

Chapter 2

20

The first two bytes of this structure denote the size of the item identifier — that is, the number of bytes
taken up by the data associated with the element and used to identify it. The cb value must include
also its own size. Mapping to path names, cb would be the length of the string representing the drive
or the directory, plus the length of an unsigned short variable. Following that in the structure is
the first byte of the data.

A fundamental point to bear in mind is that a PIDL must be a 'flat' structure, and can't include
pointers. All the data that comes together to form a PIDL must be explicitly embedded, rather than
linked through a pointer. This means that we can't use the typical schema of a list composed of
structures whose final member points to the next element in the chain. There's another point,
however. As you can see, the address of the next element in the list can be calculated by adding cb
bytes to the address of the current SHITEMID object. This is by design, but it still requires that
consecutive SHITEMIDs be contiguously allocated.

Defining the rules for constructing PIDLs is up to the code that implements the behavior of the folder
whose items they represent. This code should also decide what data must be used to identify each
item identifier. For example, suppose that you wanted to implement a folder that renders the
Windows registry as if it were a file system. Your 'subfolders' will be the registry keys, and your 'file
objects' will be the registry values. A possible way of identifying each element in this folder would be
to use the names of keys involved. Here's how that PIDL may look using the same diagrammatic
format as we had in the previous figure. Notice that HKEY_CLASSES_ROOT is a long value, so it
takes four bytes plus the two bytes of an unsigned short.

The chain of item identifiers traces the path from the root of the namespace to a specific item in a
specific folder. The identifier list gathers all the elements of the chain and represents a way of
distinguishing an element that's unique throughout the shell. Making sure that two item identifiers are
contiguously allocated in memory is the responsibility of the code that wraps the folder object.

While path names and PIDLs are similar, they certainly aren't equivalent, and they can't be used
interchangeably. They are different data structures.

There are a actually a few other issues to take into account when it comes to defining the rules for
a PIDL, and we'll be examining them in detail when we look at namespace extensions at greater
length in Chapter 16.

The Structure of the Shell

21

The Shell's View
The content of any folder is displayed inside Windows Explorer through an object called a shell view.
Each folder defines its own shell view object, and delegates to it all the tasks that relate to its user
interface. The shell view object for a file folder is implemented using a list view control whose items
are the names of the files and the subfolders. The default shell view object assigns an icon, a display
name and a type name to each file it is called upon to treat.

The icon may be determined in several ways, depending on the nature of the file in question. Usually,
icon files (.ico) are rendered using the icon they define, while programs (.exe) display the first icon
defined in their resources. If no icon is present, a default one is used. For all other files, the shell
usually employs the icon defined for the class that the file belongs to. However, this behavior can be
customized, as I'll explain in a while.

Throughout the shell, files are grouped together by types that are specified using file extensions. The
set of files of a certain type is often referred as a file class, which is associated with an icon and a
descriptive string that's shown under the Type column in the Details view of Windows Explorer. For
this to take place, however, the file class needs to be registered in the system registry, from where the
shell will read the information about the type, and its icon.

Once you've defined a file class (as described in Chapter 14), you can write code that affects and
modifies the default behavior of the shell in response to some events that take place on files of a
certain class. These include drawing the icon for a file, popping up the context menu, and displaying
the Properties dialog. By defining a shell extension, you can decide dynamically what to do when
those events take place. It's possible, for example, to add new items to a context menu and handle the
user clicking on them, and to determine dynamically, on a per-file basis, what icon to display.

Hooking the Shell
In general, shell extensions can be seen as hooks that are set throughout the shell. In Win32, a 'hook'
is a piece of code defined by an application that the system calls back when a certain event is about
to occur. There are about a dozen different types of hook, and they can vary widely in their scope:
some affect only the application that installed them, while others impact upon all the applications
running in the system.

A typical example of this kind of thing is the keyboard hook that allows your code to be informed of
a keypress before the corresponding message is sent to the interested window. Other activities
subject to hooking are mouse actions (movements, clicking), window management (creation,
destruction, activation), and message handling. See the Win32 SDK documentation for a complete
list.

From the programmer's perspective, a hook is a callback function with a fixed and predefined syntax.
As a callback function, the system calls it on the basis of a well-known prototype. A shell extension is
a COM interface rather than a callback function, but the principle behind it is the same: both allow
you to specify some code the system will execute while in the process of some predefined action.

Chapter 2

22

The subject of scope is particularly interesting for Windows hooks. By setting a local hook, you catch
only the events that occur within the context of the application, but the result of setting a global hook
is that you'll get informed when the hooked event occurs in any running application. Setting a global
hook means that your application is defining a piece of code that other applications, running in the
context of other processes, will execute. In fact, this is the easiest way under Win32 of breaking
process boundaries and injecting your own code into the address space of another process. It is also
the only approach that works on all platforms, from Windows 95 to Windows 98 and NT 4.

Process memory separation is a huge topic that's not among the goals of this book. Excellent
coverage, however, may be found in the 3rd edition of Jeffrey Richter's Advanced Windows
(Microsoft Press).

The Shell's Address Space
Injecting code into the context of another process is important because it allows you to gain access to
the unexposed objects of the other process, and this is particularly important and interesting for shell
programmers. When you successfully insert your code into the shell's address space, you can query
for the shell's interfaces, change the user interface, and even replace the ubiquitous Start button (as
I'll show you in Chapter 7).

Global hooks are one way of letting your code run in the shell's address space, but a more powerful
and flexible mechanism is provided by browser helper objects — COM objects that Explorer and
Internet Explorer both load automatically each time their main window starts up.

The Shell's Memory Allocator
Sooner or later, working with the shell is going to require you to allocate memory within its address
space for your own purposes, and to this end the shell provides you with the memory allocator. This
service, which is a wrapper built around the IMalloc interface, can be used as a replacement for
new or GlobalAlloc().

To get a reference to this object, you should call SHGetMalloc(). What you're returned is not a
new pointer to the IMalloc interface — you can get one of those using CoGetMalloc() — but a
reference to the IMalloc object held by the system's shell. With this pointer you can safely free
memory that has been allocated by the shell, and have the shell free your memory. It might sound a
little strange, but these practices are not so uncommon in shell programming.

The Shell's Taskbar
The taskbar window is a well-known part of the Windows user interface, if for no other reason then
because it contains the Start button. What we call the "Windows taskbar", however, is actually a
special case of a family of windows called 'application desktop toolbars', the best-known example of
which is probably the Office 97 shortcut bar. There's a specific set of functions and messages that
address desktop toolbars, but interestingly only a very few of them affect the Windows taskbar. As a
result, even if it is not clearly pointed out by the documentation, the system taskbar and desktop
toolbar may be considered different objects.

The Structure of the Shell

23

Another common misconception about the taskbar is that it contains as many buttons as there are
running applications, but this is untrue for two reasons:

! Not all the running applications show up in the taskbar
! The only child of the taskbar that's a button is the Start button

Believe it or not, what appears to be a collection of buttons is actually a tab control with a special,
button-like style.

The role of the taskbar is that of a system console, giving you access to all the running programs. In
many cases, it would be desirable to be able to limit the functionality of the taskbar — this is a typical
requirement of applications intended to run on publicly available PCs, where you don't want users to
be able to run other programs or browse the file system. The Win32 API doesn't provide a rich set of
functions to work on the taskbar, but I'll try to remedy this in Chapter 9.

The Shell API Functions
The version of the MSDN library that ships with Visual C++ 6.0 lists over 100 functions in its shell
reference section. However, a good number of these deal with very specific areas that sometimes are
at the margin of what is commonly perceived as being the Windows shell — I'm referring in particular
to the routines that deal with parsing files, and with the screen saver.

You won't find an exhaustive guide to every single one of those functions in this book. Instead, we'll
concentrate on the core functions that work on files and folders, and try to shed light on their often
obscure and poor documentation. To help in categorizing them further, I've identified five different
functional groups.

Group Functions

General Windows Functions Functions to deal with screen savers, Control Panel applets,
context-sensitive help, and shell drag-and-drop. (Not OLE
drag-and-drop.)

Shell Internals Functions to access Explorer's address space, get the shell's
memory allocator, launch executables, and detect changes in
the user interface.

Taskbar Functions that deal with the tray area and communicate with
the Windows taskbar.

Files Functions that operate on files. They execute system actions
like 'copy', 'move', 'delete' and 'get information', and add files
to special system folders like Recent Documents.

Folders Functions that work on folders. By the means of these
functions, you can browse for folders, get the path of a system
folder, or discover the settings of a folder.

Along with these groups, there are a few others whose functions are not explicitly referred to as being
part of the shell's programming interface, but in my opinion they definitely deserve to appear in the
list.

Chapter 2

24

Group Functions

Icons Functions to extract icons from executable files.

Environment Functions to manipulate environment variables.

Shell Lightweight API Functions to access the registry easily, for reading and writing, to
handle path names, and to manipulate strings.

In particular, there are functions for working with icons and environment strings in the shellapi.h
header file, which is the main reason that led me to include them here. As for the Shell Lightweight
API (which is examined in detail in Chapter 10), let's say the functions it provides could be placed in
any number of categories, but that they apply particularly well to programming the shell.

The tables that follow this section list and describe some of the functions in the categories I've
defined here. I do this so that you get a better idea of the kinds of operations we'll be looking at over
the course of the book, and to provide you with a place that you can come to look up quickly any
function I use later on whose purpose temporarily slips your mind.

General Windows Functions
As the name suggests, these functions affect the Windows shell only marginally. In most cases, the
functions come directly from the Windows 3.1x API — they handle things like help files and drag-and-
drop. All of them are well supported in any 32-bit version of the shell.

Function Description

DragAcceptFiles() Toggles the style that enables a window to accept drag-
and-drop.

DragFinish() Frees the memory allocated to move a list of file
names from the shell.

DragQueryFile() Extracts file names from the memory block the shell
allocated to hold dragged files.

DragQueryPoint() Obtains the point where the drop occurred.

CPlApplet() Main procedure for a Control Panel applet.

GetMenuContextHelpId() Returns the ID of the help context for a given menu.

GetWindowContextHelpId() Returns the ID of the help context for a given window.

SetMenuContextHelpId() Sets the ID of the help context for a given menu.

SetWindowContextHelpId() Sets the ID of the help context for a given window.

WinHelp() Opens a help file.

ShellAbout() Displays a default and partially customizable About
box.

The Structure of the Shell

25

Shell Internals
This category contains functions that work with the shell at the lowest level. Also, they let you enter
the address space of the shell in order that you may do work alongside it, and gain access to its
memory.

Function Description

ShellExecute() Executes the specified operation on the specified file.

ShellExecuteEx() The same as above, but with more options.

SHChangeNotify() Through this function, a program can let the shell know
about changes that require it to refresh the information
it holds.

SHGetInstanceExplorer() Returns Explorer's IUnknown interface pointer.

SHGetMalloc() Returns a pointer to the shell memory allocator.

SHLoadInProc() Loads the specified COM object into Explorer's address
space.

Taskbar Functions
The Windows shell doesn't define many functions to work with the taskbar, so you often end up
having to do most of the work yourself. (I'll show you how in Chapter 9.) However, there are a
couple of functions related to the taskbar:

Function Description

Shell_NotifyIcon() Displays and manages icons in the tray area, near the clock.

SHAppBarMessage() Sends messages to the system's taskbar.

File Functions
The file is one of the most important elements in the Windows shell. A graphical environment
requires a file to have many different attributes, which in turn means specific functions to deal with
them. Note the appearance in this table of the Version column; some of the functions in this and
later categories were introduced in recent versions of the shell, and this column reflects that fact.

Function Description Version

FindExecutable() Returns the path of the executable file
registered to handle a file of given name.

Any

SHAddToRecentDocs() Adds a link to a given file to the system's
Recent Documents folder.

Any

Table Continued on Following Page

Chapter 2

26

Function Description Version

SHFileOperation() Used to copy, move, delete or rename one or
more files at a time.

Any

SHFreeNameMappings() Frees a memory structure returned by
SHFileOperation() under certain
circumstances.

Any

SHGetFileInfo() Returns various pieces of information about a
given file.

Any

SHGetNewLinkInfo() Creates the proper name for a new shortcut file. 4.71

Folder Functions
As we've discussed, a folder is a little more general than a directory: it can contain more than just
files. Furthermore, the software behind a folder is directly involved in returning a unique identifier
for each of its items. Under the Active Desktop, a folder can also have its own set of graphical
attributes.

Function Description Version

SHBrowseForFolder() Displays a dialog that lets you choose a
folder.

Any

SHEmptyRecycleBin() Destroys the content of the Recycle
Bin folder.

4.71

SHGetDataFromIDList() Retrieves data from an identifier list. Any

SHGetDesktopFolder() Returns the IShellFolder pointer
for the Desktop folder.

Any

SHGetDiskFreeSpace() Returns the amount of free disk space
for a specified drive.

4.71

SHGetPathFromIDList() Returns the path name (if any) for the
specified identifier list.

Any

SHGetSpecialFolder
Location()

Returns the identifier list for the
specified system folder.

4.71

SHGetSpecialFolderPath() Returns the path name (if any) for the
specified system folder.

Any

SHGetSettings() Returns a value denoting the current
settings for that folder.

4.71

SHInvokePrinterCommand() Allows you to send commands to the
printer.

4.71

SHQueryRecycleBin() Returns the amount of space the
Recycle Bin is currently taking up.

4.71

The Structure of the Shell

27

Icon Functions
Icons are central to a graphical environment like Windows, and the shell is the most visible part of
the operating system. Consequently, in my opinion, icons are central to the Windows shell
programming interface.

Function Description

ExtractIcon() Returns an icon handle from an executable file.

ExtractIconEx() The same as above, but with more options.

ExtractAssociatedIcon() Returns the icon handle for the specified file, based on the
file class.

The COM Interfaces
We can perform a similar trick with the COM interfaces involved with the shell as we did with the
API functions. Once again, using the version of the MSDN library that ships with Visual C++ 6.0 as a
reference, we can count up to four different categories of shell-related COM interfaces.

Group Interfaces

Shell extensions The COM interfaces that get involved in all the shell's activities,
from icons to context menus, and from UI activation to file viewers.

Namespace extensions The COM interfaces usually involved with namespace extensions.

Hook The interfaces that let you 'hook' onto something. Specifically,
program execution, URL translation and the creation of Internet
shortcuts.

Miscellaneous Interfaces to customize the taskbar, to communicate with the Open
common dialog, and to program the My Briefcase object.

Not all of these interfaces always have to be implemented by developers — in some cases, you only
need to know enough about them to be able to invoke their methods properly. Let's see them in a bit
more detail.

Shell Interfaces
Under this heading, I've put all the COM interfaces that eventually have something to do with the
shell and its extensions.

Interface Description Version

IFileViewer,
IFileViewerSite

Let you define modules to provide Quick View
handlers for a given type of file.

Any

IInputObject,
IInputObjectSite

These interfaces are used to handle UI activation and
process accelerators for objects contained in the shell
that can accept input from the user.

4.71

Table Continued on Following Page

Chapter 2

28

Interface Description Version

IShellIconOverlay,
IShellIconOverlay
 Identifier

Used to manage the icon overlay for files, letting
you know which overlay is used for a given file. An
icon overlay is a bitmap the shell draws over an
icon better to qualify it, like the hand that indicates
a shared folder.

4.71

IContextMenu,
IContextMenu2

Allows you to add new items to the context menu
for a particular type of file. IContextMenu2
handles owner-drawn menus.

Any

IContextMenu3 The same as IContextMenu2, but allowing better
keyboard control.

4.71

IShellExtInit Takes care of initializing a shell extension. Any

IShellChangeNotify The shell extension counterpart of the
SHChangeNotify() API function. Basically, it
allows you to write a module that hooks on the
changes at the shell level notified through
SHChangeNotify().

4.71

IExtractIcon Enables you to obtain icon information for any
folder item.

Any

IShellIcon Provides an alternative way of getting icons for any
folder item that is superior to IExtractIcon
under certain circumstances.

Any

IShellLink Allows you to create and resolve shortcuts to files
and folders.

Any

IShellPropSheetExt Used to add new pages to the Properties dialog for
a given file class.

Any

Namespace Interfaces
To write namespace extensions (as we will in Chapter 16), you will need to acquaint yourself with a
considerable number of COM interfaces. Here are the most important and necessary ones.

Interface Description Version

IShellView,
IShellView2

Used to define a view object for a namespace extension.
IShellView2 is still not documented, but it's used in
Web-based views.

Any

IShellBrowser Represents the browser, be it Explorer or Internet
Explorer.

Any

IEnumIDList Provides methods to let the shell enumerate the content
of a folder.

Any

The Structure of the Shell

29

Interface Description Version

IShellFolder Provides methods to let the shell handle a custom
folder in a standard way. IShellFolder hides
custom code from Explorer.

Any

IPersistFolder Lets you initialize some shell extensions and any
namespace extension.

Any

IPersistFolder2 The same as above, plus some enhancements to
support Web-based views.

4.71

IQueryInfo Retrieves flags and infotip text for items in a folder. 4.71

Hook Interfaces
The Windows shell gives our modules the opportunity to detect a certain number of events, and to
add our own custom code in the middle.

Interface Description Version

ICopyHook Lets you hook onto any file operation (copy, move,
delete, rename) in the shell.

Any

IURLSearchHook Lets you hook while Explorer is trying to translate
an unknown URL protocol.

4.71

INewShortcutHook Lets you hook while Explorer is trying to create a
new Internet shortcut.

4.71

IShellExecuteHook Lets you hook up to the startup of any new process
instigated through ShellExecute() or
ShellExecuteEx().

Any

Miscellaneous Interfaces
The remaining interfaces cover specific areas of shell programming: My Briefcase, common
dialogs, and the taskbar.

Interface Description Version

INotifyReplica,
IReconcilableObject,
IReconcileInitiator

All these interfaces are involved in the file
reconciliation process that ends up with a new
and unique updated version of the same
document.

Any

ICommDlgBrowser Provides special behavior when a custom folder
is hosted inside the common dialog boxes.

Any

ITaskbarList Enables you to add new buttons to the system's
taskbar.

4.71

Chapter 2

30

Why the API? Why COM?
Now that we've looked at the functionality provided by the Windows shell, it's time to give a little
thought to the roles played by API functions and COM interfaces. Essentially, the whole set of shell
functionality can be divided up into two areas: basic functions and extensions. From this point of
view, it's easy to see which approach addresses which area.

At present, much of the functionality offered through API calls can be seen as the 'methods' of a
pseudo-object called "the shell". This pseudo-object enables you to move or copy files, or to browse
for folders. You can also retrieve information about a given document, and so on. The first signs of an
object model begin to delineate themselves.

On the other hand, Windows was originally designed in pure C, and it has never really been re-
thought in terms of an object-oriented design. From that perspective, it's not surprising at all that we
have basic functionality exposed through straight API calls.

COM allows components to be written and then used through interfaces they choose to expose, and
by no other means. Using interfaces, it's easy to gather related functions and provide access to a given
object. From the shell's point of view, COM interfaces are an evolution of the API calls — you can see
this in the ITaskbarList interface, which is one of the first examples of a system component whose
programming interface is exposed through COM, and not through API calls.

Other examples of this pattern are the hook interfaces we met above. The Win32 SDK is full of
hooks, but they are programmed through callback functions, not COM interfaces. The shell
programming interface, on the other hand, contains hooks that require you to write, and properly
register, a COM server. In practice, the difference is not that great, but architecturally speaking
they're a world apart.

In summary, there's a wind of change blowing through the Windows shell, and COM is its source.
Aside from the examples already mentioned, all the remaining COM interfaces are used to extend
Explorer's behavior. Because Explorer requires in-process servers by design, they all fall into a kind
of parallel container that is just as important as the one that contains API calls and a few COM
interfaces here and there. They can be seen as the two sides of the same coin (the coin being the
shell), but they are definitely distinct.

What Changed with Active Desktop
The Active Desktop shell update brought with it some new features and changed several aspects of
the Windows shell. It encourages the use of HTML wherever possible, and introduces the concept of
a Web view, folder customization, scripting capabilities, a simplified but effective object model, and a
handful of new functions and COM interfaces.

The last item in the above list is particularly interesting: we now have the very first shell object
model, exposing some of the shell's functionality through COM objects. This has been done primarily
with the benefit of Visual Basic programmers in mind, and so far the model is incomplete and not as
flexible as you might expect, but it's an important first step.

The Structure of the Shell

31

Apart from the changes in the shell API, Active Desktop represents a noteworthy evolution of the
structure of the desktop and the folders. In particular, it has changed:

! The shell view object
! The structure of the taskbar

In addition, and as a consequence of the enhanced shell view object, we now have the possibility of
executing script code at the folder level, even exploiting the facilities of Dynamic HTML and
Scriptlets.

The New Shell View Object
Originally, the shell view object was rendered and implemented through a stack of windows at the
top of which was one of class SHELLDLL_DefView. You have already seen this in Chapter 1:

The screenshot shows the view object of the desktop, but it is exactly the same for any other folder.
The picture below, for example, shows the stack of windows for the My Computer folder:

Most of the windows you see here collaborate to form the overall framework of the folder window
(rebar windows, combo box, toolbars, etc.). What provides the actual content of the folder (namely,
the shell view object) is always a window of class SHELLDLL_DefView, with its child list view.

With Active Desktop, however, there's the possibility of another kind of view object that includes
support for HTML and scripting too. This is called the Web view, and it can be turned on and off
from the folder's View | as Web Page menu. Here's how the My Computer window looks when the
Web view is active:

Chapter 2

32

The content of the folder appears to be merged into an HTML-based template, of which the list view
containing details of the file objects is just a component. The corresponding stack of windows is:

The big difference you'll notice almost immediately is the window of class Internet
Explorer_Server that has a child window of class Shell Embedding. The former of these is the
window through which the WebBrowser control displays its output, while Shell Embedding is a
window that wraps the list view that contains the file list.

WebBrowser is the ActiveX component used by Internet Explorer 3.0 and higher to display their
content: HTML files, GIF and JPEG images, and even Active documents.

The Structure of the Shell

33

To summarize, when a Web view is enabled on a file folder, then

! A folder is seen through an HTML page rendered by a WebBrowser control
! The HTML page is generated starting with an HTML template that you can customize if

necessary
! The list view containing the files is embedded into an ActiveX control hosted in the HTML page

A Web view could also be enabled on a custom folder, but in this case the namespace extension that
wraps the folder would be required to implement specific and additional interfaces.

On the desktop, things go in much the same way. You can turn on and off the Web view by using the
context menu:

When this view is active, the desktop's view object also makes use of a WebBrowser control to show
the desktop content. The desktop icons are drawn in a different, 'higher' layer than the background,
and although this 'icon layer' existed before Active Desktop, the Web view adds some underlying
HTML 'wallpaper' whose content is always drawn underneath the icons.

Customizing a Folder
When the Web view mode is turned on, the folders you visit are displayed using an HTML template.
There's a standard folder template called folder.htt stored in the Web subdirectory of Windows,
and unless you specify another one, it is used by default. If you want to study its source code, note
that it is a hidden file, so you won't see it until you turn on your Show all files setting.

By right clicking on any folder, you get a menu like the one shown in the screenshot:

Chapter 2

34

Choosing Customize this Folder... allows you to run a fairly straightforward Wizard that ends up
editing the content of the folder.htt file that I've already mentioned. More precisely, what you
actually edit is a copy of the original template created by the Wizard in the folder in question. If you
need to, you can alter the look of the folder completely simply by editing the HTML file – despite the
.htt, extension it is a perfectly normal HTML file. If you want to, you can also remove or replace
the file list component, showing only what you want the user to see.

Since the folder template is an HTML file viewed through the Internet Explorer's WebBrowser, you
can exploit all the features that XML, data binding, Dynamic HTML, and Scriptlets bring to you, and
transform a simple folder into something that looks like an application. (I presented an example of
this in the March 1998 issue of MIND.) After a fashion, this kind of customization is rather like a
rough and ready namespace extension.

The New Taskbar Layout
As well as the changes in the view object, Active Desktop also introduced a number of changes to the
layout of the taskbar. We will examine it in more detail in Chapter 9, but the following diagram
should give you an idea of what to expect, and a comparison of the new structure with the old one:

The Structure of the Shell

35

Summary
In this chapter, we addressed:

! Task-based groups of API functions and COM interfaces in the Windows shell
! How this maps to the book's layout
! An overview of the shell structure and its objects

As we progress through this book, I'll always try to make sure the structure of the shell programming
interface stays clear in your mind. Thus, in the next few chapters, you'll find details about the most
tricky-to-use and poorly documented API functions. The code presented will mostly involve calls to
SDK functions using 'vanilla' C++.

After that, we'll start moving towards shell and namespace extensions, looking at some useful COM
interfaces for hooking and programming along the way, and examining the primitive shell object
model. There's a long way to go, and we haven't even looked at any code yet. It's about time we put
that right.

Working with Files

I still remember when the first betas of Windows 95 were on the way, and rumors were spreading
amongst my friends and colleagues. How cool was the new File Manager? It was full of icons, it was
colorful, it was customizable, and it had little animations that could make your life easier and happier
when it came to copying or deleting files!

As real software maniacs, we started a competition (with a pizza as the prize) to be the first person
able to figure out how to reproduce that behavior programmatically — that is, how to copy files with
animation. It took a few hours to extricate SHFileOperation() from the heap of new functions.
SHFileOperation() is the API function responsible for animated copying, and more generally, for
all the file operations performed by Explorer.

One of the criteria for the competition was to create a demonstration program with the sole goal of
impressing colleagues, which was simple enough; the real problems with this function appeared later
on. In fact, they cropped up exactly when I decided to adopt it as the standard function for any file
operation in my programs! To do this, I needed a thorough knowledge of the function's prototype
and its capabilities, and it is at this point that the really interesting part of the story begins.

In this chapter, I'm going to show you the inner secrets of SHFileOperation():

! How to use the flags and commands that it supports correctly
! How to use the source and target buffers correctly
! What its 'most probable' return codes are
! The problems you may encounter with long file names (yes, really!)
! The (previously) unrevealed story of file name mappings

Chapter 3

38

Also included in this chapter — as in any other of this book — you'll find helper functions to facilitate
your work with Windows common controls, dialogs, and the like.

What Can SHFileOperation() do for You?
To get an answer to this question, let's have a look at the declaration of SHFileOperation(), taken
from shellapi.h:

int WINAPI SHFileOperation(LPSHFILEOPSTRUCT lpFileOp);

This tells us little more than we knew already. To find out more, let's snoop inside
SHFILEOPSTRUCT, which is a data structure also defined in shellapi.h:

typedef struct _SHFILEOPSTRUCT
{
 HWND hwnd;
 UINT wFunc;
 LPCSTR pFrom;
 LPCSTR pTo;
 FILEOP_FLAGS fFlags;
 BOOL fAnyOperationsAborted;
 LPVOID hNameMappings;
 LPCSTR lpszProgressTitle;
} SHFILEOPSTRUCT, FAR* LPSHFILEOPSTRUCT;

Through this structure, SHFileOperation() can be instructed to do everything we want. In brief,
the function can:

! Copy one or more files from a source to a target path
! Delete one or more files, sending them to the Recycle Bin
! Rename files
! Move one or more files from a source to a target path

So far, then, we've seen nothing new — or at least, nothing particularly exciting. In fact, the Win32
API (and the C runtime library) already provide the means to do the same thing. Specifically, the
Win32 API provides CopyFile(), DeleteFile(), and MoveFile() to perform these tasks.

The strength of SHFileOperation(), however, comes in all its accessory parameters which let you
arrange for multiple copies and the creation of missing directories with a single command. It also
supports 'undo', and automatic renaming in the case of target name collisions. Last (but probably not
least), it provides, for free, an animation that shows blank sheets of paper, fluttering from one folder
to another.

Undoubtedly, you could obtain the same
functionality from the low-level Win32 APIs
mentioned above, but you would have a large
amount of work to do.

Working with Files

39

How SHFileOperation() Works
Like all functions that take only a data structure as an input parameter, SHFileOperation() is
quite a flexible routine. It can perform many different actions by combining various flags in the
appropriate manner, and by using (or not using) the various members of SHFILEOPSTRUCT. Let's see
what role each member of this structure plays.

Name Description

hwnd The handle of the parent window for any dialog generated
by this function.

wFunc Indicates the operation to perform. (See later.)

pFrom The buffer containing the source file names.

pTo The buffer containing the target file names. (Ignored in
case of deletion.)

fFlags Flags that can affect the operation. (See later.)

fAnyOperationsAborted A return value that will contain TRUE or FALSE depending
on whether the user aborted any file operations before
completion. By testing this member you can determine
whether the operation completed normally, or if it was
manually interrupted.

hNameMappings The documentation describes it as a "Handle to a file name
mapping object that contains an array of SHNAMEMAPPING
structures." (See later for a better explanation.)

lpszProgressTitle A string that is used, under certain conditions, as the title of
the dialog box being displayed.

In short, there are four members that definitely require some investigation. They are:

! wFunc (and indirectly, pFrom and pTo)
! fFlags
! hNameMappings
! lpszProgressTitle

Available Operations
The wFunc member specifies the operation to be performed on the files specified in pFrom and pTo.
The possible values of wFunc (defined in shellapi.h) are:

Chapter 3

40

Code Value Description

FO_MOVE 0x0001 All the files specified in pFrom are moved to the location stored
in pTo, which must be a directory name.

FO_COPY 0x0002 All the files specified in pFrom are copied to the location stored
in pTo. The latter can be a directory name or even a collection
of files with a 1:1 correspondence to the ones in pFrom.

FO_DELETE 0x0003 All the files specified in pFrom are sent to the Recycle Bin. pTo
is ignored.

FO_RENAME 0x0004 All the files specified in pFrom are renamed as the file names
specified in pTo. A 1:1 correspondence must exist between the
names in pFrom and pTo.

Both pFrom and pTo are buffers that contain one or more file names. If they include more than one
file name, then the various names must be separated with NULL characters (\0) and the whole string
must be terminated with a double NULL character (\0\0), regardless of how many file names it
contains.

If pFrom and pTo don't include directory information (that is, they are unqualified names) then the
function assumes that it should use the drive and the directory returned by
GetCurrentDirectory(). pFrom can also contain wildcard characters, and can be a string such
as "*.*".

Any of these operations can be affected by the flags that you set in the fFlags member of the
SHFILEOPSTRUCT structure. The online documentation lists all these flags in alphabetical order,
which is not always a good thing. When I discuss them shortly, I'll try to follow a slightly different
approach in which the flags are grouped together according to the actual operations they can affect. If
you just want a crude list, refer to the online documentation.

Pay Attention to the Double-NULL
In my opinion, the documentation doesn't place sufficient emphasis on the fact that pFrom and pTo
are actually pointers to lists of strings, rather than generic buffers. This means that
SHFileOperation() always expects a double NULL character at the end of the string passed, and
this is true even when you're passing a single file name, or a single string with wildcards.

If you don't use a double NULL character to terminate the strings in both pFrom and pTo, the
chances are that the function will fail when parsing their contents. In this case, it returns a 'Cannot
Copy/Move File' error (error code 1026). Without a double NULL, the function may consider the
bytes that it finds at the end of the string, after the single NULL character, as a file name to be copied
or moved. These bytes could be anything and are unlikely to be a valid file name, so an error arises.

This error is more frequent with pFrom, simply because pFrom is always interpreted as a list of file
names, whereas pTo is parsed as a list of file names only if the FOF_MULTIDESTFILES flag is
specified (we'll be discussing this and other similar flags shortly). In all other cases,
SHFileOperation() assumes that pTo refers to a single file name. In this case, a single NULL
terminator suffices — the double NULL is required only for terminating a list containing more than one
file name. Unless you explicitly say that there are multiple target files, the parsing of the content of
pTo stops at the first NULL terminator.

Working with Files

41

The way the content is parsed depends upon whether the pointer is the reference to a list of strings or
a simple buffer. Consequently, for safety's sake, you should always remember to add an additional
terminator at the end of the strings you're going to assign to pFrom. Do the same to pTo if you have
multiple destination files. If you're using literals, then you can add an explicit \0 at the end (the
string is, of course, automatically terminated with a single NULL character):

shfo.pFrom = "c:\\demo\\one.txt\0c:\\demo\\two.txt\0";

If you're using variables, then you can adopt the following approach:

pszFrom[lstrlen(pszFrom) + 1] = 0;

Moving and Copying Files
To move or copy files from one location to another, we need to specify:

! A buffer containing the source file names. This can be a sequence of names (separated and
qualified as shown above), a single name, a string that includes wildcards, or even a sequence of
strings that include wildcards.

! A target directory. If we're moving a well-defined list of files, then we could also prepare a target
list of names, taking care to preserve a 1:1 correspondence with the source names. In other words,
each source file name must have a target file name in order for the move or copy to take place. If
there are multiple target files, then we must specify the FOF_MULTIDESTFILES flag in the
fFlags member.

The flags (defined in shellapi.h) that can affect these operations are:

Flag Value Description

FOF_MULTIDESTFILES 0x0001 The pTo member contains multiple target
files, one for each source file.

FOF_SILENT 0x0004 The operation occurs without feedback to
the user, which means that the progress
dialog isn't displayed. Any relevant
message boxes will still appear, however.

FOF_RENAMEONCOLLISION 0x0008 If the target location already contains a file
with the same name as one being moved
or copied, this flag instructs the function to
change the target name automatically and
silently.

FOF_NOCONFIRMATION 0x0010 This flag causes the function to assume
that the answer to any message box it may
encounter is always "Yes". An exception is
the dialog that asks you to create a missing
directory. To deal with it you need to
resort to the flag called
FOF_NOCONFIRMMKDIR. (See later in
table.)

Table Continued on Following Page

Chapter 3

42

Flag Value Description

FOF_FILESONLY 0x0080 This flag applies only when you specify
wildcards (say, *.*) that can contain sub-
directories. With this flag set, the function
deals only with files and never goes down
to directories.

FOF_SIMPLEPROGRESS 0x0100 This results in a simplified user interface:
there's animation, but the names of the
files involved are not displayed. Instead of
the names, it will display the text you
specified through the
lpszProgressTitle member.

FOF_NOCONFIRMMKDIR 0x0200 If the target directory doesn't exist, this
flag causes the function to create what's
missing silently. Without this flag, you'll
be prompted to authorize the creation of
the full destination path. This flag has a
subtle relationship with the next one that I
shall explain later.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will
not result in a message box being
displayed. All you'll get is a return code
describing the error. This flag has a subtle
relationship with the previous one.

FOF_NOCOPYSECURITYATTRIBS 0x0800 Applies to Windows NT, shell version 4.71
(Windows NT 4.0 with IE 4.0 and Active
Desktop) and higher. This flag prevents
copying of the security attributes that a
given file may have.

Let's take a look at these options in more detail. When moving or copying files, you have two main
concerns: correctly identifying the files to be transferred, and making sure that the flags you set
produce the behavior you're expecting.

Avoiding Unwanted Dialog Boxes
If you want the operation to occur as silently as possible, without dialogs or even any system error
messages, then you may think that FOF_NOERRORUI | FOF_SILENT is a good choice. This is not
true, as I'll show in a moment. Using FOF_NOERRORUI only hides the message boxes that originate
from errors. On the other hand, using FOF_SILENT alone doesn't prevent all the possible message
boxes that the function can display from appearing. In fact, FOF_SILENT only affects the progress
dialog — that is, the one that shows the names of the files being copied or moved, along with the usual
animation. If the function finds that a given file or directory already exists in the target location, it
will prompt you anyway. To avoid this behavior, you need to add FOF_NOCONFIRMATION to the
flags. This will cause SHFileOperation() to behave as though an invisible user clicks Yes at each
step. However, this is far from the end of the story.

Working with Files

43

All of these flags are useless if the target path includes a missing directory. Before continuing with
copying or moving a file, the function tries to make sure that the given target path exists. You could
legitimately have specified a directory that doesn't exist, and the function will take care of creating it,
but first it requires an explicit authorization from you.

To skip this dialog, you need to set
FOF_NOCONFIRMMKDIR. If this bit is set, then the function
automatically creates any missing directories without
prompting you.

In summary, if you want the copy (or the move) to be completed without the user's intervention, then
you can set the fFlags member of SHFILEOPSTRUCT with the following combination of flags:

! FOF_SILENT
! FOF_NOCONFIRMATION
! FOF_NOERRORUI
! FOF_NOCONFIRMMKDIR

However, there's one point regarding the use of the FOF_NOERRORUI and FOF_NOCONFIRMMKDIR
flags at the same time that still needs clarifying.

Missing Directories
Interestingly, a missing directory is considered as a system error for which a system dialog should be
shown. Although you can skip over the dialog by setting the FOF_NOCONFIRMMKDIR flag, the
FOF_NOERRORUI flag takes precedence over FOF_NOCONFIMMKDIR, effectively suppressing the
dialog before the latter flag gets a chance to deal with it. If both flags are specified, therefore, you
won't be prompted to authorize the creation of a directory that doesn't exist, and a directory won't be
created on your behalf. Instead, the function will continue as if you refused to create it, and you'll get:

! An error code of 117 (I'll say more about error codes later)
! The abort flag fAnyOperationsAborted set to TRUE
! No files moved, or copies made

Does this mean that you should avoid using FOF_NOERRORUI? It depends. If you want an absolutely
silent operation, you can't avoid using it — it prevents all error message boxes from being displayed.
The problem is that it also prevents a new directory from being silently created, causing an
unnecessary and bothersome error. Fortunately, there's a way to work around this by making sure
that the full directory path stored in pTo exists before calling SHFileOperation() with the flags
that make it silent. The Win32 SDK provides a function for exactly this purpose:

BOOL MakeSureDirectoryPathExists(LPCSTR DirPath);

To use it, you need to #include the imagehlp.h file, and link to the imagehlp.lib library.

Chapter 3

44

Renaming Files
One of the questions that SHFileOperation() could pose concerns replacing an existing file:

Or, similarly, it could pose a question about an existing directory:

By setting FOF_NOCONFIRMATION, you implicitly enable the function to replace the old object, but
there is a second possibility. You know that if you select a file in Windows Explorer and hit Ctrl-C
followed by Ctrl-V, then a new file appears in the same folder with a name like Copy of Xxxx, where
Xxxx is the file you selected. Explorer automatically renamed the new file to avoid collisions.
SHFileOperation() provides this feature too, as long as you set the FOF_RENAMEONCOLLISION
flag. Both FOF_RENAMEONCOLLISION and FOF_NOCONFIRMATION suppress the confirmation
dialog for replacing things, but in the latter case your file or directory will be unavoidably
overwritten. In the pathological case that you specify both, FOF_RENAMEONCOLLISION takes
precedence.

Relationships Between Flags
What I've said so far should have raised a couple of questions in your mind. Firstly, what are the
relationships between the various flags? Secondly, which flag affects which class of dialogs?

Working with Files

45

The following table explains which flag overrides which others, and which dialog each flag
suppresses.

Flag Dialog
Suppressed

Dependency and Precedence

FOF_MULTIDESTFILES None. None.

FOF_FILESONLY None. None.

FOF_SILENT If set, the progress
dialog won't
appear.

Takes precedence over the
FOF_SIMPLEPROGRESS flag.

FOF_SIMPLEPROGRESS None. Suppressed by FOF_SILENT.

FOF_RENAMEONCOLLISION If set, the replace
dialog never
appears when a
file with the same
name as one being
copied or moved
already exists.

In the case of name collisions (and
only then) it works as if
FOF_NOCONFIRMATION was set. It
takes precedence over
FOF_NOCONFIRMATION if both are
set. This means that the files are
duplicated, given new names and are
not overwritten.

FOF_NOCONFIRMATION If set, no
confirmation
dialog will appear
in any case.

In case of name collisions, it causes
the files to be overwritten unless
FOF_RENAMEONCOLLISION is
specified.

FOF_NOCONFIRMMKDIR Suppresses the
dialog that asks for
your permission to
create a new
folder.

A missing directory is considered a
fatal error requiring an error message
box. The directory creation
confirmation dialog is considered to
be an error message box. For this
reason the flag depends upon
FOF_NOERRORUI.

FOF_NOERRORUI Suppresses all the
error message
boxes.

Takes precedence over the previous
flag. If set then a missing directory
raises an unhandled exception and
the function returns an error code.

An Example Program
To help you get to grips with the features of SHFileOperation(), I've put together a simple
example program called SHMove. Like many of the other examples that we'll create over the course
of this book, it will start its life as a skeleton generated by the Wrox AppWizard, a custom Wizard
that is developed and documented in Appendix A. You should go and take a look at that now, if you
haven't done so already!

Chapter 3

46

Once you have the AppWizard safely installed on your machine, either by typing in all the code or
(preferably) by downloading the source from the Wrox web site (http://www.wrox.com), you should
use it (on this occasion) to generate a dialog-based application. Here's the user interface you then
need to create:

The default settings you can see are put in place in the OnInitDialog() function that you'll find in
SHMove.cpp. The new lines just set the radio buttons and place strings in the edit boxes:

void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 // Initialize the 'to' and 'from' edit fields
 SetDlgItemText(hDlg, IDC_TO, "c:\\NewDir");
 SetDlgItemText(hDlg, IDC_FROM, "c:\\demo*.*");

 // Take care of the 'progress' title
 SetDlgItemText(hDlg, IDC_PROGRESSTITLE, "This is a string");

 // Select the default operation
 CheckRadioButton(hDlg, IDC_COPY, IDC_MOVE, IDC_COPY);
}

In order to make this dialog issue calls to SHFileOperation(), we simply need to implement the
skeleton OnOK() function that executes when someone clicks the SHFileOperation button. The
contents of the pTo and pFrom members and the relevant FOF_ flags are set in this function.

void OnOK(HWND hDlg)
{
 SHFILEOPSTRUCT shfo;
 WORD wFunc;
 TCHAR pszTo[1024] = {0};
 TCHAR pszFrom[1024] = {0};
 TCHAR pszTitle[MAX_PATH] = {0};

 // Set the operation to perform
 if(IsDlgButtonChecked(hDlg, IDC_COPY))
 wFunc = FO_COPY;
 else
 wFunc = FO_MOVE;

http://www.wrox.com

Working with Files

47

 // Get the 'progress' string
 GetDlgItemText(hDlg, IDC_PROGRESSTITLE, pszTitle, MAX_PATH);
 // Get the 'from' buffer
 GetDlgItemText(hDlg, IDC_FROM, pszFrom, MAX_PATH);
 pszFrom[lstrlen(pszFrom) + 1] = 0;

 // Get the 'to' buffer
 GetDlgItemText(hDlg, IDC_TO, pszTo, MAX_PATH);

 // Get the flags
 WORD wFlags = 0;

 if(IsDlgButtonChecked(hDlg, IDC_FOFSILENT))
 wFlags |= FOF_SILENT;
 if(IsDlgButtonChecked(hDlg, IDC_FOFNOERRORUI))
 wFlags |= FOF_NOERRORUI;
 if(IsDlgButtonChecked(hDlg, IDC_FOFNOCONFIRMATION))
 wFlags |= FOF_NOCONFIRMATION;
 if(IsDlgButtonChecked(hDlg, IDC_FOFNOCONFIRMMKDIR))
 wFlags |= FOF_NOCONFIRMMKDIR;
 if(IsDlgButtonChecked(hDlg, IDC_FOFSIMPLEPROGRESS))
 wFlags |= FOF_SIMPLEPROGRESS;
 if(IsDlgButtonChecked(hDlg, IDC_FOFRENAMEONCOLLISION))
 wFlags |= FOF_RENAMEONCOLLISION;
 if(IsDlgButtonChecked(hDlg, IDC_FOFFILESONLY))
 wFlags |= FOF_FILESONLY;

 // Call SHFileOperation()
 ZeroMemory(&shfo, sizeof(SHFILEOPSTRUCT));
 shfo.hwnd = hDlg;
 shfo.wFunc = wFunc;
 shfo.lpszProgressTitle = pszTitle;
 shfo.fFlags = static_cast<FILEOP_FLAGS>(wFlags);
 shfo.pTo = pszTo;
 shfo.pFrom = pszFrom;

 int iRC = SHFileOperation(&shfo);
 if(shfo.fAnyOperationsAborted)
 {
 Msg("Aborted!");
 return;
 }

 // Display the result of the operation
 SPB_SystemMessage(iRC);
}

The function gathers all the data it needs from the dialog's controls, and then fills in the
SHFILEOPSTRUCT structure. If any operation was aborted, the fAnyOperationsAborted member
is filled with the Boolean value TRUE. In the code above, you may have noticed two strange names:
Msg() and SPB_SystemMessage(). These functions are just wrappers for MessageBox() that
were added by the Wrox AppWizard, and I'll discuss them in the Two Poor Man's Utilities for Surviving
Error Messages section, when delving into what SHFileOperation() actually returns. For now, I'll
concentrate on the source and target buffers, so add a #include for resource.h to SHMove.cpp,
and build the project.

Chapter 3

48

Source and Target
When moving or copying files from a source to a target, you have the following possibilities:

! A group of files to a single folder
! Many single files to a single folder
! A single file to a single file
! Many single files to many single files

By the expression 'single file' I mean a fully qualified file — that is, a file for which you know the
complete name. By contrast, a 'group of files' means all the files you indicate through wildcards,
which you do not know the names of. Only in the last of the four cases above you do need to use
FOF_MULTIDESTFILES.

A possible way to copy or move files is by assigning a string such as c:\demo*.* to pFrom, as is
done by default in the code. In this situation, you must indicate a specific folder as the destination.
Everything you pass through the pTo buffer is considered to be a folder name, unless it contains an
invalid character. In that case you'll get an error, as shown below (coversheet is the first file in the
directory being copied):

As explained earlier, you can work on multiple files by passing a double NULL terminated string
whose items are separated by single NULL characters. For example, you could hard-code the
following into OnOK():

 shfo.pFrom = "c:\\demo\\one.txt\0c:\\two.txt\0c:\\three.txt\0";
 shfo.pTo = "c:\\NewDir";

Here, we're attempting to move/copy three files at a time: one.txt, two.txt, and three.txt. All
three files will be copied into a new directory called NewDir located under the root, c:\. The first
source file is located in the c:\demo directory, while the other two are in c:\.

Working with Files

49

If the pFrom buffer contains just one file name, the SHFileOperation() function can deal with the
content of pTo in two ways.

 shfo.pFrom = "c:\\demo\\one.txt\0";
 shfo.pTo = "c:\\NewDir";

If a directory or a file called c:\NewDir already exists, then it will be treated properly. That is, the
file c:\demo\one.txt gets copied to the directory or replaces the existing file. On the other hand,
if c:\NewDir doesn't exist, then it is considered to be the name of a new file, and is no longer
considered to be a folder name.

If you want to copy a single file to a new folder, then you might think that adding a final backslash \
to the content of pTo would work.

 shfo.pFrom = "c:\\demo\\one.txt\0";
 shfo.pTo = "c:\\NewDir\\";

Curiously, this will cause the missing folders to be created, but it fails to copy or move the file. If you
retry it, then it works as expected because on the second attempt the folder already exists! So what do
you have to do to copy a single file to a non-existent folder? The only approach that will always work
is to add a * at the end of the file. In doing so, you fool the function into thinking it is working on a
wildcard expression.

 shfo.pFrom = "c:\\demo\\one.txt*\0";
 shfo.pTo = "c:\\NewDir";

Another possible circumstance is where you want to copy many single files to the same number of
single files. You must meet two requirements. First, you should add the FOF_MULTIDESTFILES flag.
Second, make sure you have a destination file for each source file — you need a perfect, 1:1
correspondence. The nth file in the source list will be copied/moved to the nth file in the target list.

 shfo.fFlags |= FOF_MULTIDESTFILES;
 shfo.pFrom = "c:\\one.txt\0c:\\two.txt\0";
 shfo.pTo = "c:\\New one.txt\0c:\\New two.txt\0";

What if you fail to meet these criteria? What happens, for example, if you attempt to execute code
such as the following?

 shfo.fFlags |= FOF_MULTIDESTFILES;
 shfo.pFrom = "c:\\one.txt\0c:\\two.txt\0c:\\three.txt\0";
 shfo.pTo = "c:\\New one.txt\0c:\\New two.txt\0";

If this happens, the first item of the target list (that is, c:\New one.txt) is considered to be the
folder name where all the source files go. In practice, it is handled as if it were a many-to-one
operation.

When you make use of wildcards, the source buffer can implicitly refer to both files and directories. If
you want the function to handle only files, add the FOF_FILESONLY flag. If you want to copy an
entire directory, you need to add *.* to the end of its path.

Chapter 3

50

Unless you specify the FOF_SILENT flag, SHFileOperation() always displays a progress dialog
with an animated control, a progress bar, and some labels to show the files being copied or moved.
By using FOF_SIMPLEPROGRESS you can hide these labels, replacing them with the text you provide
in the lpszProgressTitle member. This may be of help if, for any reason, you want to hide the
names of the files being copied or moved.

Deleting Files
File deletion is a simpler operation, as it only affects the input buffer pFrom — the pTo buffer is
ignored. As before, the details of its operation depend which flags are set. The flags of interest are:

Flag Value Description

FOF_SILENT 0x0004 The operation occurs without feedback to the
user, which means that the progress dialog isn't
displayed. Any relevant message boxes will still
appear, however.

FOF_NOCONFIRMATION 0x0010 This flag causes the function to assume "Yes" is
always the answer to any message box it may
encounter.

FOF_ALLOWUNDO 0x0040 If set, this flag forces the function to move the
files being deleted to the Recycle Bin. Otherwise,
the files will be physically removed from the disk.

FOF_FILESONLY 0x0080 Setting this flag results in the function deleting
only files, and skipping directories. It applies
only when you specify wildcards.

FOF_SIMPLEPROGRESS 0x0100 This results in a simplified user interface, with
animation but without reporting the names of the
files being deleted. Instead of the names, it will
display the text you specified through the
lpszProgressTitle member.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will not
result in a message box being displayed. All
you'll get is a return code.

Working with Files

51

The most striking thing here is the new flag FOF_ALLOWUNDO, which allows the programmer to
decide whether the files should be deleted once and for all, or stored in the Recycle Bin awaiting
possible restoration. If FOF_ALLOWUNDO is set, the files are moved to the Recycle Bin, and the
operation may be undone (though you can only do this manually). The API that deals with the
Recycle Bin is covered in Chapter 10. The 'undo' feature is available only for deletion — there's no
equivalent for copy and move operations.

The presence of the FOF_ALLOWUNDO flag affects the user interface of the function, as I'm about to
demonstrate. It wouldn't be too difficult to modify our sample project to accept requests for deletions
as well as for copies and moves, but for the sake of brevity I'll just put the code straight into the
OnOK() function:

 ZeroMemory(&shfo, sizeof(SHFILEOPSTRUCT));
 shfo.hwnd = hDlg;
 shfo.wFunc = FO_DELETE;
 shfo.lpszProgressTitle = pszTitle;
 shfo.fFlags = FOF_NOERRORUI;
 shfo.pFrom = "c:\\demo*.*\0";

The above code attempts to delete the entire content of the c:\demo directory, and results in the
following dialog:

As you can see, there's no mention of the Recycle Bin in the message because we haven't specified
the FOF_ALLOWUNDO flag. By doing so, the files would instead be sent directly to the Recycle Bin:

The other flags listed above work in much the same way as they did for copy and move. Accordingly,
you can hide the names of the files being deleted with FOF_SIMPLEPROGRESS or FOF_SILENT, and
delete only files with FOF_FILESONLY. Note that FOF_FILESONLY doesn't go down into sub-
directories.

The dialogs shown above don't mention how many files are about to be deleted, but this is simply
because the command that originated the figures included wildcards (the number of files would
otherwise be displayed) so the function can't easily figure out the number of files. This might also be
one of the reasons why it returns successfully even if there are no files to delete.

Chapter 3

52

It is accepted practice that an operating system will ask for confirmation before deleting files. If you
find such dialogs useless, then you can hide them by answering "Yes" to all questions automatically
through use of the FOF_NOCONFIRMATION flag. Typically, an FO_DELETE operation will look
something like this:

Renaming Files
The first thing I must do in this section is to confess that I have been unable to make
SHFileOperation() rename files through wildcards. It seems that the only way to change the
name of a file is by specifying a single source file name as pFrom, and a single target file name as
pTo:

 ZeroMemory(&shfo, sizeof(SHFILEOPSTRUCT));
 shfo.wFunc = FO_RENAME;
 shfo.pFrom = "c:\\demo\\one.txt\0";
 shfo.pTo = "c:\\demo\\one.xxx";

Obviously, there are a couple of things that it's quite reasonable for you not to be allowed to do when
you're renaming files. Specifically, these are:

! Changing the destination folder. Renaming just means changing the name, not the folder!
! Overwriting an existing file.

If you attempt to perform such operations, then it's natural that you'll get errors. Searching for all the
error codes I could find, I tried passing parameters like those shown below to the function:

 shfo.pFrom = "c:\\demo*.*\0";
 shfo.pTo = "c:\\newdir";

This is obviously nonsense, and the function duly returns a message like this:

Working with Files

53

The message is clear enough, although paradoxically the command ends up returning success (a value
of 0)! The implication of the message, however, is that the syntax used by MS-DOS will also work
here. In other words, we should be able to rename, say, *.txt to *.xtt. With MS-DOS this works
just fine; with SHFileOperation() it doesn't. If you try, the message you'll get is:

The message you can see originated from these two lines of code:

 shfo.pFrom = "c:\\demo*.txt\0";
 shfo.pTo = "c:\\demo*.xtt";

For this example, the c:\demo directory contained two files: one.txt and two.txt. Hence, one in
this case is just the name of one of the files involved, without the extension. The return code behind
this message is 2 — 'file not found'. I'll say more about return values later on.

Since the FO_RENAME command seems to be successful only with single files, the flags that affect the
user interface of the dialog lose importance — the speed of the operation is such that the user interface
simply won't be seen. The flags that still make sense are:

Flag Value Description

FOF_RENAMEONCOLLISION 0x0008 If the target location already contains a file with
the same name as one being renamed, this flag
instructs the function to change the target name
automatically to Copy of Xxx, where Xxx is the
original file name without the extension. If you
don't set this flag, you still won't be prompted,
but you'll get an error message instead.

FOF_NOERRORUI 0x0400 If this flag is set, any error that occurs will not
result in a message box being displayed. All
you'll get is a return code.

SHFileOperation() Return Values
The online documentation states that SHFileOperation() will return 0 if the function succeeded,
and a nonzero value in case of failure. Obviously this is true, but it's not the most helpful information.
By testing and re-testing the function, I have become convinced that there are very many possible
ways for the function to terminate. In fact, I have often run into system errors, suggesting that
somewhere in the code the function is simply returning what it gets from other routines that are
closer to the file system.

Chapter 3

54

Nevertheless, here's a table (that almost certainly isn't exhaustive) of the most common errors
returned by SHFileOperation(). More precisely, it's a table of the most common errors I got
while I was testing the function!

Error Code Description

2 As mentioned above, you run into this message if you're trying to rename
multiple files. The description is quite straightforward — The system cannot
find the file specified — but I don't understand why it can't find the file.

7 This is returned if you click Cancel when you're asked whether you want
to replace a given file. It has a rather ambiguous description: The storage
control blocks were destroyed.

115 A file system error that occurs when you attempt to rename files to a
different folder. Renaming a file just means changing the file name, not
the folder too.

117 An IOCTL (Input/Output Control) error that appears when there's
something wrong with the destination path, or you canceled the creation
of a new directory.

123 You're trying to rename a file, but you're giving it the name of an existing
file. Once again, we have an unhelpful description: The file name, directory
name, or volume label syntax is incorrect.

1026 A file system error that's raised when you try to move/copy a file that
doesn't exist. More generally, it warns you that something should be
changed in the source buffer. The code causes an error box to appear —
you can prevent this by setting FOF_NOERRORUI.

Error code 117 is returned in many cases, all of which relate to problems with the target directory.
For example, it's returned (but there's no system message box) if you cancel the creation of a required
directory. If there's an obvious error in a directory name that you've specified then an error box is
provided which you can prevent from appearing by using FOF_NOERRORUI.

Two Poor Man's Utilities for Surviving Error Messages
Error messages are a curse for most programmers. Either you are given a numeric code but want a
textual description, or else it's the other way around. Frameworks like MFC provide some facilities,
but you certainly wouldn't want to move your code to MFC just to exploit such features.

Working with Files

55

Given this, I've made the Wrox AppWizard (see Appendix A) generate a file containing a couple of
utility functions that we'll be using regularly, as we progress through the book. The first one is a
revised version of MessageBox() that extends the standard functionality by adding the formatting
capabilities of the evergreen printf(). I called the function Msg(), and it looks like this:

#include <stdarg.h>

void WINAPI Msg(char* szFormat, ...)
{
 va_list argptr;
 char szBuf[MAX_PATH];
 HWND hwndFocus = GetFocus();

 // init va_ functions
 va_start(argptr, szFormat);

 // format output string
 wvsprintf(szBuf, szFormat, argptr);

 // read title and show
 MessageBox(hwndFocus, szBuf, NULL, MB_ICONEXCLAMATION | MB_OK);

 // close va_ functions
 va_end(argptr);
 SetFocus(hwndFocus);
}

Basically, the code exploits the va_ functions that are included through the stdarg.h header. The
variable list of arguments is then formatted via wvsprintf(), and finally displayed by the ordinary
MessageBox() function. Now you can write code such as this:

 iRC = CallFunc(p1, p2);
 Msg("The error code returned is: %d", iRC);

The second utility is called SPB_SystemMessage(). (The SPB prefix stands for Shell Programming
Book, and is intended to differentiate these functions from yours!) It accepts an error code and passes
it down to FormatMessage(), a Win32 API function capable of returning descriptive text for all
system errors (at least, all those defined in winerror.h). The string that FormatMessage()
provides is then aggregated with the numeric code, and displayed:

void WINAPI SPB_SystemMessage(DWORD dwRC)
{
 LPVOID lpMsgBuf;
 DWORD rc;

 rc = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL, dwRC,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 reinterpret_cast<LPTSTR>(&lpMsgBuf), 0, NULL);

 Msg("%s: %ld.\n\n\n%s:\n\n%s", "This is the error code", dwRC,
 "This is the system's explanation", (rc == 0 ? "<unknown>" : lpMsgBuf));
 LocalFree(lpMsgBuf);
}

Chapter 3

56

Did Everything Really Work Properly?

Undoubtedly, SHFileOperation() has some problems with
its return codes. In particular, it can return 0 (that is, success)
even when, due to an error in the input parameters, the
requested operation couldn't be completed:

Try this code that is intended to copy/move files:

 shfo.pFrom = "c:\\demo\\one.txt\0";
 shfo.pTo = "c:\\NewDir";

If the one.txt file exists in the original folder, everything works fine. If the file doesn't exist, error
1026 is raised. That's just what you'd expect, and there's nothing else to say. However, now see what
happens if you try this code (making sure that no files match the pattern):

 shfo.pFrom = "c:\\demo\\x.*\0";
 shfo.pTo = "c:\\NewDir";

The function will still return zero, even if no file actually gets processed. The same thing occurs with
deletion. Even if there's no file to delete, the return code indicates success. To be honest, I don't
know whether this should be considered a bug, or whether this behavior was intended. There's no
quick way to verify whether the desired result has been achieved. The solution that comes to mind is
to check for the existence of the file in question, after the function returns.

Long File Names
Although the Windows shell has been designed and coded with the idea of bringing information to
the user's fingertips, one of the most important shell functions seems to have some problems with
long file names. Yes, that's right — with long file names. Let's see what's going on.

In all the samples you saw above, we specified a fully qualified name for the target folder (we often
used c:\NewDir). The documentation says that if you don't provide a full pathname, the function
assumes it should use the current directory returned by the API function
GetCurrentDirectory(). Well, let's test it. Try to use this code with SHFileOperation():

 shfo.pFrom = "c:\\demo*.*\0";
 shfo.pTo = "NewDir";

We're attempting to copy/move all the files found in the c:\demo directory into a new or existing
directory called NewDir, located under the current directory. All goes well, provided that there are
no long file names among the files to be transferred. If there are any, this dialog will appear:

Working with Files

57

What's happening is that the function is trying to shorten a long file name to make sure it will be
correctly stored on the target drive. This is a perfectly natural action if you're moving files across a
network where the destination machine is running Windows 3.1, for example. Unfortunately, we're
trying to copy/move files on a single machine running a 32-bit — and long file name compliant —
operating system. If we weren't, SHFileOperation() itself wouldn't work!

Curiously, if you add a drive to what the function perceives to be the target folder, everything will
work properly again. As if that wasn't strange enough, you will be surprised to know that if you use a
relative path, such as .\ANewDir, all will be well. Curiously though, the floppy drive is accessed for
reading. What on earth is going on?

It appears that if the path begins with a letter that is also the logical representation of one of the
available drives, then SHFileOperation() works well with long file names. Otherwise, it thinks
that you're attempting to connect to a remote drive, for which the check for long file name support
failed. (If there isn't an N: drive, it will surely fail...) On my home machine, for example, it works
well up to the letter F, which is the CD-ROM drive.

It's likely that there's an error somewhere in the code that is used to figure out the destination drive
for the files. The workaround is fairly simple: always use fully qualified paths.

File Name Mapping Objects
Reading the official documentation for SHFileOperation(), you'll have noticed the discreet
presence of a thing called a file name mapping object. In particular, the documentation speaks of such
objects when describing the hNameMappings member of the SHFILEOPSTRUCT structure.

hNameMappings is a pointer to a block of memory that contains a certain number of
SHNAMEMAPPING structures — it is declared as LPVOID. A SHNAMEMAPPING data structure looks like
this:

typedef struct _SHNAMEMAPPING
{
 LPSTR pszOldPath;
 LPSTR pszNewPath;
 int cchOldPath;
 int cchNewPath;
} SHNAMEMAPPING, FAR* LPSHNAMEMAPPING;

Chapter 3

58

The structure identifies a file being copied, moved, or even renamed. More precisely, it stores both
the original and the new (fully qualified) filename. Put this way, it suggests an interesting possibility:
you could have a complete report of what happened during the execution of SHFileOperation().
Sadly, things don't quite work out like that.

First of all, to have SHFileOperation() fill the hNameMappings member, you must specify an
additional flag: FOF_WANTMAPPINGHANDLE. However, even that isn't enough, because the member
only gets filled if you also set the FOF_RENAMEONCOLLISION flag. Furthermore, for it to be anything
other than zero, it's necessary that some files really do get renamed to avoid collisions. In all other
cases, the hNameMappings handle simply points to NULL.

Demonstrating File Mapping
Using the Wrox AppWizard once again as my starting point, I created a dialog-based application
called FileMap to test out some aspects of file mapping. Here's its user interface:

To set up the dialog with the values shown, and to initialize the list view, it's necessary to adjust the
OnInitDialog() function as follows (remember to add a #include for resource.h):

void OnInitDialog(HWND hDlg)
{
 HWND hwndList = GetDlgItem(hDlg, IDC_LIST);

 // Set up the report view
 LV_COLUMN lvc;
 ZeroMemory(&lvc, sizeof(LV_COLUMN));

 lvc.mask = LVCF_TEXT | LVCF_WIDTH;
 lvc.cx = 200;

 lvc.pszText = "Original File";
 ListView_InsertColumn(hwndList, 0, &lvc);

 lvc.pszText = "Target File";
 ListView_InsertColumn(hwndList, 1, &lvc);

 // Initialize the edit fields
 SetDlgItemText(hDlg, IDC_FROM, "c:\\thedir*.*");
 SetDlgItemText(hDlg, IDC_TO, "c:\\newdir");

Working with Files

59

 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));
}

Now you can edit OnOK(), adding code that demonstrates how to acquire and test a handle to a file
name mapping object:

void OnOK(HWND hDlg)
{
 TCHAR pszFrom[1024] = {0};
 TCHAR pszTo[MAX_PATH] = {0};

 GetDlgItemText(hDlg, IDC_FROM, pszFrom, MAX_PATH);
 GetDlgItemText(hDlg, IDC_TO, pszTo, MAX_PATH);

 SHFILEOPSTRUCT shfo;
 ZeroMemory(&shfo, sizeof(SHFILEOPSTRUCT));
 shfo.hwnd = hDlg;
 shfo.wFunc = FO_COPY;
 shfo.pFrom = pszFrom;
 shfo.pTo = pszTo;
 shfo.fFlags = FOF_NOCONFIRMMKDIR |
 FOF_RENAMEONCOLLISION |
 FOF_WANTMAPPINGHANDLE;

 int iRC = SHFileOperation(&shfo);
 if(iRC)
 {
 SPB_SystemMessage(iRC);
 return;
 }

 // Trace the value of the handle
 Msg("hNameMappings is: %x", shfo.hNameMappings);

 // Free the object, as recommended
 if(shfo.hNameMappings)
 SHFreeNameMappings(shfo.hNameMappings);
}

Pay particular attention to the last line in this code — freeing a file name mapping object is the
simplest operation you can perform on it, but it's also one of the most important. You just have to call
SHFreeNameMapping(), passing the handle you received from SHFileOperation(). Everything
works properly, and it's perfectly understandable. Perhaps one day, all the Windows documentation
will be this clear!

Anyway, by running this code, you'll discover that the hNameMappings handle is always NULL
unless and until the operation you're performing (copy, move, rename) causes name collisions. If
renaming occurs, the handle serves the purpose of giving you a report of what files have actually been
renamed to avoid overwriting other files, indicating both their new and original names.

So, a file name mapping object has nothing to do with memory-mapped files or other mechanisms for
interprocess communication. It's just a chunk of memory that allows the shell (and you) to keep track
of what files have been renamed in order to avoid name collisions.

Chapter 3

60

If the target directory (c:\newdir in the sample) doesn't exist, or if it
contains files whose names are all different from those in the source path
(c:\thedir*.* in the sample), then, despite the flags we specified,
the handle is NULL:

On the other hand, if at least one rename-on-collision occurred, the handle refers to a meaningful
block of data, and you're returned a valid memory address.

Using the Object
Obtaining a handle to a file name mapping object is only half the battle — now you have to figure out
how to use it! The documentation simply says that (when it isn't NULL) hNameMappings points to an
array of SHNAMEMAPPING structures. There's no mention, for example, of how to get the size of this
array. Even worse, the LPVOID member that SHFileOperation() uses to store the handle is
anything but a pointer to an array of data structures. The obvious method of walking the array via a
loop simply doesn't work here.

In some old MSDN documentation, you will find mention of a couple of functions called
SHGetNameMappingCount() and SHGetNameMappingPtr(). However, these now
seem to be not only undocumented, but unexported as well. No version of shell32.dll (from
Internet Explorer 4.0 onwards) has any trace of them. This is a shame, since they were exactly
the kinds of functions I'm going to write right now! I really don't understand why these functions
have been removed, but support for the hNameMappings member has been neither withdrawn
nor declared obsolete.

An Undocumented Structure
What the documentation claims is true, but incomplete. The problem is that it neglects to mention a
data structure that sits in the middle, between hNameMappings and the array, desperately calling
you. There were two clues that put me on the right track, the first of which was the output from code
like this:

 TCHAR* pNM = static_cast<TCHAR*>(shfo.hNameMappings);
 Msg(pNM);

When I tried this, I was resigned to getting yet another access violation error, but to my surprise it
just dumped a number (such as 9) instead. Could that be the number of renames-on-collision? I
checked the directories and found that it was. Of course, I immediately performed another test with a
different number of files, and that confirmed my theory. Whatever it is that hNameMappings points
to, it begins with the total number of file name mapping objects.

So what's the next step? Well, looking through the Internet Client SDK and MSDN documentation, I
ran into some unknown (at least, to me) clipboard formats. They are mentioned in:

! Windows Shell API | Dragging and Dropping, for the Internet Client SDK
! Knowledge Base Article Q154123, for the MSDN Library

Working with Files

61

These formats (among which there's an encouraging one called "FileNameMap") are used internally
by the shell when you request copy and paste operations, or when you drag-and-drop file objects
from one folder to another. More interestingly (at least for our purposes), many of these formats are
stored in the clipboard as a block of data, comprising a number and a pointer to an array of custom
data structures. The number denotes the size of the array, and the pointer refers to its first element.

Towards a Solution
Happily, the same pattern applies to mapping objects, so I defined an intermediate structure called
SHNAMEMAPPINGHEADER:

struct SHNAMEMAPPINGHEADER
{
 UINT cNumOfMappings;
 LPSHNAMEMAPPING lpNM;
};

typedef SHNAMEMAPPINGHEADER* LPSHNAMEMAPPINGHEADER;

The structure has exactly the same format as the data pointed to by hNameMappings. This is
illustrated in the diagram below, which also demonstrates the way to access the array of
SHNAMEMAPPING structures:

With this done, writing a function that enumerates all of the file name mapping objects is pretty
straightforward; I called mine SHEnumFileMapping(). Before we look at the function itself,
though, we need to extend our earlier listing for OnOK() to incorporate a call to it:

void OnOK(HWND hDlg)
{
 ...

 // Trace the value of the handle
 Msg("hNameMappings is: %x", shfo.hNameMappings);

 // Enumerate the file mapping objects
 SHEnumFileMapping(shfo.hNameMappings, ProcessNM,
 reinterpret_cast<DWORD>(GetDlgItem(hDlg, IDC_LIST)));

 // Free the object, as recommended
 if(shfo.hNameMappings)
 SHFreeNameMappings(shfo.hNameMappings);
}

Chapter 3

62

SHEnumFileMapping() accepts the handle, a callback procedure, and a generic buffer. It
enumerates all the SHNAMEMAPPING structures, passing them one by one to the callback function for
further processing.

int WINAPI SHEnumFileMapping(
 HANDLE hNameMappings, ENUMFILEMAPPROC lpfnEnum, DWORD dwData)
{
 SHNAMEMAPPING shNM;

 // Check the handle
 if(!hNameMappings)
 return -1;

 // Get the header of the structure
 LPSHNAMEMAPPINGHEADER lpNMH =
 static_cast<LPSHNAMEMAPPINGHEADER>(hNameMappings);
 int iNumOfNM = lpNMH->cNumOfMappings;

 // Check the function pointer; if NULL, just return the number of mappings
 if(!lpfnEnum)
 return iNumOfNM;

 // Enumerate the objects
 LPSHNAMEMAPPING lp = lpNMH->lpNM;
 int i = 0;

 while(i < iNumOfNM)
 {
 CopyMemory(&shNM, &lp[i++], sizeof(SHNAMEMAPPING)); if(!lpfnEnum(&shNM,
dwData))
 break;
 }

 // Returns the number of objects actually processed
 return i;
}

SHEnumFileMapping() follows the same pattern as most of the other 'enum-like' Windows
functions. It accepts a callback function and a generic DWORD buffer that's used to pass custom data
from the calling program to the callback. Furthermore, it expects the callback to return 0 if the
enumeration should stop. I defined the callback function to be of type ENUMFILEMAPPROC:

typedef BOOL (CALLBACK *ENUMFILEMAPPROC)(LPSHNAMEMAPPING, DWORD);

The function receives a pointer to a SHNAMEMAPPING object, together with any custom data the
calling program wants to send.

Of course, creating an 'enum-like' function for listing all the structures is a matter of personal
preference. I could equally have defined a navigational interface, by providing functions like
FindFirstSHNameMapping() and FindNextSHNameMapping().

In practice, pretty much all the work is carried out by the callback function. The one I've used here
(ProcessNM()) extracts the pszOldPath and pszNewPath fields from any SHNAMEMAPPING
structure it receives, and adds them to the report list view:

Working with Files

63

BOOL CALLBACK ProcessNM(LPSHNAMEMAPPING pshNM, DWORD dwData)
{
 TCHAR szBuf[1024] = {0};
 TCHAR szOldPath[MAX_PATH] = {0};
 TCHAR szNewPath[MAX_PATH] = {0};
 OSVERSIONINFO os;

 // We need to know the underlying OS
 os.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 GetVersionEx(&os);
 BOOL bIsNT = (os.dwPlatformId == VER_PLATFORM_WIN32_NT);

 // Under NT the SHNAMEMAPPING structure includes UNICODE strings
 if(bIsNT)
 {
 WideCharToMultiByte(CP_ACP, 0, reinterpret_cast<LPWSTR>(pshNM->pszOldPath),
 MAX_PATH, szOldPath, MAX_PATH, NULL, NULL);
 WideCharToMultiByte(CP_ACP, 0, reinterpret_cast<LPWSTR>(pshNM->pszNewPath),
 MAX_PATH, szNewPath, MAX_PATH, NULL, NULL);
 }
 else
 {
 lstrcpy(szOldPath, pshNM->pszOldPath);
 lstrcpy(szNewPath, pshNM->pszNewPath);
 }

 // Save the list view handle
 HWND hwndListView = reinterpret_cast<HWND>(dwData);

 // Create a \0 separated string
 LPTSTR psz = szBuf;
 lstrcpyn(psz, szOldPath, pshNM->cchOldPath + 1);
 lstrcat(psz, __TEXT("\0"));

 psz += lstrlen(psz) + 1;

 lstrcpyn(psz, szNewPath, pshNM->cchNewPath + 1);
 lstrcat(psz, __TEXT("\0"));

 // Add the strings to the report view
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_TEXT;
 lvi.pszText = szBuf;
 lvi.cchTextMax = lstrlen(szBuf);
 lvi.iItem = 0;
 ListView_InsertItem(hwndListView, &lvi);

 psz = szBuf + lstrlen(szBuf) + 1;
 ListView_SetItemText(hwndListView, 0, 1, psz);

 return TRUE;
}

Note that under Windows NT, the strings in the SHNAMEMAPPING structure are in Unicode format.
Here, if the operating system is NT, I convert the strings to ANSI format in order to use them in the
example. Also notice that the dwData buffer I added to the prototype is used to pass the handle of
the list view to the callback function.

Chapter 3

64

With all this code in place, the basic example I put together earlier in the chapter is now able to give
details of the files renamed by the call to SHFileOperation(). A test, in typical circumstances,
might result in something like this:

Summary
This chapter was devoted entirely to a single function. Each aspect of SHFileOperation() was
thoroughly examined, starting with the commands that let you copy, move, rename or delete files,
and the flags you can set to make the function work as you'd like it to. Then I spent some time talking
about the undocumented return codes, bugs, and pitfalls of the function. In summary, in this chapter
I've shown you:

! How to program SHFileOperation()
! The most common programming errors
! The shortcomings of the function's documentation
! How to take advantage of file name mapping

Further Reading
It's difficult to find reference material for a single function like SHFileOperation(), but there are
at least a couple of brief articles on MSDN that are worth a glance. They are:

! Knowledge Base Article Q133326: SHFILEOPSTRUCT pFrom and pTo Fields Incorrect
! Knowledge Base Article Q142066: SHGetNameMappingPtr() and SHGetNameMappingCount ()

In addition to these, MSDN is full of tips and quick examples on how to use SHFileOperation()
with Visual Basic. Good suggestions can be found in Manipulating Files with the SHFileOperation
Function in Visual Basic 4.0 by Deborah L. Cooper, which can be found under Technical Articles | Visual
Tools | Visual Basic | Visual Basic 4.0. The documentation for CreateFile() contains details of the
security attributes of files.

Investigating the Nature of Files

Once upon a time, all files and directories had a limited and well-defined set of attributes: time, date,
size, and a set of flags denoting their status, which could be 'read-only', 'hidden', 'archive' or 'system'.
However, Windows 95 (and then Windows NT 4.0) brought with it a number of changes, the most
important of which is that the concept of a 'file' has been widened. A file is now any object that's a
part of the shell — it doesn't necessarily have to be a part of the file system.

To give a precise definition, any object that's part of the shell namespace is called a file object. Note
once again that in this context, the word 'namespace' has nothing to do with the C++ keyword. By
'shell namespace', I just mean the collection of all the named items that actually form the shell. They
all appear in the Explorer's tree view.

Not all file objects are entries in the file system, as items like Printers and My Computer
demonstrate. A file object that contains other, child file objects is called a folder object. Files and
directories are only the most common of the file objects.

In all probability this change has been made as a first step towards what some years ago was
known as 'Cairo' — Microsoft's fully object-oriented operating system that would have fused
Windows 9x and Windows NT into a single product. From what we mere mortals can see today,
a unified operating system is still a project in divenire, even if the hype about its object-oriented
nature has disappeared.

How many attributes can a file object have today? It will come as no surprise that the complete set
comprises all the attributes a file had under MS-DOS, plus a few others due to the graphical nature of
the Windows 9x and Windows NT shells. The shell API provides a composite and quite rich function
for investigating the properties of a given file object, be it an ordinary file, a directory, or even a
system folder or a system object like a printer or a dial-up connection. This function is
SHGetFileInfo().

Chapter 4

68

In this chapter, my aim is to examine carefully the prototype of this routine, emphasizing for a given
file object:

! How to get its type name
! How to get a handle to its Explorer icon
! How to get the target platform for an executable
! How to retrieve the attributes that define what you can do and what you cannot do with it from

within the Explorer

You might be surprised at the diversity of the information you can get through SHGetFileInfo().
I still remember the reader who once asked me how to determine whether a given .exe file was a 16-
bit or a 32-bit module (without the hassle of mapping the EXE header structures). My answer was
SHGetFileInfo(). A few days later, he came back to me again with a question about getting hold
of the icon for a given drive. Once again, my answer was SHGetFileInfo(). A weekend went by,
and he sent me a third message with lots of excuses for being so boring. Now he was searching for a
clever way to determine whether a folder had sub-folders. My answer was the same as before. The
last message I got from him asked what arguments he should pass SHGetFileInfo() to get a good
cup of coffee!

What SHGetFileInfo() Can Do for You
As usual, let's start with the function's prototype, which is located in shellapi.h. The function
takes five arguments:

DWORD SHGetFileInfo(LPCTSTR pszPath,
 DWORD dwFileAttributes,
 SHFILEINFO FAR* psfi,
 UINT cbFileInfo,
 UINT uFlags);

Basically, SHGetFileInfo() provides information about an object in the file system. As explained
earlier, this object can be a file, a folder, a directory or a drive root. The DWORD it returns has a
meaning that can vary quite a lot, depending upon the contents of the uFlags argument. In a
nutshell, by means of this function you can expect to:

! Determine the target platform of an executable file (Win32, Win16, MS-DOS)
! Get the various flavors of the file icon (small, large, with the link overlay, selected, opened)
! Retrieve other display attributes, such as the file type (the short description shown by Explorer in

the Type column) and the display name (what appears in the Name column)
! Retrieve any other attribute that can characterize the file, such as whether it can be copied,

moved, deleted or renamed; whether it can originate a shortcut; whether it has sub-folders;
whether it is shared, is a drop target or has additional property pages, and much more

How SHGetFileInfo() Works
To understand exactly what the function can do for you, a tour of all the possible ways to call it is
mandatory. To begin, let's examine the arguments it requires:

Investigating the Nature of Files

69

Name Description

pszPath A buffer that contains the relative or absolute path to the file for
which information is required. It can handle short and long file
names.

dwFileAttributes The documentation says that this parameter is used only if uFlags
includes the SHGFI_USEFILEATTRIBUTES flag. If so, it should be
a combination of file attribute constants: archive, read-only,
directory, system and the like. (See later)

psfi Points to a SHFILEINFO structure that will receive the data.

cbFileInfo This is simply the size of the above structure.

uFlags The brains of the function. Through all the possible flags, you can
drive the behavior and the information actually retrieved. (See later)

The SHFILEINFO structure is defined like this:

typedef struct _SHFILEINFO
{
 HICON hIcon;
 int iIcon;
 DWORD dwAttributes;
 char szDisplayName[MAX_PATH];
 char szTypeName[80];
} SHFILEINFO;

With a single exception, this structure is always used to transfer data back to the calling program, and
never needs initialization. The only member that may sometimes contain information that affects the
behavior of the function is dwAttributes, and I'll have more to say on this later in the chapter.

It's clear that all the interesting uses to which SHGetFileInfo() can be put depend upon the value
you put in the uFlags argument. In most cases, information is returned via the psfi buffer, but
there are circumstances where the answer can be packed efficiently in the DWORD return value of the
function.

Specifying the Input File
A function that retrieves information about files first requires the name of the file on which to
operate, and the pszPath parameter serves this purpose. However, there are some points about even
this that need to be clarified. For one thing, it can be a path name (as you'd expect) or a PIDL, which
we discussed in Chapter 2.

If you want to pass a PIDL instead of an ordinary path name, then you should set the SHGFI_PIDL
flag in the uFlags argument. The converse is true as well: if you set the SHGFI_PIDL flag, then the
pszPath must be a pointer to an ITEMIDLIST structure (in other words, a PIDL). Of course,
pszPath can also be a folder name or a drive name, in which cases you need to leave a final
backslash in the path name. That is, you should specify 'c:\' rather than 'c:' to avoid errors when
retrieving information about the C drive.

Chapter 4

70

Using Wildcards with SHGetFileInfo()
The documentation doesn't say anything about using SHGetFileInfo() with wildcards, and from
that you might expect that wildcards aren't recognized. However, I've discovered that if you pass a
string with wildcards then provided that at least one file matches the pattern, the function works
correctly. The next figure shows the output from a sample program that we'll discuss in detail later
on:

The program lets you select a file name or a path name, and retrieves the information you checked
beneath. It can return the icon, the display name, the type name and a list of all the other attributes.
Also, you can ask the program to determine the type of executable of the file in question. Checking
the EXE Type box suppresses all the other options. The Return Code label shows the return code of
the function (or a textual representation of it), and by checking Accept any file name you can force
the function to accept anything as the input file.

On this occasion, the program has called SHGetFileInfo() with the path
e:\mssdk\doc\misc*.txt, and you can see the response: the icon and the type name are both
correct (on my PC, a text file is described as a Text Document). Curiously though, despite specifying
a wildcard, we also have non-null file attributes and a display name! While the icon and the type
name may be obtained from the file extension, the same can't be true for display names and attributes
— those are clearly only relevant to a particular file.

To examine what was happening here, I tried calling the function with a different path:
e:\mssdk\doc\misc\g*.*. As you can see, there's now a wildcard for the extension as well as for
the name of the file. The resulting dialog looked like this:

Investigating the Nature of Files

71

As you can see, we've got the same file as
before, and the clear implication of this is
that if you pass wildcards,
SHGetFileInfo() takes the first file
that matches the string and works with it.
If no file matches the pattern, the function
does nothing but return zero.

The other possibility we need to check is
what happens when you pass a path name
ending in *.*. As you can see in the
screenshot opposite, when I tried it, the
function returned information about a
folder:

What's going on now? Well, stop for a while, and have a closer look at the output. In the Display
field, you can see a dot (.), just like in an old DOS directory listing! This result confirms what I stated
earlier: SHGetFileInfo() operates on the first file object whose name matches the pattern. In fact,
if you try to enumerate the content of a folder using *.* as the matching string, the first item you get
is the dot. If you still aren't convinced, try this code when you next get the chance:

Chapter 4

72

 WIN32_FIND_DATA wff;
 FindFirstFile("*.*", &wff);
 Msg(wff.cFileName);

In summary, even though it's an undocumented feature, you can use wildcards with
SHGetFileInfo() provided that:

! You specify a pattern string that matches at least one file
! You are aware that the function stops at the first file found

It's likely that somewhere in its internal code, SHGetFileInfo() gets hold of a
WIN32_FIND_DATA structure. This is filled with low-level file information, and its use wouldn't be at
all surprising here. Incidentally, this structure is also involved in another shell function that we'll
examine in a later chapter — SHGetDataFromIDList() — that can also return information about a
file object.

The Display Name
Looking at the screenshots above and running the same program on your machine, you may notice a
slight difference in what is returned as the 'display name'. In my screenshots, the display name is
composed of the filename plus the extension, but it may be that you only see the filename. It all
depends upon the settings in Explorer's View | Folder Options... dialog, in which you can choose to
'Hide file extensions for known file types'.

Here, a "known file type" is simply a registered file type. We'll discuss thoroughly how file type
registration works in Chapter 14, but for now it's enough to know that this is just a class of documents
the shell knows how to handle. If you double-click a file of a known type, the chances are that the
document will open up in a program that knows how to deal with it. To retrieve this kind of setting
programmatically, you need to use a function called SHGetSettings() that will be covered in the
next chapter.

The Sample Program
It's about time we had a look at the sample program that I've been using for the tests so far, and
which you'll see a few more times before the end of this chapter. Once again, it's a dialog-based
application built from the Wrox AppWizard, and this time I called my project FileInfo. The
operational part of the sample is built around SHGetFileInfo(), and works as a generic executor
of queries about the state and the attributes of a given file or folder. This is what its user interface
looks like:

Investigating the Nature of Files

73

As you can see, the user interface is composed of an edit field with an associated browse button that
lets you choose a file. Unfortunately, you can't select a directory in this fashion; if you want to pass in
a folder name, you must type its name by hand. The checkboxes allow you to select which flags you
want to add to the call; if you check the EXE Type box, all the others will be discarded. This is due to
a feature of SHGetFileInfo() that requires the flag for specifying the executable type to be
specified alone. The icon for the file will be drawn in a static control, while the attributes are parsed
and transformed into a descriptive string.

Most of the significant code goes in the OnOK() method, which executes when the user clicks on the
Go button. In order to successfully compile the code after these changes, remember to #include
"resource.h" to keep track of the dialog's control IDs, and <shlobj.h> for the prototype of
SHGetFileInfo().

void OnOK(HWND hDlg)
{
 TCHAR szFile[MAX_PATH] = {0};
 TCHAR szBuf[1024] = {0};

 // Get the file name
 GetDlgItemText(hDlg, IDC_FILENAME, szFile, MAX_PATH);

 ///
 // Collect Flags
 //
 DWORD dwFileAttributes = 0;
 UINT uFlags = 0;

 if(IsDlgButtonChecked(hDlg, IDC_FILEICON))
 uFlags |= SHGFI_ICON;
 if(IsDlgButtonChecked(hDlg, IDC_DISPLAYNAME))
 uFlags |= SHGFI_DISPLAYNAME;

Chapter 4

74

 if(IsDlgButtonChecked(hDlg, IDC_TYPENAME))
 uFlags |= SHGFI_TYPENAME;
 if(IsDlgButtonChecked(hDlg, IDC_OTHER))
 uFlags |= SHGFI_ATTRIBUTES;
 if(IsDlgButtonChecked(hDlg, IDC_WILDCARD))
 uFlags |= SHGFI_USEFILEATTRIBUTES;
 if(IsDlgButtonChecked(hDlg, IDC_EXETYPE))
 uFlags = SHGFI_EXETYPE;

 ///
 // Call the function
 //
 SHFILEINFO sfi;
 ZeroMemory(&sfi, sizeof(SHFILEINFO));
 DWORD dwRC = SHGetFileInfo(
 szFile, dwFileAttributes, &sfi, sizeof(SHFILEINFO), uFlags);

 ///
 // Deal with the UI
 //
 wsprintf(szBuf, "%d", dwRC);
 SetDlgItemText(hDlg, IDC_RETCODE, szBuf);

 wsprintf(szBuf, "Icon Index: %d", sfi.iIcon);
 SetDlgItemText(hDlg, IDC_ICONINDEX, szBuf);

 SetDlgItemText(hDlg, IDC_DISPLAY, sfi.szDisplayName);
 SetDlgItemText(hDlg, IDC_TYPE, sfi.szTypeName);

 ///
 // Parse attributes and display
 //
 DWORD dwAttrib = sfi.dwAttributes;
 lstrcpy(szBuf, "");
 if(dwAttrib != 0)
 {
 if(dwAttrib & SFGAO_CANCOPY)
 lstrcat(szBuf, "Copy, ");
 if(dwAttrib & SFGAO_CANMOVE)
 lstrcat(szBuf, "Move, ");
 if(dwAttrib & SFGAO_CANDELETE)
 lstrcat(szBuf, "Delete, ");
 if(dwAttrib & SFGAO_CANRENAME)
 lstrcat(szBuf, "Rename, ");
 if(dwAttrib & SFGAO_CANLINK)
 lstrcat(szBuf, "Link, ");
 if(dwAttrib & SFGAO_HASPROPSHEET)
 lstrcat(szBuf, "PropSheet, ");
 if(dwAttrib & SFGAO_GHOSTED)
 lstrcat(szBuf, "Ghosted, ");
 if(dwAttrib & SFGAO_SHARE)
 lstrcat(szBuf, "Shared, ");
 if(dwAttrib & SFGAO_HASSUBFOLDER)
 lstrcat(szBuf, "SubFolders, ");
 if(dwAttrib & SFGAO_REMOVABLE)
 lstrcat(szBuf, "On removable media, ");
 if(dwAttrib & SFGAO_FOLDER)
 lstrcat(szBuf, "Folder, ");

 lstrcat(szBuf, "and more!");
 }

Investigating the Nature of Files

75

 SetDlgItemText(hDlg, IDC_ATTRIB, szBuf);

 ///
 // Show the icon
 //
 HICON hIcon = sfi.hIcon;
 SendDlgItemMessage(
 hDlg, IDI_ICON, STM_SETICON, reinterpret_cast<WPARAM>(hIcon), 0);
}

This code is enough to reproduce the behavior you've seen so far, although we will be adding more
functionality as we go. The two most important sections are the if blocks, and while it may not be
immediately clear what they do, we'll be focusing on them for the majority of the rest of the chapter.

The only other function we need to implement at this stage is the handler for the browse (...) button.
This involves adding an extra case to the switch in APP_DlgProc(), and the OnBrowse()
function itself, which looks like this:

void OnBrowse(HWND hDlg)
{
 TCHAR szFile[MAX_PATH] = {0};

 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.lpstrFilter = "All files\0*.*\0";
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrFile = szFile;

 if(GetOpenFileName(&ofn))
 SetDlgItemText(hDlg, IDC_FILENAME, ofn.lpstrFile);
}

To make use of common dialogs (in this
case, the Open dialog), you need to link
against comdlg32.lib and #include
<commdlg.h>. The screenshot shows
typical output from the program. It's been
asked to provide information about the
icon, type, display name, and attributes
for the Favorites folder:

Chapter 4

76

Note that in this case we're referring to the folder by its physical name rather than its PIDL. On my
home PC, this directory is C:\WINDOWS\Favorites, but it wouldn't have mattered if the file I was
looking for were on a network drive — such details are transparent to SHGetFileInfo().

The Flags of the Function
It's clear that the uFlags argument is absolutely central to SHGetFileInfo(). It can be
constructed from almost any combination of the following values, some of which you've already seen
in the code we've put together so far:

Code Value Description

SHGFI_ICON 0x0100 Stores the HICON handle to the file icon in the
hIcon member of the SHFILEINFO structure.

SHGFI_DISPLAYNAME 0x0200 Stores a pointer to the display name string for the file
in the szDisplayName member of the
SHFILEINFO structure.

SHGFI_TYPENAME 0x0400 Stores a pointer to the type string for the file in the
szTypeName member of the SHFILEINFO
structure.

SHGFI_ATTRIBUTES 0x0800 Stores a DWORD with all the settings retrieved for the
file in the dwAttributes member of the
SHFILEINFO structure.

SHGFI_ICONLOCATION 0x1000 Stores a pointer to the name of the file that contains
the icon the shell is using for the specified object in
the szDisplayName member of the SHFILEINFO
structure. Because of this, you can't use it together
with SHGFI_DISPLAYNAME. Strangely, it seems to
work only if you specify a folder name; if you specify
a file name, the return buffer is always empty.

SHGFI_EXETYPE 0x2000 Causes the function to return a value denoting the
binary format of an executable file, and its target
platform.

SHGFI_SYSICONINDEX 0x4000 Causes the function to return the handle of the
system image list that contains the icon. The index of
the icon is stored in the iIcon field of the
SHFILEINFO structure.

By using the test program described earlier, I've discovered an interesting thing. It seems that there
exists a relationship between SHGFI_ICON and SHGFI_ATTRIBUTES: the former implies the latter.
This means that the dwAttributes member of the SHFILEINFO structure is always filled in when
you specify SHGFI_ICON, regardless of whether you also specify SHGFI_ATTRIBUTES.

All the above are flags that make the function perform some kind of useful task for the programmer.
There are other flags, but these play a secondary role. In some cases, they refine one of the flags from
the above table. This is true for:

Investigating the Nature of Files

77

Code Value Description

SHGFI_LARGEICON 0x00000 Causes the function to retrieve the file's large
icon.

SHGFI_SMALLICON 0x00001 Causes the function to retrieve the file's small
icon.

SHGFI_OPENICON 0x00002 For a folder, this causes the function to retrieve
the icon displayed when it's open.

SHGFI_SHELLICONSIZE 0x00004 Causes the function to retrieve an icon with the
size that's set in the Appearance tab of the
Display Control Panel applet.

SHGFI_SELECTED 0x10000 The icon retrieved is the one displayed when the
file is selected (blended with the highlight color).

SHGFI_LINKOVERLAY 0x08000 The icon retrieved is the one displayed when the
file is a shortcut (with that little arrow over it).

The flags in this table affect SHGFI_ICON, and only work in conjunction with it. As you can see, it's
possible to get every flavor of icon.

Another flag that refines one of the earlier ones is SHGFI_ATTR_SPECIFIED, which applies to
SHGFI_ATTRIBUTES. It means that the dwAttributes field of the SHFILEINFO structure is
already initialized with the attributes flags the caller wants SHGetFileInfo() to retrieve. In other
words, if dwAttributes has a particular flag set, say SFGAO_SHARE, the function must check that
flag (and only that flag) on the file being operated upon. By default, dwAttributes contains
0xFFFFFFFF, which means that all the attributes must be checked. I'll have more to say about file
attributes a little later on.

To complete the list of the flags, there are just two that I haven't yet mentioned: SHGFI_PIDL and
SHGFI_USEFILEATTRIBUTES. We'll discuss more about these two, and the flags that modify
SHGFI_ICON, in the forthcoming sections.

Provided that there's a way to return data, you can specify several flags at the same time. In other
words, you can request (say) the icon, the display and the type name together, but not the large
and the small icon, since these are both returned through the same buffer.

Getting Information for a Given File Type
If you want to know the icon and the type name that the system uses for a certain kind of document,
you have no need to resort to wildcards. Instead, you can exploit a feature of SHGetFileInfo()
that's well documented.

By setting the SHGFI_USEFILEATTRIBUTES flag in the uFlags parameter, you force the function
to assume that the file you passed in through pszPath exists. In this case, it just takes the extension
and searches the registry for information about the icon and the type name. This is a really interesting
feature because it allows you to ask, for example, for the icon of a given family of files simply by
specifying *.ext.

Chapter 4

78

Of course, if you're using SHGFI_USEFILEATTRIBUTES, you can't expect other flags like
SHGFI_EXETYPE, SHGFI_ATTRIBUTES or SHGFI_PIDL to work properly, since they are specific to
a particular, file that exists.

In my opinion, the oddest thing in this procedure is the name of the constant. Why did they use
SHGFI_USEFILEATTRIBUTES? The name and the documentation seem to suggest a link between
this flag and the dwFileAttributes argument of SHGetFileInfo(): the idea is that the function
behaves as if a file exists with the name specified in pszPath and the attributes set in
dwFileAttributes. However, the role played by the file attributes here appears to be somewhat
tenuous. All the samples I wrote worked fine, regardless of the value assigned to
dwFileAttributes.

To see this flag in action, you can check the Accept any file name box in the sample application and
enter something like *.htm as the File Name. Alternatively, here's a helper function that you can use
in isolation to get the icon and type name for any type of file:

HICON GetFileTypeIcon(LPCTSTR szFileType, LPTSTR szTypeName)
{
 SHFILEINFO sfi;
 ZeroMemory(&sfi, sizeof(SHFILEINFO));
 SHGetFileInfo(szFileType, 0, &sfi, sizeof(SHFILEINFO),
 SHGFI_USEFILEATTRIBUTES | SHGFI_ICON | SHGFI_TYPENAME);

 lstrcpy(szTypeName, sfi.szTypeName);
 return sfi.hIcon;
}

Shell Icon Size
The SHGFI_SHELLICONSIZE flag forces the function to retrieve a large icon with the size specified
in the Shell Icon Size value of the following registry path:

HKEY_CURRENT_USER\Control Panel\desktop\WindowMetrics

Investigating the Nature of Files

79

This value may be set through the Control
Panel's Display applet, by selecting the
Appearance tab. It affects the size of large
icons throughout the desktop, and inside
folders:

If the key doesn't exist, or if the SHGFI_SHELLICONSIZE flag is not specified, then the size of the
icon retrieved by SHGetFileInfo() follows the default window metric, which is 32 x 32 pixels.
Each time you change the Shell Icon Size key, the Explorer refreshes its internal cache of icons,
which is simply the system image list that's returned by SHGFI_SYSICONINDEX. To get the real size
of the icon retrieved, you should use the ImageList_GetIconSize() function.

Using a PIDL
SHGFI_PIDL simply informs the system that the item being passed as if it were a file name is actually
a PIDL, and therefore needs special treatment. This code, for example, demonstrates how to get the
icon of the My Computer folder:

LPITEMIDLIST pidl;
SHGetSpecialFolderLocation(NULL, CSIDL_DRIVES, &pidl);
DWORD dwRC = SHGetFileInfo(reinterpret_cast<LPCTSTR>(pidl),
 dwFileAttributes, &sfi, sizeof(SHFILEINFO), uFlags | SHGFI_PIDL);

My Computer is a special folder that doesn't map to a physical directory on your disks. Rather, it's a
virtual folder whose underpinnings are coded into a namespace extension. Since such a folder doesn't
have a matching path name, we need to identify it to SHGetFileInfo() by some other means. The
obvious approach is to use its PIDL.

Since version 4.71, the shell API has defined a function called SHGetSpecialFolderLocation()
that takes a symbol identifying a special folder, and returns the corresponding PIDL. For My
Computer, this symbol is CSIDL_DRIVES. In earlier versions of the shell, getting the PIDL of a
special folder was still possible, but it was a complex task. However, it's exactly the kind of code we'll
have to deal with ourselves if we want the PIDL of an object that isn't part of the file system and isn't
a special folder. Such code is presented in Chapter 5, where we'll be writing a custom routine to walk
the content of any folder.

Chapter 4

80

If you replace the call to SHGetFileInfo() with the three lines of code you see above, the
resulting output will be:

Getting Attributes for a File
There's a long list of attributes you can retrieve for a given file object, many of which appeared in the
second if block of our OnOK() implementation. The attributes you can obtain using
SHGetFileInfo() are the same as those you can retrieve through using the GetAttributesOf()
method of the IShellFolder interface. In other words, SHGetFileInfo() acts as a wrapper for
the IShellFolder interface in this case. The attributes you can read are all defined in the
shlobj.h header file. Here's a list of the ones you're most likely to have to deal with:

Attribute Description

SFGAO_CANCOPY The file object can be copied through drag-and-drop or the
clipboard.

SFGAO_CANDELETE The file object can be deleted through the shell.

SFGAO_CANLINK It is possible to create shortcuts for the file object.

SFGAO_CANMOVE The file object can be moved through drag-and-drop or the
clipboard.

SFGAO_CANRENAME The file object can be renamed through the shell.

SFGAO_HASPROPSHEET The file object has at least one property sheet.

SFGAO_GHOSTED The file object is displayed using a ghosted icon (normally, this is
a hidden file).

SFGAO_LINK The file object is a shortcut.

SFGAO_READONLY The file object is read-only.

Investigating the Nature of Files

81

Attribute Description

SFGAO_SHARE The specified folder is shared.

SFGAO_HASSUBFOLDER The specified folder has at least one sub-folder.

SFGAO_COMPRESSED The file object resides on a compressed drive.

SFGAO_FILESYSTEM The file object is part of the file system and not a virtual folder.
This also means that a physical object (drive, directory or file)
exists for it.

SFGAO_FOLDER The specified object is a folder.

SFGAO_REMOVABLE The file object resides on removable media (typically a floppy
disk).

Given this, it's easy to arrange quick functions to test such conditions. For example, a question I'm
often asked is, "How can I know whether a given directory is shared?" Determining this is simply a
matter of checking the contents of the dwAttributes field of the SHFILEINFO structure returned
by SHGetFileInfo() against SHGAO_SHARE:

BOOL IsDirectoryShared(LPCTSTR szDirName)
{
 SHFILEINFO sfi;
 ZeroMemory(&sfi, sizeof(SHFILEINFO));
 SHGetFileInfo(szDirName, 0, &sfi, sizeof(SHFILEINFO), SHGFI_ATTRIBUTES);
 return(sfi.dwAttributes & SFGAO_SHARE);
}

If a given folder is shared, you might want the function to return the icon in which a
hand is holding the object:

After all, SHGetFileInfo() can return 'selected' icons for folders, so ours isn't a far-fetched
demand. Unfortunately, the function doesn't support this feature, but that's no good reason to give
up! Let's see how we can work around this problem.

Creating the 'Hand-held' Folder Icon
The 'holding hand' icon is the 29th icon in shell32.dll
(with a zero-based index of 28):

Chapter 4

82

Rather than resorting to hard work with device contexts, XOR and AND masks, and the like, we can
exploit the power of an underused Windows 95 common control: the image list.

An image list is a collection of images (icons and bitmaps) that are kept in memory in a very special
and efficient way: they are stored as a single bitmap that's created by putting all the constituent images
side-by-side. Think of it as a comic strip or, better yet, as a film roll. A fundamental constraint of
image lists is that all the images have the same size, allowing the system to access any image by index
quickly and easily. Image lists are generally used to manage large numbers of small images, and many
of the Windows 9x and Windows NT common controls (list views and tree views, for example)
require you to provide icons through an image list.

From the programmer's standpoint, an image list is an invisible control with its own set of messages
and styles, and a specific handle (HIMAGELIST). Image lists have a very rich programming interface,
though, and there are functions to manage the list (extract, add, copy), to support drag-and-drop and
especially to support drawing. For more information about image lists, and for a complete
programming guide, you can refer to the documentation under Platform SDK | User Interface
Services | Shell and Common Controls | Image Lists.

The aspect of image lists we're interested in here is their substantial, built-in support for overlaying
and combining icons and small bitmaps. Explorer itself uses image lists when it comes to displaying a
composite icon for certain types of file objects, such as shortcuts and shared folders: it first gets hold
of the right 'basic' icon, and then, if necessary, processes it in one of the following ways:

! Blending with the highlight color (selected state)
! Blending with the gray color (ghosted state, for a hidden file)
! Overlaying the icon with others, such as the link or the 'holding hand'

If all you want to do is simply to produce output, then ImageList_SetOverlayImage() is the
function that does the job. It works in conjunction with ImageList_Draw() to combine two icons
in a given device context. Here's an example:

HICON hiFolder;
HICON hiHand;

// Load the icons
// hiFolder = ...;
// hiHand = ...;

// Get the DC to draw into
HDC hdc = GetDC(GetFocus());

// Create the image list
HIMAGELIST himl = ImageList_Create(32, 32, ILC_MASK, 1, 0);

// Add icons to the image list
ImageList_AddIcon(himl, hiFolder); // Icon index of 0
ImageList_AddIcon(himl, hiHand); // Icon index of 1

// Icon 1 (hand icon) is the overlay mask #1
ImageList_SetOverlayImage(himl, 1, 1);

// Icon 0 (the folder) must be overlaid by mask #1 in the device context
ImageList_Draw(himl, 0, hdc, 0, 0, INDEXTOOVERLAYMASK(1));

Investigating the Nature of Files

83

// Free the icons
DestroyIcon(hiFolder);
DestroyIcon(hiHand);

// Clean up and exit
ReleaseDC(GetFocus(), hdc);
ImageList_Destroy(himl);

The source code employs a number of functions from the image list API. In particular,
ImageList_Create() gives you a brand new image list with the specified size for the images (32 x
32 in the sample above). When you've finished, you destroy it using ImageList_Destroy(). As its
name suggests, ImageList_AddIcon() adds icons to the given image list. For these and other
functions, documentation is available in Visual C++ Books Online.

The call to ImageList_SetOverlayImage() in the above code defines the second icon in the
image list (index 1, the 'holding hand') as overlay mask #1. Then, in the device context specified by
hdc, the icon with index 0 (that is, the folder) is overlaid with mask #1. Take care here, because the
indexes for icons and masks are different — the former are 0-based, while the latter are 1-based.

Version 4.71 of the shell has increased the number of overlay masks available from 4 to 15.

Although the code presented so far works fine and does what we asked it to, it would be more useful
if we could return a brand new icon to a caller, and so we need to find something like
ImageList_Draw(), but which creates an icon that can be addressed by an HICON handle. We can
then return that handle to the caller. In fact, we don't have to look very far for help, because
ImageList_Merge() does just what we need.

HIMAGELIST ImageList_Merge(HIMAGELIST himl1,
 int i1,
 HIMAGELIST himl2,
 int i2,
 int dx,
 int dy);

The function takes two images from two image lists (it can be the same image list in both cases, if you
wish), and merges them by drawing the second over the first. The new image is stored in a new image
list, and the mask for the resulting image is obtained by ORing the masks (if any) of the two
constituent images. The documentation is not completely clear what the dx and dy parameters do,
but a moment's experimentation reveals that they indicate the position relative to the first image at
which you want the overlaying image to be drawn. The offset is calculated from the top-left pixel, but
I bet that in most cases you'll set both parameters to 0.

Here, then, is the source code for a reusable function called GetSharedFolderIcon() that takes
an HICON and returns a handle to a new icon in which the original image has been overlaid with the
'holding hand' icon:

HICON GetSharedFolderIcon(HICON hiFolder)
{
 HICON hiShared;
 HICON hiHand;

 // Get the 'holding hand' icon
 ExtractIconEx("shell32.dll", 28, &hiHand, NULL, 1);

Chapter 4

84

 // Create an image list to merge the folder and hand icons
 HIMAGELIST himl = ImageList_Create(32, 32, ILC_MASK, 1, 0);

 // Add icons to the image list
 ImageList_AddIcon(himl, hiFolder);
 ImageList_AddIcon(himl, hiHand);

 // Merge the icons to a new image list
 HIMAGELIST himlNew = ImageList_Merge(himl, 0, himl, 1, 0, 0);

 // Extract the icon from the new image list
 hiShared = ImageList_ExtractIcon(0, himlNew, 0);

 // Free the 'holding hand' icon. We don't free the 'folder' icon
 // because we received it from the caller, who may still need it.
 DestroyIcon(hiHand);

 // Clean up the image lists and exit
 ImageList_Destroy(himl);
 ImageList_Destroy(himlNew);
 return hiShared;
}

The function receives the icon whose 'shared' version is required from the caller, so the first thing we
have to do is get hold of the 'holding hand' icon, which (as explained earlier) is stored in
shell32.dll with an index of 28. To extract the icon, we use ExtractIconEx(). This is not the
only possibility (ExtractIcon() is fine as well), but it's the more flexible choice: it lets you extract
more icons in more sizes at the same time.

 ExtractIconEx("shell32.dll", 28, &hiHand, NULL, 1);

This single line instructs the function to load only the large version of the 29th icon (remember that
0-based index) in shell32.dll. We want neither the small version, nor more icons. See the Visual
C++ Books Online for further details about ExtractIconEx().

With both icons in our possession, we create an image list and fill it with the two icons to combine.
Then, we merge the icons and save the result into another new list that has just one icon — the syntax
of ImageList_Merge() requires you to identify the icons through an <image list, icon index> pair.
After calling ImageList_Merge(), we have a brand new image list from which to extract the
composite icon. You can now amend the code in OnOK() so that this new function is called if the
object on which SHGetFileInfo() operates is shared:

 ///
 // Show the icon
 //
 HICON hIcon;
 if(dwAttrib & SFGAO_SHARE)
 hIcon = GetSharedFolderIcon(sfi.hIcon);
 else
 hIcon = sfi.hIcon;

 SendDlgItemMessage(
 hDlg, IDI_ICON, STM_SETICON, reinterpret_cast<WPARAM>(hIcon), 0);

Investigating the Nature of Files

85

The following screenshot shows how the function works:

Binary Format of Executables
Another interesting feature of SHGetFileInfo() is its ability to return the binary format of an
executable file. By specifying the correct flag, you can discover whether a given .exe is a 32-bit or
16-bit module, and even which is the minimum Windows platform it requires. Typical scenarios when
this might be necessary are when you're:

! Writing a system-wide routine to analyze processes and windows, or to scan files. You might want
to indicate whether a 16-bit or a 32-bit program has created that process or window.

! Detecting programmatically whether your customers have upgraded from the old 16-bit version of
your tool.

! Writing low-level tools to spy on the system and its files.
! Implementing interprocess communication, as this may also require knowledge of the type of an

executable.

If you're in one of these situations, it looks at first like there's only one way out: learn about the
binary format of Windows (and possibly DOS) executables, and manually scan the binary code
looking for identifying characteristics. Fortunately, SHGetFileInfo() saves us from having to do
so. In order to decide which generation of Windows platform a given program was designed for, you
just need to specify the SHGFI_EXETYPE flag. Note, though, that to work properly, this flag cannot
be combined with any other.

Retrieving information about the executable format is one of the few cases where you must analyze
the return code of the function to extrapolate the result. SHGetFileInfo() returns a DWORD value,
and in this case the low order word is the signature of the executable, which is given by the following
strings:

Chapter 4

86

File Signature Hex Code Meaning

PE 0x4550 Win32 Portable Executable format, as adopted by
all the 32-bit Microsoft operating systems.

NE 0x454E Windows 3.x New Executable format, which is
typical of all 16-bit Windows programs.

MZ 0x5A4D DOS executable format. This value is also returned
if you interrogate a .com or a .bat file.

The hexadecimal codes correspond exactly to the letters in the 'file signature' column. For example,
0x50 is the P, 0x45 is the E, and so on.

The two bytes of the high order word, on the other hand, contain the version number of the minimum
release of the operating system required to run the program. This information isn't strictly necessary
if your goal is just to know whether a given module is 16- or 32-bit, but you'll find it to be 0x030A in
the case of old Windows 3.1 programs, and 0x0400 for all the other 32-bit platforms. The only
exceptions to this are programs specifically targeted to Windows NT 3.5x, where the value is less than
0x0400 even if they're 32-bit programs — in this case, the number is 0x0350. It's also possible that
there will be a zero value in the high order word, which means you're looking at a 32-bit console
application.

So while SHGetFileInfo() can give you all the information you could ever want to know about a
file, its programming interface has considerable room for improvement. Given a file name, for
example, it's quite a complex process to arrange a test to determine whether it is a 32-bit, a 16-bit or a
DOS program. Calling the function is only half the job; you then have to check the result and decide
what to do about it.

We will round off this discussion by implementing the code that deals with the EXE Type box being
checked in our sample application. It involves defining constants for the three different types of file at
the top of FileInfo.cpp, and then testing the return value of SHGetFileInfo() in the fashion
described above. The results of these tests are then used to modify the output of the application:

// Constants
const int PE_SIGN = 0x4550;
const int NE_SIGN = 0x454E;
const int MZ_SIGN = 0x5A4D;

…

 ///
 // Deal with the UI
 //
 if(uFlags == SHGFI_EXETYPE)
 {
 if(dwRC == 0)
 lstrcpy(szBuf, "Not an executable file.");
 else
 lstrcpy(szBuf, "");

 if(LOWORD(dwRC) == PE_SIGN)
 {
 lstrcat(szBuf, "32-bit");
 if(HIWORD(dwRC))

Investigating the Nature of Files

87

 lstrcat(szBuf, " Windows executable");
 else
 lstrcat(szBuf, " Console executable");
 }
 else if(LOWORD(dwRC) == NE_SIGN)
 lstrcat(szBuf, "16-bit executable");
 else if(LOWORD(dwRC) == MZ_SIGN)
 lstrcat(szBuf, "DOS executable");
 }
 else
 wsprintf(szBuf, "%d", dwRC);

The screenshot below illustrates what
happens with Explorer.exe:

Curiously, SHGetFileInfo() doesn't recognize a DLL or a VxD as an executable file, and
doesn't return its binary format. There's therefore no way to know about the binary format of a
DLL other than delving into the file. This means that the explanation above works well only for
stand-alone executables with the .exe extension. In fact, the function even fails with screen
savers, despite files with .scr extensions being no more than ordinary stand-alone executables.
This may (or may not) be a bug, depending upon the definition of 'executable file' you want to
adopt.

SHGetFileInfo() Return Values
If the function returns 0, then an error occurred somewhere. In most cases, this means that you
passed an invalid file name or PIDL, or that you specified a faulty combination of flags. The latter of
these is the more likely of the two.

Unless the flags specified instruct it to do otherwise, the function returns 1 if everything went well.
One example of where this is not the case is when the SHGFI_EXETYPE flag is set, as we have been
discussing. A second situation in which the return code means something more than just 'success' is
when the SHGFI_SYSICONINDEX flag is set. In this case, the function returns the handle of the
system image list that contains the icon for the specified file or folder.

Chapter 4

88

Interestingly, SHGetFileInfo() may even be used successfully to retrieve the icon associated with
a CD-ROM. While the icons for other drives are almost always standard, the icon shown by the
Explorer for the CD-ROM often depends upon the content of the autorun.inf file. Having a
function capable of returning the correct icon is a great help whenever you need such an icon.

Summary
SHGetFileInfo() doesn't have any obvious bugs, but once again it suffers from documentation
that is at the survival level. If you spend a few hours studying what's there and testing all the possible
combinations, it's likely that you will eventually find what you need, but that's hardly the point —
good documentation must emphasize clearly what a function can and cannot do. At least three of the
questions I get asked most frequently are answered by SHGetFileInfo(), but discovering that fact
was a far from easy business.

To redress the balance a little, this chapter showed you:

! How to get the various icons associated with a given file or folder
! How to discover the binary format of executable (.exe) files
! How to determine the system attributes of a given file or folder may have
! How to merge two icons using image lists, instead of XOR masks and device contexts

Investigating the Nature of Files

89

Further Reading
Unfortunately, I don't have a list of books or magazine articles for you on this occasion — this is a
subject for which there's a very limited range of material. There are a few things I can recommend,
but as you can see, most of them are errata in the official documentation or accessory articles and
examples.

The sources listed here are among those I used in researching this chapter, so you might not find
anything new. Then again, four eyes are better than two, and you could just notice something that I
missed. In particular, I'd like to point you towards a couple of Knowledge Base articles:

! Knowledge Base Article ID Q132750: Convert a File Path to an ITEMIDLIST
! Knowledge Base Article ID Q128786: How to Shade Images to Look Like Windows 95 Active Icon

The first one touches upon a topic we'll cover later on, and shows how to create PIDLs from scratch,
and for non-folder objects. The second may help if you need to do some quick graphical processing
of your windows' client areas.

We talked briefly about the size of shell icons, and there are a couple of articles to read on that topic.
One of these, a piece by Bret Pehrson, appeared in the April 1998 issue of the Windows Developer's
Journal (WDJ) under the title Rebuilding the Internal Shell Icon Cache. It shows how to force the system
programmatically to recognize that the user has changed the current default size for large icons. This
same topic (along with many others) is covered by John Hornick in an article called Icons in Win32,
which appears in the MSDN library under Technical Articles | Windows Platform | User Interface.

Browsing for Folders

I provided an overview of folders and their place in the Windows shell in Chapter 2, but in this
chapter we're going to look at them in detail. We'll focus on the shell functions that deal with folders
at any level, and all the underlying machinery that makes sure everything is working properly. In
doing so, we'll run into two things that play very important roles: shortcuts and PIDLs. The former
will be the subject of the next chapter, but we'll examine PIDLs in this one, covering:

! The use of the SHBrowseForFolder() function
! More about what PIDLs are, and how to work with them
! Virtual folders and special locations
! How to get the settings of a folder

The examples we'll discuss include an enhanced version of the SHBrowseForFolder() API
function, some helper functions to make it easier to work with PIDLs, and some samples of how to
enumerate the contents of some special locations, such as SendTo, Favorites, and My Documents.

Choosing a Folder
Let's begin our trip with a look at the various ways there are to select a folder. It's a common
requirement for an application to be able to allow the user to choose a particular directory from a
specific drive. The Windows 3.x API didn't provide any built-in facility for this, so you had to create
your own helper function, and there was a pretty common technique for doing so. It consisted of
modifying the common dialog template, leaving out some unnecessary controls like the list box that
contained the file names.

Chapter 5

92

Porting this solution to Win32 has a drawback, however: you have to renounce the new Explorer-
style user interface and instead remain faithful to the old one:

On Win32 platforms, the Explorer-style Open dialog is a single entity, and you can't just 'get rid' of
any of its components (like the file list, for example...).

Another option that's open if you elect to adopt the
old Windows 3.x interface is to arrange a dialog like
the one shown by Visual C++ when it asks you to
specify a folder for your new project. Check out the
Win32 documentation for GetOpenFileName() to
discover more about it.

A More Modern Approach
 Starting with Windows 95, the Win32 SDK finally
delivered a system-provided solution for browsing
folders: the function called SHBrowseForFolder().
Its main feature is that it uses a tree view that's similar
to the one we know and love from using Explorer:

Browsing for Folders

93

Like the functions we've examined in the last two chapters, SHBrowseForFolder() has a
prototype that looks simple, but which actually involves a structure with lots of settings and flags.
Unlike those others, however, it may be considered a more 'focused' function — its one purpose in life
is to let you choose a folder from those available in your desktop's namespace.

The Prototype of SHBrowseForFolder()
Let's have a look at the prototype of SHBrowseForFolder(), which can be found in shlobj.h:

LPITEMIDLIST WINAPI SHBrowseForFolder(LPBROWSEINFO lpbi);

It takes a single pointer to a BROWSEINFO structure, which is declared in the same file:

typedef struct _browseinfo
{
 HWND hwndOwner;
 LPCITEMIDLIST pidlRoot;
 LPSTR pszDisplayName;
 LPCSTR lpszTitle;
 UINT ulFlags;
 BFFCALLBACK lpfn;
 LPARAM lParam;
 int iImage;
} BROWSEINFO, *PBROWSEINFO, *LPBROWSEINFO;

Let's see what each member is for.

Name Description

hwndOwner Handle of the window that owns the dialog.

pidlRoot Identifies the root node for the hierarchy of objects to be presented.
This is a PIDL.

pszDisplayName Must be a pointer to an allocated buffer that will contain the display
name of the selected object.

lpszTitle Must be a pointer to a buffer that contains the string to be assigned to
the label just above the tree view.

ulFlags Specifies the appearance and behavior of the window. (See later for
permitted values.)

lpfn Callback function used to hook the dialog.

lParam 32-bit custom data to be passed to the callback function. Usually a
pointer or a handle.

IImage Buffer that will contain the index of the icon for the selected folder or
file. This index is relative to the system image list.

Chapter 5

94

The very simplest way to call SHBrowseForFolder() is:

 BROWSEINFO bi;
 ZeroMemory(&bi, sizeof(BROWSEINFO));
 bi.hwndOwner = hDlg;
 LPITEMIDLIST pidl = SHBrowseForFolder(&bi);

This code will display a dialog box like the one in the figure you saw earlier in the chapter, and it
retrieves a PIDL to the selected folder. If the folder has a corresponding path, you can get it through
this code:

 TCHAR szPath[MAX_PATH] = {0};
 SHGetPathFromIDList(pidl, szPath);
 Msg(szPath);

There are, however, a number of interesting issues connected with using SHBrowseForFolder().
We can summarize them as follows, and over the next sections, we'll be looking at them in detail.

! The function handles both PIDLs and path names transparently.
! The function allows you to browse even into special system folders.
! The function returns a great deal of information, not unlike SHGetFileInfo(). (See the

previous chapter.)
! The dialog is slightly customizable, which is always good news.

Using SHBrowseForFolder()
What you can do with SHBrowseForFolder() is strongly bound to the ulFlags member of
BROWSEINFO, whose legal values are combinations of the following flags:

Flag Description

BIF_RETURNONLYFSDIRS If set, the function enables the OK button only if the user
selects a file system directory. If, for example, you were to
select the Network Neighborhood node with this flag set,
the OK button would be grayed out.

BIF_DONTGOBELOWDOMAIN Do not show network folders, only nodes with the domain
name.

BIF_STATUSTEXT The dialog template contains a label where you can
display any text you want, especially if you subclass the
dialog window. (More on this later on.)

BIF_EDITBOX This is a new feature (shell version 4.71 and above) that
allows you to have an edit box from which to choose a
folder manually.

BIF_VALIDATE This is another new feature (shell version 4.71) that
complements BIF_EDITBOX. If you set this flag and
subclass the dialog window, then you'll be notified each
time the user enters and confirms an incorrect file or
folder name in the edit box. (More on this later on.)

Browsing for Folders

95

Flag Description

BIF_BROWSEFORCOMPUTER Allows the user to choose only a computer name. The
browse takes place as usual, but the OK button that
enables the selection is always disabled, except when a
computer name is selected.

BIF_BROWSEFORPRINTER The same as above, but for printer names.

BIF_BROWSEINCLUDEFILES If this flag is set, then despite the function's name, the tree
view shows and lets you select file names and not just
folder names. This offers a great chance to set up dialogs
with all the printers or the fonts available in the system.

When calling SHBrowseForFolder(), there are two ways in which you can customize the look of
the final dialog. The more powerful requires you to subclass the window via a callback function, and
we'll cover this later in the chapter. A far simpler way to get a limited degree of customization is by
modifying the text above the tree view. The lpszTitle member of BROWSEINFO is responsible for
this; it is declared as a pointer, so you just have to pass a 32-bit pointer to an existing memory buffer:

 TCHAR szBuf[MAX_PATH] = {0};
 lstrcpy(szBuf, __TEXT("Choose a folder:"));
 bi.lpszTitle = static_cast<LPCSTR>(szBuf);

The same holds true for pszDisplayName, which is a return buffer. If you're interested in the
display name of the selected folder, then you need to pass a valid buffer to be filled. First declare or
allocate it, and then assign the pointer to pszDisplayName:

 TCHAR szDisp[MAX_PATH] = {0};
 bi.pszDisplayName = static_cast<LPSTR>(szDisp);

The function assumes that pszDisplayName is at least MAX_PATH bytes in size. Of course, this field
may be NULL, in which case you won't receive the display name of the folder.

As explained in earlier chapters, the display name of the folder is the name used by Explorer to display
that folder. On my machine, for example, (C:) is the display name of C:\.

What the Function Returns
Technically, the return value of SHBrowseForFolder() is a PIDL that identifies the selected file or
folder. If you cancel the dialog, then the function returns NULL. Simple as ever.

However, the function is capable of returning other useful information through the BROWSEINFO
structure that you pass to it. Specific examples of this include the display name of the selected object
(as I've already mentioned), and even the icon that represents it.

Getting the Folder Icon
Even though SHBrowseForFolder() seems to be reproducing functionality we've already observed
in SHGetFileInfo(), there's quite a bit of work you have to do on your own to get and display the
icon.

Chapter 5

96

When the function returns, the iImage member of the BROWSEINFO structure contains a number
that is the index to the position the icon occupies in the system image list. Thus, if you want to draw
the icon — or more simply, if you want the HICON handle to it — you must first get a handle to the
image list.

I talked about this in the previous chapter, so it's fairly easy to employ the method here. If you call
SHGetFileInfo() with the SHGFI_ICON and (above all) SHGFI_SYSICONINDEX flags set, the
function returns a handle to the system image list.

HICON SHGetSystemIcon(int iIconIndex)
{
 SHFILEINFO sfi;
 ZeroMemory(&sfi, sizeof(SHFILEINFO));

 // We aren't specifying a file name, since all we want is the handle...
 HIMAGELIST himl = reinterpret_cast<HIMAGELIST>(SHGetFileInfo(
 "*.*", 0, &sfi, sizeof(SHFILEINFO), SHGFI_ICON | SHGFI_SYSICONINDEX));

 HICON hIcon = ImageList_ExtractIcon(0, himl, iIconIndex);
 return hIcon;
}

The above code is a helper routine that given an index, returns the corresponding icon in the system
image list. To run this code, you need to include shellapi.h and to initialize the common controls
library by calling either InitCommonControls() or InitCommonControlsEx(). As discussed
in Appendix A, the first is the approach to use for old versions of the shell, while the second is
recommended for shell versions 4.71 and above.

Using a Callback Function
The most interesting things you can do with SHBrowseForFolder() require a callback function.
This kind of thing is well supported and, once in a while, even pretty well documented. To subclass
the dialog box created by the function, you need to assign a valid function pointer to the lpfn field
of BROWSEINFO. The pointer must point to a function with a prototype like this:

int CALLBACK BrowseCallbackProc(HWND hwnd,
 UINT uMsg,
 LPARAM lParam,
 LPARAM dwData);

As I'm sure you've guessed, hwnd is the handle of the hooked window, while uMsg is the code of the
message being received. lParam is a value that can have different meanings according to uMsg, and
finally dwData is user-defined data — the same data you specified through the lParam member of
BROWSEINFO. If you need the callback function to work on data created by the calling program
instead of using global variables, you can fill the BROWSEINFO structure's lParam member with a 32-
bit value and be sure that it will automatically be passed to the callback via the dwData argument. To
fit more data in those 32 bits, you can use pointers or, better yet, allocate a handle to a block of
memory, lock it, package everything you need, unlock it, and store it as the lParam field.

Browsing for Folders

97

The figure shows the situation once the callback has
been set up: SHBrowseForFolder() calls a function
that you define, passing in some data and notifying
some events.

Events You Can Detect
The dialog box created by SHBrowseForFolder() can notify the callback function of the following
events:

! Dialog initialization has completed
! The selection has changed
! The user entered some invalid file or folder name in the edit box

It does this by sending the following messages:

! BFFM_INITIALIZED
! BFFM_SELCHANGED
! BFFM_VALIDATEFAILED

These messages are received by the callback function through its uMsg parameter. Each message
carries with it a LPARAM value, which evaluates to the lParam argument. Let's see how lParam is
configured message by message.

Message lParam Meaning

BFFM_INITIALIZED Unused — it is always NULL. This message is sent after the
dialog's window procedure has finished processing the
WM_INITDIALOG message.

BFFM_SELCHANGED Points to the identifier list of the newly selected folder. Note
that, like other Windows controls, this event is notified
when the selection has already changed.

BFFM_VALIDATEFAILED Points to the current contents of the edit box, which means
that like its subject, this message is supported only with
shell version 4.71. By returning zero, the callback can force
the browsing dialog to close. By returning a non-zero value,
on the other hand, the dialog is kept active.

Chapter 5

98

Messages You Can Send
There are a few messages that a callback function can send to the dialog window to have it execute
certain actions. Specifically, they are:

Message Description

BFFM_ENABLEOK This enables or disables the OK button, according to the value of
lParam. If non-zero, the button is enabled so you can confirm
the currently selected folder. wParam is unused.

BFFM_SETSELECTION Selects the specified file or folder. A pointer to the PIDL or the
path name is stored in lParam, while wParam dictates how to
interpret the pointer. FALSE means it is a PIDL, TRUE stands for
a path name.

BFFM_SETSTATUSTEXT Sets the text you provide in the dialog's status area. The actual
text is pointed by lParam, while wParam is unused.

These messages are sent using the ordinary SendMessage() function, and by combining them you
can really enhance the behavior of SHBrowseForFolder().

Customizing the User Interface
By using a callback function, you can intervene and make changes to the dialog's user interface so
that it suits your needs perfectly. Suppose, for example, that you don't want the ? button on the
caption bar, or that you want to give a more marked 3D look to some controls. In this section, I'll
explain how such things can be done.

Removing the Context Help Button
Removing the context help button from the caption bar is simply a matter of style. That's right: you
just have to turn off the bit that causes Windows to draw and handle it! The button appears when the
extended style of any window has the WS_EX_CONTEXTHELP bit set.

Extended styles were first introduced with Windows 3.1, and reinforced with the SDK version that
shipped with Windows 95. To the best of my knowledge, the only difference between 'ordinary' styles and
'extended' styles lies in the memory area where they are stored. There are no conceptual differences and no
hidden meanings.

You need to use different code to access 'extended' styles than you do to access window styles. To
turn off the bit that makes the help button appear, what you have to do in your callback function in
response to the BFFM_INITIALIZED message is the following:

 DWORD dwStyle = GetWindowLong(hwnd, GWL_EXSTYLE);
 SetWindowLong(hwnd, GWL_EXSTYLE, dwStyle & ~WS_EX_CONTEXTHELP);

First, you get the current extended style (using GWL_EXSTYLE instead of GWL_STYLE), and then you
turn off the specified bit. Finally, save the style back again.

Browsing for Folders

99

Adding a 3D Border to the Status Text
Doing this is only a little more complex and requires just one more line of code than the last
example. However, you should be aware that doing things like we're about to do doesn't guarantee
that your code will work on all existing and future versions of Windows. You can only be sure it
works where you have successfully tested it.

That warning aside, we want to draw the status label with a 3D border, just like any other status bar.
The BIF_STATUSTEXT flag is somewhat misleading — it doesn't add a real status bar to the bottom of
the window as you might expect it to. Instead, it adds a static label just above the tree view and below
the title. This window has a control ID that we can discover through a utility like Spy++:

When you know the control ID, and once the callback function has brought you inside the dialog's
code, getting the handle of any child window is as easy as calling:

 HWND hwndChild = GetDlgItem(hDlg, controlID);

You can see from the screenshots above that the label we're interested in has a control ID of 0x3743,
so:

 HWND hwndLabel = GetDlgItem(hwnd, 0x3743);
 dwStyle = GetWindowLong(hwndLabel, GWL_EXSTYLE);
 SetWindowLong(hwndLabel, GWL_EXSTYLE, dwStyle | WS_EX_STATICEDGE);
 SetWindowPos(hwndLabel, NULL, 0, 0, 0, 0,
 SWP_NOSIZE | SWP_NOMOVE | SWP_DRAWFRAME);

Chapter 5

100

The above code just adds a slightly inset edge to the window, making it look like this:

Note that in order to see the change, you need to force the window to redraw its non-client area,
which is where SetWindowPos() comes in. Once again, all this is done in your callback function
responding to the BFFM_INITIALIZED message.

I warned you earlier about the potentially temporary nature of this code. Today, it works well on all
Win32 platforms, but what if some day Microsoft decides to change that ID? A good workaround
might be the following.

 HWND hwndLabel = GetDlgItem(hwnd, 0x3743);

 // Check if it is a valid window
 if(IsWindow(hwndLabel))
 {
 // Now check if it is window of class 'static'
 TCHAR szClass[MAX_PATH] = {0];
 GetClassName(hwndLabel, szClass, MAX_PATH);
 if(lstrcmpi(szClass, __TEXT("static")))
 return;
 }
 else
 return;

We perform a double check against the window handle returned from GetDlgItem(). Firstly, we
check that it's a valid window using IsWindow(). Secondly, we verify that the window really is a
label – a window of class 'static'. If either of these tests fails, we should exit the procedure to avoid
access violation errors.

Changing the Dialog Caption
A more useful (and rather safer) action than adding a 3D border might be to change the caption of
the dialog window — you have just to call SetWindowText() with the new string. Again, this code
will execute in response to BFFM_INITIALIZED.

 SetWindowText(hwnd, szNewCaption);

Browsing for Folders

101

Moving the Dialog Window
Another thing you might want to do during the initialization step, responding to
BFFM_INITIALIZED, is to position the window wherever it suits your needs. Typically, you would
move the dialog to the center of the screen:

 RECT rc;
 GetClientRect(hwnd, &rc);
 SetWindowPos(hwnd, NULL,
 (GetSystemMetrics(SM_CXSCREEN) - (rc.right - rc.left)) / 2,
 (GetSystemMetrics(SM_CYSCREEN) - (rc.bottom - rc.top)) / 2,
 0, 0, SWP_NOZORDER | SWP_NOSIZE);

Animating the Status Label
A typical use for the status label is displaying the name of the file or folder that's currently selected,
as shown in the previous figure. The mechanism that makes this possible is built around the
BFFM_SELCHANGED message.

 TCHAR szText[MAX_PATH] = {0};
 SHGetPathFromIDList(reinterpret_cast<LPITEMIDLIST>(lParam), szText);
 SendMessage(hwnd, BFFM_SETSTATUSTEXT, 0, reinterpret_cast<LPARAM>(szText));

When you receive it, the lParam argument points to the PIDL of the newly selected folder or file.
Then, provided that one exists for that folder, you can get the path name in displayable form by calling
the SHGetPathFromIDList() function. The reason for this proviso is that not all folders map to a
physical directory — My Computer, for example, appears to be a folder without actually being one. If
you call SHGetPathFromIDList() with a PIDL that points to My Computer, you'll get an empty
string as a result.

The string retrieved by SHGetPathFromIDList() can then be sent to the status window using the
BFFM_SETSTATUSTEXT message.

Validating Manual Editing
Since 4.71 version of the shell, which was bundled with
Internet Explorer 4.0, it has been possible to add an edit
box to the user interface of this dialog, and it's not even
necessary to resort to callbacks in order to do so. It
suffices simply that you specify the BIF_EDITBOX flag
when calling SHBrowseForFolder(). The result is the
following:

Chapter 5

102

The edit box allows you to type in the name of a folder to select. When you confirm it by clicking
OK, the function will validate your input. The content of the edit box is correct if it contains the full
path name for a folder, or the name of the currently selected folder, as in the figure above.

If the BIF_VALIDATE flag is specified and the function finds the contents of the edit box to be
incorrect, then SHBrowseForFolder() will invoke your callback function specifying the
BFFM_VALIDATEFAILED message. The string in the edit box is passed via the callback's lParam
argument (the third one). Any data it receives from the user in the BROWSEINFO structure's lParam
member becomes the fourth argument to the callback. Thus, if you want to select a folder by typing
its name into the edit box you absolutely need to type in the full path name.

The following listing presents a sample callback procedure that encompasses all the examples we've
looked at so far. We'll look at an application that uses it later in the chapter, so keep it in mind until
then!

int CALLBACK BrowseCallbackProc(
 HWND hwnd, UINT uMsg, LPARAM lParam, LPARAM dwData)
{
 switch(uMsg)
 {
 case BFFM_INITIALIZED:
 {
 // Remove the ? from the caption
 DWORD dwStyle = GetWindowLong(hwnd, GWL_EXSTYLE);
 SetWindowLong(hwnd, GWL_EXSTYLE, dwStyle & ~WS_EX_CONTEXTHELP);

 // Add a 3D border to the status text
 HWND hwndLabel = GetDlgItem(hwnd, 0x3743);

 // Check if it is a valid window
 if(IsWindow(hwndLabel))
 {
 // Now check if it is window of class 'static'
 TCHAR szClass[MAX_PATH] = {0};
 GetClassName(hwndLabel, szClass, MAX_PATH);
 if(lstrcmpi(szClass, __TEXT("static")))
 break;
 }
 else
 break;

 dwStyle = GetWindowLong(hwndLabel, GWL_EXSTYLE);
 SetWindowLong(hwndLabel, GWL_EXSTYLE, dwStyle | WS_EX_STATICEDGE);
 SetWindowPos(hwndLabel, NULL, 0, 0, 0, 0,
 SWP_NOSIZE | SWP_NOMOVE | SWP_DRAWFRAME);
 }
 break;

 case BFFM_SELCHANGED:
 {
 TCHAR szText[MAX_PATH] = {0};
 SHGetPathFromIDList(reinterpret_cast<LPITEMIDLIST>(lParam), szText);
 SendMessage(hwnd, BFFM_SETSTATUSTEXT, 0,
 reinterpret_cast<LPARAM>(szText));
 }
 break;

Browsing for Folders

103

 case BFFM_VALIDATEFAILED:
 Msg("\"%s\" is a wrong path name.", reinterpret_cast<LPTSTR>(lParam));
 return 1;
 }

 return 0;
}

Specifying the Initial Folder
A significant flaw in the design of SHBrowseForFolder() is that there isn't an easy way to specify
the initial directory from which to start browsing. You can specify the root of the hierarchy being
displayed, but even this is not so simple if you want a regular directory instead of a special folder. To
set the folder to be selected initially in code, we have to resort to callbacks. In particular, we can
exploit the BFFM_SETSELECTION message and ask the function to move the focus over a specific
folder. The best place to do this is in response to the BFFM_INITIALIZED notification.

After reading the previous sections, working out how to select an initial folder shouldn't worry you.
The code required looks like this:

int CALLBACK BrowseCallbackProc(
 HWND hwnd, UINT uMsg, LPARAM lParam, LPARAM dwData)
{
 switch(uMsg)
 {
 case BFFM_INITIALIZED:
 {
 ...

 SendMessage(hwnd, BFFM_SETSELECTION, TRUE, dwData);

 }
 break;
 ...
 }

 return 0;
}

The BFFM_SETSELECTION message needs to know whether its lParam argument is a PIDL or a
path name. In the fragment above, we're saying dwData points to a path name by setting our lParam
(the third parameter) to TRUE. Had dwData been a PIDL, the third parameter would have been
FALSE.

Specifying the Root Node
As I hinted in the previous section, SHBrowseForFolder() allows you to specify which node of
the desktop's hierarchy you want to be the root of the tree. In other words, you can choose which
sub-tree of the Explorer view you want to browse. The parameter that lets you do this is the
pidlRoot member of the BROWSEINFO structure. If this parameter is set to NULL, the tree view has
the desktop as its root.

Chapter 5

104

The figure shows a browsing dialog where the
root has been set to Printers and the
BIF_BROWSEINCLUDEFILES bit has been set:

Incidentally, this sample demonstrates how powerful the BIF_BROWSEINCLUDEFILES flag can be.
The code involved in the figure is:

 LPITEMIDLIST pidl = NULL;
 BROWSEINFO bi;
 ZeroMemory(&bi, sizeof(BROWSEINFO));
 bi.lpszTitle = __TEXT("Choose a printer:");
 SHGetSpecialFolderLocation(NULL, CSIDL_PRINTERS, &pidl);
 bi.pidlRoot = pidl;
 bi.ulFlags = BIF_BROWSEINCLUDEFILES;
 SHBrowseForFolder(&bi);

If you check out the declaration of the BROWSEINFO structure, you'll see that the pidlRoot member
must be of type LPCITEMIDLIST — that is, a PIDL. In the sample above, we've obtained a value to
assign to it by passing CSIDL_PRINTERS as the second argument to
SHGetSpecialFolderLocation(), which we'll discuss a little later on. For now, in summary, you
can specify the root of the displayed tree, but you need to provide its PIDL.

Using a Directory as the Root
If our goal is just to browse into some special system folder, like Printers or Fonts or
Favorites, there's no further problem — just take the code fragment shown above and replace
CSIDL_PRINTERS with the ID of the folder you want. If you want an ordinary directory to be the
root of the tree view, however, things get a little trickier.

For a list of special folder IDs, check out SHGetSpecialFolderLocation()'s documentation or
snoop around the source code of shlobj.h, where you'll even find some undocumented IDs. (I'll have
more to say on this later in the chapter, in the section dedicated to special folders.)

Browsing for Folders

105

Converting Path Names to PIDLs
There's nothing else for it: you have to convert your path name into a PIDL. Now, you might expect
that somewhere in the shell API there would exist a function that does this for you, but unfortunately
you'd be quite wrong. Happily though, there's an MSDN article (See the Further Reading section at the
end of the chapter) that shows the way. To convert the name of a directory to a PIDL, you need to
follow two steps:

! Get a pointer to an IShellFolder interface
! Call its ParseDisplayName() method

The ParseDisplayName() method of the IShellFolder interface does exactly what we need: it
takes a path name and converts it to a PIDL. The problem, of course, is how we get hold of a pointer
to an IShellFolder interface in the first place!

IShellFolder is an interface that you need to implement when you're writing namespace
extensions (see Chapter 16), and Explorer uses it when working with folders to ask them to draw and
enumerate their contents. A pointer to an IShellFolder interface is returned by the
SHGetDesktopFolder() function — more precisely, it returns the IShellFolder of the desktop
folder. For the case we're considering here, we just need a pointer to an object that provides a 'real'
implementation of ParseDisplayName(), and the one returned by SHGetDesktopFolder() is
fine.

Here's the source code for a new shell function that takes a path name and returns its PIDL. In the
spirit of Microsoft's naming conventions, I've called it SHPathToPidl():

HRESULT SHPathToPidl(LPCTSTR szPath, LPITEMIDLIST* ppidl)
{
 LPSHELLFOLDER pShellFolder = NULL;
 OLECHAR wszPath[MAX_PATH] = {0};
 ULONG nCharsParsed = 0;

 // Get an IShellFolder interface pointer
 HRESULT hr = SHGetDesktopFolder(&pShellFolder);
 if(FAILED(hr))
 return hr;

 // Convert the path name to Unicode
 MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, szPath, -1, wszPath, MAX_PATH);

 // Call ParseDisplayName() to do the job
 hr = pShellFolder->ParseDisplayName(
 NULL, NULL, wszPath, &nCharsParsed, ppidl, NULL);

 // Clean up
 pShellFolder->Release();
 return hr;
}

The prototype of ParseDisplayName() looks like this:

HRESULT ParseDisplayName(HWND hwndOwner,
 LPBC pbcReserved,
 LPOLESTR lpszDisplayName,
 ULONG* pchEaten,
 LPITEMIDLIST* ppidl,
 ULONG* pdwAttributes);

Chapter 5

106

The first argument is the handle of a window to be used as the parent of any message box the
function might need to show. The second, pbcReserved, is unused at present and must be NULL.
The first significant argument is lpszDisplayName, which basically represents the name to convert
and must be in Unicode format. pchEaten is a buffer that will contain the number of characters
actually processed, while pdwAttributes (if not NULL) will contain the shell attributes of the folder
item specified in lpszDisplayName. These attributes are the SHGAO_ constants we examined in
Chapter 4, but if you don't care about this, you can just pass NULL. Finally, ppidl is the return
buffer for the newly generated PIDL.

Once you've successfully generated a PIDL for a path name, you can limit the user to browsing a
specific sub-tree without the ability to go up a level, like this:

The figure shows what happened on my PC when I chose C:\Program Files as the root.

Putting it all Together
So far, we've been discussing aspects of SHBrowseForFolder() in isolation, always providing
single pieces of code to solve specific problems. It's about time we constructed a whole application
that puts together all the features you've seen above.

Browsing for Folders

107

The dialog rendered in the figure is the interface of the program I've been using throughout this
chapter to test the features of the SHBrowseForFolder() function. Called SHBrowse, I generated
it using the Wrox AppWizard, and it allows you to decide which should be the root folder to use by
choosing a path name (the Folder edit box) or a PIDL (the PIDL combo box) — the Use PIDL check
box determines which. You can also set the title of the dialog (the Title edit box), and a few flags
whose names roughly match the constants used by SHBrowseForFolder(). The results are shown
in the area at the bottom: display name, path name, and folder icon.

The first code I added to the Wizard-generated skeleton was to the OnInitDialog() function, in
order to set up the PIDL combo box with the names of some special folders:

void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 // Fill the combo box
 HWND hwndCbo = GetDlgItem(hDlg, IDC_SPECIAL);
 int i = ComboBox_AddString(hwndCbo, "Control Panel");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_CONTROLS);
 i = ComboBox_AddString(hwndCbo, "Favorites");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_FAVORITES);
 i = ComboBox_AddString(hwndCbo, "Printers");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_PRINTERS);
 i = ComboBox_AddString(hwndCbo, "Fonts");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_FONTS);
 i = ComboBox_AddString(hwndCbo, "SendTo");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_SENDTO);
 ComboBox_SetCurSel(hwndCbo, 0);
}

With this in place, you'll be able to choose (say) the SendTo folder from the list, and depending on
the other options you've set, you'll be presented with something like:

Chapter 5

108

Of course, the dialog you'll obtain on
your own computer will probably differ
from this, due to the different shortcuts in
your SendTo directory. Select Outlook
Express at this point, though, and here's
the result:

The entire project is available on our web site; the code includes the BrowseCallbackProc()
SHGetSystemIcon() and SHPathToPidl() functions we defined earlier in the chapter. Before
compiling, don't forget to #include shlobj.h and resource.h. The function reproduced here
executes when the user clicks the OK button:

void OnOK(HWND hDlg)
{

 BROWSEINFO bi;
 TCHAR szTitle[MAX_PATH] = {0};
 TCHAR szPath[MAX_PATH] = {0};
 TCHAR szDisplay[MAX_PATH] = {0};
 LPITEMIDLIST pidl = NULL;
 LPMALLOC pMalloc = NULL;

 // Prepare the call
 ZeroMemory(&bi, sizeof(BROWSEINFO));
 bi.hwndOwner = hDlg;

 // Title and display name
 GetDlgItemText(hDlg, IDC_TITLE, szTitle, MAX_PATH);
 bi.lpszTitle = szTitle;
 bi.pszDisplayName = szDisplay;

 // Initial directory
 if(IsDlgButtonChecked(hDlg, IDC_USEPIDL))
 {
 HWND hwndCbo = GetDlgItem(hDlg, IDC_SPECIAL);
 int i = ComboBox_GetCurSel(hwndCbo);
 int nFolder = ComboBox_GetItemData(hwndCbo, i);

 SHGetSpecialFolderLocation(NULL, nFolder, &pidl);
 bi.pidlRoot = pidl;
 }

Browsing for Folders

109

 else
 {
 // Convert a path name to a PIDL
 GetDlgItemText(hDlg, IDC_FOLDER, szPath, MAX_PATH);
 if(lstrlen(szPath) == 0)
 GetCurrentDirectory(MAX_PATH, szPath);
 SHPathToPidl(szPath, &pidl);
 bi.pidlRoot = pidl;
 }

 // Collect the flags
 UINT uiFlags = 0;
 if(IsDlgButtonChecked(hDlg, IDC_NOBELOW))
 uiFlags |= BIF_DONTGOBELOWDOMAIN;
 if(IsDlgButtonChecked(hDlg, IDC_ONLYDIRS))
 uiFlags |= BIF_RETURNONLYFSDIRS;
 if(IsDlgButtonChecked(hDlg, IDC_INCLUDEFILES))
 uiFlags |= BIF_BROWSEINCLUDEFILES;
 if(IsDlgButtonChecked(hDlg, IDC_EDITBOX))
 uiFlags |= BIF_EDITBOX | BIF_VALIDATE;
 if(IsDlgButtonChecked(hDlg, IDC_STATUS))
 uiFlags |= BIF_STATUSTEXT;
 if(IsDlgButtonChecked(hDlg, IDC_COMPUTER))
 uiFlags |= BIF_BROWSEFORCOMPUTER;
 bi.ulFlags = uiFlags;

 // Set up the callback
 bi.lpfn = BrowseCallbackProc;
 bi.lParam = 0;

 // Call the function
 LPITEMIDLIST pidlFolder = SHBrowseForFolder(&bi);
 if(pidlFolder == NULL)
 return;

 // Display the results...
 // Show the display name
 SetDlgItemText(hDlg, IDC_DISPLAYNAME, bi.pszDisplayName);

 // Show the path name
 SHGetPathFromIDList(pidlFolder, szPath);
 SetDlgItemText(hDlg, IDC_PATHNAME, szPath);

 // Show the folder icon
 HICON hIcon = SHGetSystemIcon(bi.iImage);
 SendDlgItemMessage(
 hDlg, IDI_ICON, STM_SETICON, reinterpret_cast<WPARAM>(hIcon), 0);

 // Free
 SHGetMalloc(&pMalloc);
 pMalloc->Free(pidl);
 pMalloc->Free(pidlFolder);
 pMalloc->Release();

}

The way that the above function works should be pretty clear to you — except, perhaps for the very
last section. In order to explain what's going on there, though, we need to dig a little deeper into the
world of the PIDL.

Chapter 5

110

That Crazy Little Thing Called PIDL
We examined the basics of PIDLs in Chapter 2, but here we have a specific application for them: we
want to use them to browse the contents of a folder, whatever that content may be. Every element in
the Windows shell has its own PIDL and is contained in some kind of folder. For each element,
therefore, there's a piece of code that wraps the folder and provides the PIDL according to the
folder's own rules and requirements. This means that we can never make assumptions about the
structure of a PIDL or the data it is composed of. We must use common interfaces to deal with
PIDLs.

If, for example, you want to follow the chain of SHITEMID structures, you should check the length of
the next chunk of data at every step. As you've already seen, an ITEMIDLIST — or a PIDL, if you
prefer — is made up of one or more SHITEMID structures allocated consecutively. This chain is
terminated by an element whose cb field is set to 0. Here's a function excerpted from MSDN that
demonstrates how to walk an item identifier list. It's not very different from navigating an 'ordinary'
list:

LPITEMIDLIST GetNextItemID(LPITEMIDLIST pidl)
{
 // Get the size of the specified item identifier
 int cb = pidl->mkid.cb;

 // If the size is zero, it is the end of the list
 if(cb == 0)
 return NULL;

 // Add cb to pidl (casting to increment by bytes)
 pidl = (LPITEMIDLIST)(((LPBYTE)pidl) + cb);

 // Return NULL if it is null-terminating, or a pidl otherwise
 return (pidl->mkid.cb == 0) ? NULL : pidl;
}

You can't make assumptions about the format of a PIDL. An approach that works well for one folder
may fail with another. To make sure two items are identical, for example, you must ask the folder
itself to compare them through the IShellFolder::CompareIDs() method.

Freeing PIDLs
Before we go any further, let's just take a moment to explain that code at the end of the last example.
While it's true that folders create PIDLs, they usually have to be destroyed by another module, and
that's what I was doing at the end of the OnOK() function. The memory for identifier lists is taken
from the allocator for shell applications, and as you also saw in Chapter 2, you can get a pointer to
that by calling the SHGetMalloc() function. In general, the sequence of calls will look something
like this:

LPMALLOC pMalloc;
SHGetMalloc(&pMalloc); // Get a pointer to the IMalloc interface
pMalloc->Free(pidl); // Free the identifier list
pMalloc->Release(); // Release the IMalloc interface

Browsing for Folders

111

How to Use PIDLs
Returning to our theme of putting PIDLs to some practical uses, we have two main goals. First, we
want to be able to enumerate the content of any folder; second, we'd like to reproduce a nice feature
of Explorer that's supported by shell versions 4.71 and higher. To show you what I mean, here's a
screenshot of Explorer that I produced by typing Printers into the Address Bar and hitting Return:

Explorer is allowing you to use the name Printers as if it were the name of a regular folder. In other
words, it blurs the distinction between physical and virtual folders. To be accurate, Printers is the
display name of the virtual folder that contains the available printers.

For my example, I used our custom AppWizard to create a demonstration program called Pidl with
a user interface that looks like this:

The Search Path button will take the contents of the edit box and attempt to identify a folder with
that name. The string in the edit box is intended to be the display name of a folder (keep in mind that
a path name is also a display name). If successful, the application will display all the file objects found
inside the folder in a list view. The Show PIDL's Content button, on the other hand, will enumerate
in the list view all the file objects found in the special folder that you select using the combo box.

Chapter 5

112

Searching by Display Name
Let's begin by looking at the code that executes when you click the Search Path button. Of course,
both the new buttons need to be handled by APP_DlgProc(), so we can add code for both of them
here:

 case WM_COMMAND:
 switch(wParam)
 {

 case IDC_SEARCHPATH:
 DoSearchPath(hDlg);
 return FALSE;

 case IDC_PIDLCONTENT:
 DoEnumeratePidl(hDlg);
 return FALSE;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

The function we're dealing with first, then, is DoSearchPath(). It will retrieve the name you
entered in the Folder Name edit box, and treat it as if it's a path name to search for. If it really is a
path name, everything will be fine, but what if it's the display name of a folder? We want the function
to be able to deal with, say, C:\ and (C:). This implementation will be able to handle correctly all
the path names and display names whose associated folders are children of either Desktop or My
Computer, although the limitation is purely by design.

Note that normally, the display name of a drive is given by its label followed the drive letter in brackets.
An example is Ms-dos_6 (C:). However, if you don't have a label, then consider that there's a leading
blank in (C:).

DoSearchPath() starts by enumerating the content of the Desktop folder:

void DoSearchPath(HWND hDlg)
{
 LPITEMIDLIST pidl = NULL;
 LPSHELLFOLDER pFolder = NULL;
 LPSHELLFOLDER pSubFolder = NULL;

 // Get the memory allocator
 LPMALLOC pMalloc = NULL;
 SHGetMalloc(&pMalloc);

 // Get the name to search
 TCHAR szName[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_FOLDER, szName, MAX_PATH);

 // Get the IShellFolder interface for the desktop
 SHGetDesktopFolder(&pFolder);

Browsing for Folders

113

 // Try to find a match under Desktop
 int iNumOfItems = SHEnumFolderContent(pFolder, NULL, 0, NULL);
 int rc = SHEnumFolderContent(
 pFolder, SearchText, reinterpret_cast<DWORD>(szName), &pidl);

SHEnumFolderContent() is a user-defined function that takes a PIDL to a folder and a callback
function as input, and then enumerates all the items in the folder, passing them to the function for
further processing. We'll discuss it more thoroughly later on, but in order to understand its use here
you need to know that if no callback function is specified, it returns the number of items found:

 int iNumOfItems = SHEnumFolderContent(pFolder, NULL, 0, NULL);

Otherwise, it returns the number of items actually processed. These two values aren't necessarily the
same, because the callback function could stop the enumeration at a point of its own choosing. The
SearchText() function, for example, causes SHEnumFolderContent() to stop when it finds the
name you're looking for.

SHEnumFolderContent() begins its search by checking whether the name we typed in the edit
box corresponds to the display name of a folder under Desktop. This is the case if at the end of the
above code, rc and iNumOfItems are not equal. If they are equal, we start a new search under the
My Computer node:

 // If not found, try under My Computer
 if(rc == iNumOfItems)
 {
 // Bind to My Computer
 LPITEMIDLIST pidlMyComp;
 SHGetSpecialFolderLocation(NULL, CSIDL_DRIVES, &pidlMyComp);
 pFolder->BindToObject(pidlMyComp, NULL, IID_IShellFolder,
 reinterpret_cast<LPVOID*>(&pSubFolder));

 // Free the pointer to the desktop folder
 pFolder->Release();
 pMalloc->Free(pidlMyComp);
 pFolder = pSubFolder;

 // Scan My Computer
 iNumOfItems = SHEnumFolderContent(pFolder, NULL, 0, NULL);
 rc = SHEnumFolderContent(
 pFolder, SearchText, reinterpret_cast<DWORD>(szName), &pidl);

Before calling SHEnumFolderContent() again to work on the My Computer folder, we need to
get a IShellFolder pointer for it. What we have at the moment is the desktop's IShellFolder,
but we can get the one we want by using the BindToObject() method of this interface. This lets
you bind to the IShellFolder interface of a child folder that you identify to the method using a
PIDL:

HRESULT IShellFolder::BindToObject(
 LPCITEMIDLIST pidl, // PIDL of the folder you want
 LPBC pbcReserved, // Reserved; must be NULL
 REFIID riid, // Must be IID_IShellFolder
 LPVOID* ppvOut // Receives the IShellFolder pointer
);

Chapter 5

114

If the display name has been found under neither Desktop nor My Computer, we take a shortcut
and decide that we aren't able to locate it at all. Don't think this is a system limitation, though — it's
quite possible to set up a recursive search on folders to locate the name wherever it is. The approach
to follow might be outlined as follows:

! Enumerate the content of the Desktop folder, as we do above
! For each folder found (not just My Computer), repeat the search

However, a fully recursive search could lead us to try to identify by name a folder that is not unique
— it's quite possible, of course, to have two folders with a display name of MyDir, one under c:\ and
one under d:\. The above algorithm would stop at the first occurrence.

A better approach would be to accept and parse fully qualified folder names, like the following:

My Computer\ (c:)\Windows
Control Panel\Add New Hardware

To do this, we would need only a little extra code to parse the folder name and search for the first
item in the desktop, the next item in the folder reached by the previous step, and so on. The code
seen above could be generalized slightly, and enclosed in a loop.

If you think about it, this is really no different from searching for a directory within the file system. It's
just that instead of using FindFirstFile() and FindNextFile() to enumerate the contents of a
directory, you have to use the methods of a COM interface exposed by the folder object.

Prior to giving up completely, it could be that the display name entered is a full path name, like c:\.
It's worth taking this one last chance before outputting a message box — we just have to convert the
name into a PIDL and see what happens. If there are no errors, then a path name was entered.

 if(rc == iNumOfItems)
 {
 // Make the last attempt: is it a path name?
 HRESULT hr = SHPathToPidlEx(szName, &pidl, pFolder);
 if(FAILED(hr))
 {
 Msg("\"%s\" not found under Desktop or My Computer.", szName);
 pMalloc->Free(pidl);
 pFolder->Release();

 // Call a helper function to refresh the UI
 ClearUI(hDlg);
 return;
 }
 }
 }

Finally, if the function hasn't returned before this point, we know that we have a PIDL we can use to
output the icons in the folder it points to. In other words, we had a string entered in the edit box,
referred to in the source code above as szName. We identified the folder object with that name and
obtained its PIDL. Now, to enumerate the content of this folder we need to get its IShellFolder
interface and pass it to SHEnumFolderContent().

Browsing for Folders

115

The Search Path button handler therefore ends like this:

 // If here, then:
 // pidl points to the folder we need to bind to enumerate the content
 // pFolder points to the IShellFolder of the pidl's parent folder

 // Bind to the subfolder we're searching for
 // pFolder can point to Desktop's or My Computer's IShellFolder
 pFolder->BindToObject(pidl, NULL, IID_IShellFolder,
 reinterpret_cast<LPVOID*>(&pSubFolder));

 // Refresh UI (empty list view, image list and the like)
 ClearUI(hDlg);

 // Enumerate the content of the folder in the listview
 HWND hwndListView = GetDlgItem(hDlg, IDC_LISTVIEW);
 SHEnumFolderContent(pSubFolder, ShowFolderContent,
 reinterpret_cast<DWORD>(hwndListView), NULL);

 // Clean up
 pFolder->Release();
 pSubFolder->Release();
 pMalloc->Free(pidl);
 pMalloc->Release();
 return;
}

Converting Path Names to PIDLs (again)
Looking at the source code above, you'll notice that I used a function called SHPathToPidlEx() to
convert a path name into a PIDL. Now, earlier in this chapter we developed the SHPathToPidl()
helper function for the same purpose — it used the ParseDisplayName() method of the
IShellFolder interface in order to do so. The code in SHPathToPidl() boiled down to this,
which gets a PIDL relative to the desktop – that is, the root of the hierarchy

 SHGetDesktopFolder(&pFolder);
 pFolder->ParseDisplayName(NULL, NULL, wszPath, &n, ppidl, NULL);

Unfortunately, this PIDL is relative to the folder that is providing the IShellFolder interface, the
desktop. In the new case, we need a PIDL that's relative to the parent of the folder we're considering.
The reason for this is that when you're using BindToObject() to get the IShellFolder interface
for a sub-folder, you're required to pass in a PIDL that is relative to the same folder from which you're
calling BindToObject().

Given this, we need an extra step between getting a pointer to an IShellFolder interface and
calling ParseDisplayName(). This extra step must ensure that the IShellFolder used to call
ParseDisplayName() is the one of the folder we want to work with.

The code becomes:

HRESULT SHPathToPidlEx(
 LPCTSTR szPath, LPITEMIDLIST* ppidl, LPSHELLFOLDER pFolder)
{
 OLECHAR wszPath[MAX_PATH] = {0};
 ULONG nCharsParsed = 0;
 LPSHELLFOLDER pShellFolder = NULL;
 BOOL bFreeOnExit = FALSE;

Chapter 5

116

 MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, szPath, -1, wszPath, MAX_PATH);
 // Use the desktop's IShellFolder by default
 if(pFolder == NULL)
 {
 SHGetDesktopFolder(&pShellFolder);
 bFreeOnExit = TRUE;
 }
 else
 pShellFolder = pFolder;

 HRESULT hr = pShellFolder->ParseDisplayName(
 NULL, NULL, wszPath, &nCharsParsed, ppidl, NULL);

 if(bFreeOnExit)
 pShellFolder->Release();

 return hr;
}

This function is a bit more general than SHPathToPidl(), and requires you also to pass in the
folder that the PIDL will be relative to. If you pass NULL instead of a valid IShellFolder pointer,
the desktop's IShellFolder interface is used and then released. In the sample program, the code
that invokes the conversion function is:

 HRESULT hr = SHPathToPidlEx(szName, &pidl, pFolder);

Try passing NULL instead of pFolder, specify a path name to search, and see what happens:
whatever the path name, you'll be always enumerating the contents of the Desktop folder.

Clearing the User Interface
Apart from the details of SHEnumFolderContent(), which are coming up in the next section, the
only other function you've seen in the code so far is the simple helper ClearUI():

void ClearUI(HWND hDlg)
{
 HWND hwndListView = GetDlgItem(hDlg, IDC_LISTVIEW);
 ListView_DeleteAllItems(hwndListView);
 ImageList_RemoveAll(g_himl);
 SetDlgItemText(hDlg, IDC_FOUND, __TEXT("0 item(s) found."));
}

This just resets the application's dialog, deleting all items from the list view, and emptying the image
list that will be created by SHEnumFolderContent() in order to fill the list view in the first place.
The latter task is done by means of g_himl, a global variable of type HIMAGELIST that should be
initialized to zero in WinMain().

Building an Enumerator Function
There's still plenty to say about enumerating the content of a given folder, whether it's a physical
directory or a virtual folder like Printers. The source code you've seen so far makes considerable
use of a user-defined function called SHEnumFolderContent(), which is responsible for asking the
folder itself to enumerate its items one after another.

Browsing for Folders

117

There are folders whose content is given by a collection of files. There are other folders whose visible
items might be the records of a single file, or hardware devices of some kind. In general, only the
folder knows exactly what its content is. There's no safe way for either Explorer or programmers to
enumerate the items contained in a folder without 'asking' the folder itself about it. It will come as no
surprise to you that this communication is based on a COM interface.

In my design, SHEnumFolderContent() interrogates a folder for its contents, and passes the name
of each item it finds to another function for further processing. You've seen a couple of these
functions named in the listing above: SearchText() and ShowFolderContent(). To understand
their roles properly, however, it is better first to study how the enumeration of items occurs.

Reading the Folder's Content
The purpose of the code linked to the Search Path (and the Show PIDL's Content) button is that it
should read the content of a folder. To allow the enumeration of its items, a folder implements the
IEnumIDList interface, which exposes four functions to move back and forth within a given
collection: Next(), Skip(), Reset() and Clone(). We'll be interested mainly in Next(), whose
prototype is:

HRESULT IEnumIDList::Next(ULONG celt,
 LPITEMIDLIST* rgelt,
 ULONG* pceltFetched);

The first argument is the number of items required, the second is a pointer to an array of PIDLs, and
the third is an output parameter set with the number of items actually copied. The IEnumIDList
interface itself is responsible for allocating the memory to hold the PIDLs.

A piece of software that wants to know about the content of a specific folder must begin by getting a
pointer to IEnumIDList, and the IShellFolder interface exposes the EnumObjects() method
with exactly this task in mind. Its prototype looks like this:

HRESULT IShellFolder::EnumObjects(
 HWND hwndOwner, // Handle to an owner window
 DWORD grfFlags, // A set of flags (see below)
 LPENUMIDLIST* ppenumIDList // Receives the IEnumIDList pointer
);

The second parameter to this method allows you to dictate the type of the items to be enumerated. It
takes a combination of the values defined in the following enumerated type:

typedef enum tagSHCONTF
{
 SHCONTF_FOLDERS = 32,
 SHCONTF_NONFOLDERS = 64,
 SHCONTF_INCLUDEHIDDEN = 128,
} SHCONTF;

The mnemonic names are almost self-explanatory: you can decide to enumerate folders, non-folder
objects, and even hidden objects.

By necessity, we'll be discussing rather more about the details of these interfaces later on, when we begin
writing namespace extensions. For now, I recommend you take a look at the Visual C++ help files for
clarification of any issues regarding method names and prototypes.

Chapter 5

118

 LPENUMIDLIST pEnumIDList = NULL;
 LPITEMIDLIST pItem = NULL;
 ULONG ulFetched = 0;

 pFolder->EnumObjects(
 NULL, SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &pEnumIDList);
 while(pEnumIDList->Next(1, &pItem, &ulFetched) == NOERROR)
 {
 ...
 }

The above fragment represents the 'engine' of a function that enumerates the items of a folder. Each
time the loop passes the condition, pItem is a PIDL to a single item. Once we have that, there are
two things we might need: its display name, and possibly its icon.

Getting an Item's Display Name
Even though you have the PIDL, getting the display name of an item is not as easy as you might
think. Despite an ideal-sounding function like IShellFolder::GetDisplayNameOf(), there's
additional work to be done. The problem is that this method doesn't provide a normal string in ANSI
or Unicode format. Instead, it returns a pointer to a STRRET structure, defined as follows:

typedef struct _STRRET
{
 UINT uType;
 union
 {
 LPWSTR pOleStr;
 LPSTR pStr; // Unused
 UINT uOffset;
 char cStr[MAX_PATH];
 } DUMMYUNIONNAME;
} STRRET, *LPSTRRET;

As you can see, the structure is formed from a flag that denotes the type of the string that follows it.
This might be a Unicode string (pOleStr), an ANSI string (cStr), or even an offset to the address of
the string (uOffset). This means that you need to write your own wrapper routine that returns the
kind of string you need, regardless of the original type. The one I wrote looks like this:

void StrretToString(LPITEMIDLIST pidl, LPSTRRET pStr, LPSTR pszBuf)
{
 lstrcpy(pszBuf, "");

 switch(pStr->uType)
 {
 case STRRET_WSTR: // Unicode string
 WideCharToMultiByte(
 CP_ACP, 0, pStr->pOleStr, -1, pszBuf, MAX_PATH, NULL, NULL);
 break;

 case STRRET_OFFSET: // Offset
 lstrcpy(pszBuf, reinterpret_cast<LPSTR>(pidl) + pStr->uOffset);
 break;

Browsing for Folders

119

 case STRRET_CSTR: // ANSI string
lstrcpy(pszBuf, pStr->cStr);
 break;
 }
}

StrretToString() accepts the PIDL and a pointer to the STRRET structure, and returns an LPSTR
via its third argument. Incidentally, the above listing also shows the legal values for uType.

Moving back to the main thrust of our discussion, the prototype of GetDisplayNameOf() is:

HRESULT IShellFolder::GetDisplayNameOf(LPCITEMIDLIST pidl,
 DWORD uFlags,
 LPSTRRET lpName);

Where the flags to be used in uFlags come from the SHGNO enumerated type:

typedef enum tagSHGDN
{
 SHGDN_NORMAL = 0,
 SHGDN_INFOLDER = 1,
 SHGDN_INCLUDE_NONFILESYS = 0x2000,
 SHGDN_FORADDRESSBAR = 0x4000,
 SHGDN_FORPARSING = 0x8000,
} SHGNO;

The descriptions of these flags in the documentation seem to be clear enough, and so you build your
expectations as to the ultimate behavior of the function. However, all the samples I tried worked in
the same way, regardless of what flags I set. Frankly, don't know where the bug resides, if bug it is.
My advice is always to use 0 for this parameter.

 STRRET sName;
 CHAR szBuf[MAX_PATH] = {0};
 pFolder->GetDisplayNameOf(pItem, 0, &sName);
 StrretToString(pItem, &sName, szBuf);

This code fragment provides the display name of the item in human-readable format. Note once more
that this holds true for file folders as well as for special folders like Fonts, Favorites, Printers,
Control Panel, and so on. This means that in a while, we'll be able to list all the applets in the
Control Panel.

Personally, I've no argument with a structure like STRRET, but I would have very much appreciated a
'conversion' function like StrretToString() to have been provided natively by the shell libraries.

Getting an Item's Icon
At first glance, programming the shell seems a huge task. However, once you've survived for the first
three or four months, the chances are that you'll start to know the answer to any question on the
subject in advance. To demonstrate the point, how do you think you get an item's icon? Once again,
you just have to ask the folder to provide it. The IShellFolder::GetUIObjectOf() method
returns all the interfaces you could need to deal with the user interfaces of folders and file objects.

Chapter 5

120

HRESULT IShellFolder::GetUIObjectOf(
 HWND hwndOwner, // Handle to the owner window
 UINT cidl, // Number of elements in the next parameter
 LPCITEMIDLIST* apidl, // Pointer to an array of PIDLs
 REFIID riid, // ID of the interface to return
 UINT* prgfInOut, // Reserved (must be NULL)
 LPVOID* ppvOut // Receives the interface pointer
);

What's interesting about this declaration is that you can request a number of different interface
pointers that affect UI tasks. For example, you may ask for IContextMenu to get the HMENU handle
of the context menu being displayed for that element. In our case, we'll be requiring IExtractIcon
in order to find out about the icon. (We'll see more about GetUIObjectOf() in Chapter 16, and
you should also take a look at the references listed in Further Reading.)

 pFolder->GetUIObjectOf(NULL, 1, const_cast<LPCITEMIDLIST*>(&pItem),
 IID_IExtractIcon, NULL, reinterpret_cast<LPVOID*>(&pExtractIcon));

The IExtractIcon interface has just two new methods: GetIconLocation() and Extract().
The first of these lets you know about the location and index of the icon, while the second returns an
HICON handle. When a client calls GetIconLocation(), it will be returned the name of the file
that contains the icon, and the 0-based index of the icon in the file's resources.

HRESULT IExtractIcon::GetIconLocation(UINT uFlags,
 LPSTR szIconFile,
 INT cchMax,
 LPINT piIndex,
 UINT* pwFlags);

Extract() in turn extracts the given icon from the specified file and returns its HICON. This method
is nearly identical to the API function ExtractIconEx().

HRESULT IExtractIcon::Extract(LPCSTR pszFile,
 UINT nIconIndex,
 HICON* phiconLarge,
 HICON* phiconSmall,
 UINT nIconSize);

The documentation for these functions suffers from a few little omissions. For instance, you need to
know that pwFlags can't be NULL, even if you don't care about its contents. Similarly, even if you
need only, say, the large icon, you must still pass a valid, non-zero HICON for the small icon as well.
Here's a brief example of how to call them:

 pExtractIcon->GetIconLocation(0, szIconFile, MAX_PATH, &iIconIndex, &u);
 pExtractIcon->Extract(
 szIconFile, iIconIndex, &hIcon, &hIconSm, MAKELONG(32, 16));
 pExtractIcon->Release();

When developing this sample code, I ran into another interesting side effect, whose causes are frankly
beyond me. In some cases, the handle returned by Extract() is NULL, even when the icon's
location and index are known and correct. Curiously, calling the API function ExtractIconEx()
with the same parameters works perfectly!

Browsing for Folders

121

The workaround, of course, is immediate:

 if(hIcon == NULL)
 ExtractIconEx(szIconFile, iIconIndex, &hIcon, NULL, 1);

At this point, we finally have all we need to create a new shell function that takes a pointer to
IShellFolder and loops over its items, invoking a callback function for each one. Just like many
other functions called 'Enum', our SHEnumFolderContent() function will provide a user-defined
buffer (dwData) to send program-level variables down to the callback function. Furthermore, if the
callback returns FALSE, the function will stop working. Here's the prototype:

int SHEnumFolderContent(LPSHELLFOLDER pFolder,
 FOLDERCONTENTPROC pfn, DWORD dwData, LPITEMIDLIST* ppidl);

Where FOLDERCONTENTPROC is a user-defined function pointer declared this way:

typedef BOOL (CALLBACK *FOLDERCONTENTPROC)(LPCSTR, HICON, DWORD);

The first argument here is the display name of the element. After that comes the handle to the icon,
and then the user-defined buffer. As already mentioned, this function will return FALSE to abort
enumeration, and TRUE otherwise.

The last parameter of SHEnumFolderContent() is a pointer to a PIDL. This isn't strictly
necessary; it's just that sometimes (as in our sample application), knowing the last processed PIDL
can be of considerable help. If the argument passed is NULL, then it is ignored. At long last, here's the
source code for SHEnumFolderContent().

int SHEnumFolderContent(LPSHELLFOLDER pFolder,
 FOLDERCONTENTPROC pfn, DWORD dwData, LPITEMIDLIST* ppidl)
{
 int iNumOfItems = 0;

 // Enumerates the content
 LPENUMIDLIST pEnumIDList = NULL;
 pFolder->EnumObjects(
 NULL, SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &pEnumIDList);

 ULONG ulFetched = 0;
 LPITEMIDLIST pItem = NULL;
 while(NOERROR == pEnumIDList->Next(1, &pItem, &ulFetched))
 {
 STRRET sName;
 TCHAR szBuf[MAX_PATH] = {0};
 pFolder->GetDisplayNameOf(pItem, 0, &sName);
 StrretToString(pItem, &sName, szBuf);

 // Invoke callback
 if(pfn)
 {
 // Get the icon
 UINT u = 0;
 int iIconIndex = 0;
 HICON hIcon = NULL;
 HICON hIconSm = NULL;
 TCHAR szIconFile[MAX_PATH] = {0};
 LPEXTRACTICON pExtractIcon = NULL;

Chapter 5

122

 pFolder->GetUIObjectOf(NULL, 1, const_cast<LPCITEMIDLIST*>(&pItem),
 IID_IExtractIcon, NULL, reinterpret_cast<LPVOID*>(&pExtractIcon));
 pExtractIcon->GetIconLocation(
 0, szIconFile, MAX_PATH, &iIconIndex, &u);
 pExtractIcon->Extract(
 szIconFile, iIconIndex, &hIcon, &hIconSm, MAKELONG(32, 16));
 pExtractIcon->Release();

 if(hIcon == NULL)
 ExtractIconEx(szIconFile, iIconIndex, &hIcon, NULL, 1);

 if(!pfn(szBuf, hIcon, dwData))
 {
 // Returns the current PIDL
 if(ppidl != NULL)
 *ppidl = pItem;
 break;
 }
 }
 ++iNumOfItems;
 }
 return iNumOfItems;
}

The Callback Functions
Typically, callback functions are used to accomplish some tasks on a collection of items. In this case,
SHEnumFolderContent() calls such functions on the various folder items. SearchText() simply
reports whether the two strings you pass it are equal:

BOOL CALLBACK SearchText(LPCSTR pszItem, HICON hIcon, DWORD dwData)
{
 return static_cast<BOOL>(lstrcmpi(
 pszItem, reinterpret_cast<LPCSTR>(dwData)));
}

And ShowFolderContent() is used to build up an image list of the icons passed to it, inserting
them in the list view it was also supplied with as it does so:

BOOL CALLBACK ShowFolderContent(LPCSTR pszItem, HICON hIcon, DWORD dwData)
{
 // Create the imagelist
 int iIconWidth = GetSystemMetrics(SM_CXICON);
 int iIconHeight = GetSystemMetrics(SM_CYICON);
 if(g_himl == NULL)
 g_himl = ImageList_Create(iIconWidth, iIconHeight, ILC_MASK, 1, 0);
 int iIconPos = ImageList_AddIcon(g_himl, hIcon);

 HWND hwndListView = reinterpret_cast<HWND>(dwData);
 ListView_SetImageList(hwndListView, g_himl, LVSIL_NORMAL);

 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_TEXT | LVIF_IMAGE;
 lvi.pszText = const_cast<LPSTR>(pszItem);
 lvi.cchTextMax = lstrlen(pszItem);
 lvi.iImage = iIconPos;
 ListView_InsertItem(hwndListView, &lvi);

Browsing for Folders

123

 // Update count
 TCHAR s[MAX_PATH] = {0};
 wsprintf(s, "%d item(s) found.", ListView_GetItemCount(hwndListView));
 SetDlgItemText(GetParent(hwndListView), IDC_FOUND, s);
 return TRUE;
}

The Sample Program
Make sure that your main source file contains
#includes for shlobj.h and resource.h,
and the following figures show what you can do
with the sample program at this stage in its
development. By typing Printers, you can fill the
list view and have it look just like a standard
folder window:

Alternatively, by specifying a path name you'll
have files and folders, just as you'd get in
Explorer:

Remember that if you want the contents of the root
directory of any drive, you must include the final backslash.
For example, c:\ works fine, but c: produces this result:

Chapter 5

124

Searching by PIDL
With all our helper functions in place, writing the handler for the Show PIDL's Content button won't
be too onerous a task. The combo box that the button relates to is initialized with the names and the
IDs of some special folders, which involves exactly the same code as we had in the SHBrowse
example earlier in the chapter.

That just leaves the DoEnumeratePidl() function that executes when you click on Show PIDL's
Content and fills in the list view:

void DoEnumeratePidl(HWND hDlg)
{
 LPITEMIDLIST pidl = NULL;

 // Get the special folder and its PIDL
 HWND hwndCbo = GetDlgItem(hDlg, IDC_SPECIAL);
 int i = ComboBox_GetCurSel(hwndCbo);
 int nFolder = ComboBox_GetItemData(hwndCbo, i);
 SHGetSpecialFolderLocation(NULL, nFolder, &pidl);

 // Get the IShellFolder interface
 LPSHELLFOLDER pFolder = NULL;
 SHGetDesktopFolder(&pFolder);

 // Bind to subfolder
 LPSHELLFOLDER pSubFolder = NULL;
 pFolder->BindToObject(pidl, NULL, IID_IShellFolder,
 reinterpret_cast<LPVOID*>(&pSubFolder));
 pFolder->Release();
 pFolder = pSubFolder;

 // Clear the program's UI
 ClearUI(hDlg);

 // Enumerate the content
 HWND hwndListView = GetDlgItem(hDlg, IDC_LISTVIEW);
 SHEnumFolderContent(pFolder, ShowFolderContent,
 reinterpret_cast<DWORD>(hwndListView), NULL);

 // Clean up
 LPMALLOC pMalloc = NULL;
 SHGetMalloc(&pMalloc);
 pMalloc->Free(pidl);
 pMalloc->Release();
 pFolder->Release();
}

Browsing for Folders

125

The function starts by getting the ID of the special
folder that was selected through the combo box,
and then calls
SHGetSpecialFolderLocation() to get the
PIDL of that folder. From the PIDL, we obtain the
IShellFolder interface to pass to
SHEnumFolderContent(). The figure shows
how the application can now enumerate the
applets in Control Panel:

Special Folders
We first looked at special folders and their underpinnings in Chapter 2, and there are three basic
types. Almost all of them have a corresponding directory, but these are split between ordinary file
folders and custom folders. The third category consists of the folders without directories: the virtual
folders.

Virtual folders are perceived as folders, but their location and content can't be mapped in terms of files
and directories. Control Panel, Printers, Network Neighborhood and My Computer are all
examples of virtual folders. The Control Panel, for instance, may be considered as a folder containing
all the installed applets.

Despite appearances, however, there's no physical directory called Control Panel containing
anything that could be associated with, say, Add New Hardware or Modems. All the icons listed in
the folder come from .cpl files located in the System directory. They are gathered and presented as
a virtual folder by a namespace extension. (See Chapter 2 for an overview, and Chapter 16 for
examples of namespace extensions.)

System Support for Special Folders
The Windows API defines a number of special folders and a bunch of functions to work with them.
These routines identify each special folder through a number that works like an ID, but has nothing
to do with PIDLs or CLSIDs.

The IDs are defined in shlobj.h and have rather odd symbolic names: they all begin with CSIDL_.
What follows is a table of the available special folders.

Folder ID Virtual Description

CSIDL_DESKTOP Yes Desktop

CSIDL_DRIVES Yes My Computer

Table Continued on Following Page

Chapter 5

126

Folder ID Virtual Description

CSIDL_BITBUCKET Yes Recycle Bin

CSIDL_CONTROLS Yes Control Panel

CSIDL_NETWORK Yes Network Neighborhood

CSIDL_INTERNET Yes The Internet Explorer node that appears in shell
version 4.71 and above

CSIDL_PRINTERS Yes Printers

CSIDL_DESKTOPDIRECTORY Directory with all the desktop shortcuts

CSIDL_FAVORITES Shortcuts to favorite folders

CSIDL_FONTS Installed fonts

CSIDL_NETHOOD References to network domains

CSIDL_PRINTHOOD References to printers

CSIDL_PERSONAL Shortcuts to personal files

CSIDL_PROGRAMS The shortcuts in the Programs menu

CSIDL_RECENT Shortcuts to recently used documents

CSIDL_SENDTO Shortcuts for the SendTo menu

CSIDL_STARTMENU User-defined items for the Start menu

CSIDL_STARTUP Shortcuts to the programs that run at boot time

CSIDL_COOKIES Cookies

CSIDL_TEMPLATES Shortcuts to document templates

CSIDL_HISTORY Shortcuts to visited web pages

CSIDL_INTERNET_CACHE Internet Explorer's temporary Internet files

CSIDL_APPDATA A folder for application-specific data

CSIDL_ALTSTARTUP The non-localized StartUp group

The documentation mentions other folders labeled as CSIDL_COMMON_XXX. They are:

 CSIDL_COMMON_STARTUP CSIDL_COMMON_STARTMENU
 CSIDL_COMMON_PROGRAMS CSIDL_COMMON_FAVORITES
 CSIDL_COMMON_DESKTOPDIRECTORY CSIDL_COMMON_ALTSTARTUP

These work in the same way as the ones whose names don't contain COMMON, except that they point
to physical folders that are visible to all users. Even though this is not mentioned explicitly in the
documentation, these folders seem to make sense only under Windows NT, as I'll demonstrate in the
next section.

Browsing for Folders

127

Getting the Path to a Folder
Non-virtual folders have a path somewhere in the machine. You can obtain the path for a special
folder by calling the SHGetSpecialFolderPath() API function, which I'll have more to say
about shortly. The link between special folders and their paths is stored in the registry, under this
key:

HKEY_CURRENT_USER
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Shell Folders

The same key under the HKEY_LOCAL_MACHINE node stores paths for all the available COMMON
folders, but not all the COMMON folders have their paths stored under Windows 95 and Windows 98.
In fact, it only happens with CSIDL_COMMON_DESKTOPDIRECTORY and CSIDL_COMMON_STARTUP.

Assuming that C:\Windows is your Windows directory, the paths listed are located inside the
C:\Windows\All Users folder. However, under Windows 95 and Windows 98,
SHGetSpecialFolderPath() doesn't return a value for any of them. Using the same function
under Windows NT, on the other hand, returns the correct path.

Functions
We can approach SHGetSpecialFolderPath() by looking at an API function that we've already
made use of: SHGetSpecialFolderLocation(). This retrieves a PIDL to the special folder you
specify, and has the following prototype:

HRESULT SHGetSpecialFolderLocation(HWND hwndOwner,
 int nFolder,
 LPITEMIDLIST* ppidl);

hwndOwner is the parent window for any popup window to be displayed, nFolder is the identifier
of a special folder and can be one of the constants listed above, and ppidl is a pointer to the buffer
that will contain the PIDL for the folder. SHGetSpecialFolderPath(), which is intended to
retrieve the path of a given folder, is very similar:

HRESULT SHGetSpecialFolderPath(HWND hwndOwner,
 LPTSTR lpszPath,
 int nFolder,
 BOOL fCreate);

lpszPath will contain the path name, while fCreate is a Boolean value that denotes whether the
folder should be created if it doesn't already exist. Of course, you can't specify the ID of a virtual
folder in this case. Note that unlike SHGetSpecialFolderLocation(),
SHGetSpecialFolderPath() is only supported by shell versions 4.71 and higher.

Chapter 5

128

Folder Settings
Internet Explorer 4.0 and Active Desktop greatly increased the number of settings for system folders.
The Folder Options dialog is now full of boxes to check or uncheck in order to have folders look the
way you want them to:

The dialog shown in the figure is one that everyone
uses once in a lifetime (or once every time they install
Windows, whichever comes sooner) to make all the
system and hidden files visible throughout Explorer.
Some (but not all) of these settings can be read
programmatically through the SHGetSettings()
function, which naturally enough is only available in
version 4.71 of the shell.

You can easily read about the details of each setting in the Visual C++ documentation. What you
won't find there, however, is an example.

SHGetSettings()
Actually, using SHGetSettings() is quite simple. The function requires just two arguments:

void SHGetSettings(LPSHELLFLAGSTATE lpsfs, DWORD dwMask);

SHELLFLAGSTATE is a very compact structure defined in this way:

typedef struct
{
 BOOL fShowAllObjects : 1;
 BOOL fShowExtensions : 1;
 BOOL fNoConfirmRecycle : 1;
 BOOL fShowSysFiles : 1;
 BOOL fShowCompColor : 1;
 BOOL fDoubleClickInWebView : 1;
 BOOL fDesktopHTML : 1;
 BOOL fWin95Classic : 1;
 BOOL fDontPrettyPath : 1;
 BOOL fShowAttribCol : 1;
 BOOL fMapNetDrvBtn : 1;
 BOOL fShowInfoTip : 1;
 BOOL fHideIcons : 1;
 UINT fRestFlags : 3;
} SHELLFLAGSTATE, *LPSHELLFLAGSTATE;

Browsing for Folders

129

The dwMask parameter is a binary bitmask — you have to set the appropriate bit for each of the
above fields you're interested in and want the function to retrieve. The possible values are:

Field Mask bit Setting in the Folder
Options dialog

fShowAllObjects SSF_SHOWALLOBJECTS Show all files

fShowExtensions SSF_SHOWEXTENSIONS Hide file extensions for
known file types

fNoConfirmRecycle SSF_NOCONFIRMRECYCLE None

fShowSysFiles SSF_SHOWSYSFILES Do not show hidden files

fShowCompColor SSF_SHOWCOMPCOLOR None

fDoubleClickInWeb
View

SSF_DOUBLECLICKINWEBVIEW Double-Click to Open an
Item option on the General
| Custom Settings dialog

fWin95Classic SSF_WIN95CLASSIC Classic Style option in the
General page

fDontPrettyPath SSF_DONTPRETTYPATH Allow all uppercase names

fMapNetDrvBtn SSF_MAPNETDRVBUTTON Show Map Network Drive
button in toolbar

fShowAttribCol SSF_SHOWATTRIBCOL Show file attributes in the
Detail View

fShowInfoTip SSF_SHOWINFOTIP Show pop-up description
for folders and desktop
items

fDesktopHTML SSF_DESKTOPHTML View as Web Page on the
Active Desktop context
menu

fHideIcons SSF_HIDEICONS Hide icons when desktop
is viewed as a Web page

The documentation erroneously states that fHideIcons is not used, when in fact it works perfectly:
it indicates whether the icons on the desktop will be shown when the desktop view is set to Web
mode. Let's have a look at some possible applications for the information you can get from these
flags.

Watch the File Extension
The first use that comes to my mind relates to whether programmers want to show file extensions in
the user interface of their applications. If your program displays file names for any reason, then you
should take the user's preferences into account and decide whether to display the extension according
to the status of this flag.

Chapter 5

130

Make the Desktop More Active
The fHideIcons flag lets you know whether the icons on the desktop are viewable when the view
mode is set to As a Web Page. fDesktopHTML, on the other hand, tells you if the desktop uses an
HTML page as its background. If the desktop is in Web mode, and the icons aren't viewable, then
you might not want to create new shortcuts on the desktop.

The combined use of both fDesktopHTML and fHideIcons would be very useful if only we could
set these settings, and not just get their status. Consider the following scenario: there are many ways
of clearing the desktop in order to stop users of publicly available computers from browsing or
running applications other than yours. However, a new possibility is offered by the combination of
fDesktopHTML and fHideIcons. The first of these allows you to set the flag that displays an
HTML page as the desktop background, while the second one hides all the icons on the desktop. In
this way, you can transform the Windows desktop (and the machine) into a dedicated server on which
a single HTML-based application is running. Admittedly, the taskbar will still be there, but you can
easily hide that by getting its HWND and then calling ShowWindow() with the SW_HIDE flag:

// The taskbar is a window of class 'Shell_TrayWnd'
HWND hwnd = FindWindow("Shell_TrayWnd", NULL);
if(IsWindow(hwnd))
 ShowWindow(hwnd, SW_HIDE);

At the time of writing, there was no documented way to set the flags we're interested in. However,
there's almost always an undocumented way to work around these things! I'll have more to say on
this subject in a while.

How to Click a List View
Among the numerous folder settings in shell version 4.71, there's the possibility of arranging things so
folders are underlined when they're selected, and one click is enough to open them. You can set these
options through the General page of the Folder Options dialog. Interestingly, these styles are also
available for list views in version 4.70 of the common controls library, so you might want to modify
the activation modality and the mouse-tracking capability of your list views according to the
fDoubleClickInWebView flag. The styles to take into account are:

! LVS_EX_ONECLICKACTIVATE (4.70)
! LVS_EX_TWOCLICKACTIVATE (4.70)
! LVS_EX_UNDERLINECOLD (4.71)
! LVS_EX_UNDERLINEHOT (4.71)

In this list, the version numbers refer to the common controls library, and not to the shell. Version 4.70
of comctl32.dll shipped with Internet Explorer 4.0 (regardless of whether Active Desktop is
installed), while 4.71 shipped with IE 4.01.

To set the extended styles for a list view, you need ListView_SetExtendedListViewStyle(),
which is a new macro built around the LVM_SETEXTENDEDLISTVIEWSTYLE message. The meaning
of the first two styles listed above is straightforward, while the others deal with hot items, a term used
to describe an item that the mouse is passing over. LVS_EX_UNDERLINECOLD causes 'non-hot' items
to be underlined, while LVS_EX_UNDERLINEHOT underlines only the hot item.

Browsing for Folders

131

Delete Confirmation
The fNoConfirmRecycle flag informs you whether or not the confirmation dialog will be shown
before deleting files. As you might imagine, this applies only to deletions that go through the Recycle
Bin and the shell. However, even if you aren't deleting files via shell functions like
SHFileOperation() that we saw in Chapter 3, wouldn't it be nice to ask for confirmation if the
user is expecting such questions to be asked? Reading fNoConfirmRecycle is a big step towards
making this possible.

The Sample Program
The interface for this, the final
example in this chapter, looks
something like the one in the
screenshot I wonder if you can guess
what I used to create the skeleton?

The code for this example is very easy indeed: you just need to add a handler for the Get Settings
button, which will cause the current shell option settings to be read. The following source code
produces the effect you can see in the screenshot. As always, remember to #include shlobj.h and
resource.h at the top of the source file.

void OnSettings(HWND hDlg)
{
 SetDlgItemText(hDlg, IDC_SETTINGS, "");

 SHELLFLAGSTATE sfs;
 SHGetSettings(&sfs, SSF_DESKTOPHTML | SSF_SHOWALLOBJECTS |
 SSF_MAPNETDRVBUTTON | SSF_SHOWATTRIBCOL | SSF_SHOWEXTENSIONS);

 TCHAR szBuf[MAX_PATH] = {0};
 if(sfs.fDesktopHTML)
 lstrcat(szBuf, __TEXT("Active Desktop - View as Web page is active\r\n"));

 if(sfs.fMapNetDrvBtn)
 lstrcat(szBuf, __TEXT("Network buttons on the toolbar\r\n"));

 if(sfs.fShowAllObjects)
 lstrcat(szBuf, __TEXT("Shows all files\r\n"));

 if(sfs.fShowAttribCol)
 lstrcat(szBuf, __TEXT("Shows attributes in Detail view\r\n"));

 if(sfs.fShowExtensions)
 lstrcat(szBuf, __TEXT("Shows extensions for known file types\r\n"));

 SetDlgItemText(hDlg, IDC_SETTINGS, szBuf);
}

Chapter 5

132

Setting Preferences
Reading these kinds of settings might indeed be helpful in a range of circumstances, but rather more
interesting would be the ability to set these attributes programmatically. Unfortunately, a
SHSetSettings() routine is yet to appear, but in this section I'll demonstrate that there's plenty
you can do to achieve this goal without Microsoft's help.

Where are Preferences Stored?
As you could probably have guessed, all the settings you can read through SHGetSettings() are
stored somewhere in the registry, and that means there's a relatively secure way to set preferences
programmatically.

Before going any further, let me make clear an important point. In the
absence of official documentation, Microsoft is free to change the registry
keys it uses in future versions of the operating system, indirectly causing
your code to break. At the time of writing, the technique I'm presenting
here worked perfectly under version 4.71 of the shell and Windows 98.

With that warning out of the way, on with the show! While snooping in the registry, I ran across the
following key:

HKEY_CURRENT_USER
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Advanced

It seemed that I had found what I was looking for. Would it be enough simply to modify these
registry entries? Unfortunately, this was not to be — I soon noticed that the list of values was missing a
number of entries, in particular the 'Web view' settings.

Browsing for Folders

133

At this point, I remembered the golden rule of trying to reverse-engineer registry settings: always
compare the contents of the same key under HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE.
Here's what I found:

As you can see, there's an entire hierarchical structure that reproduces the same tree as the Folder
Options dialog. The main nodes are of type "group", and have their own bitmap, and a display
name. The 'leaves' of the structure hold a collection of attributes, from which stand out a couple of
values: RegPath and HKeyRoot:

What this means is that every entry in this sub-tree points to another key in the registry where the
actual value is stored, via a path constructed from HKeyRoot\RegPath\ValueName. The attributes
of the leaf determine the text to be shown, the type of the option (checkbox or radio button), the
value when checked or unchecked, the default value, and even the file name and topic ID for any
available help.

Given all this, arranging a custom SHSetSettings() function is simply a matter of reading and
writing some data from and to the registry.

Adding Custom Options to the Standard Dialog
Since there seemed to be a perfect correspondence between the layout of the registry sub-tree and the
structure of the Folder Options dialog, I immediately suspected that adding a new key in the registry
would cause a new, custom option to appear in the standard dialog. To prove it, there was only one
thing to do: add a new key to that registry sub-tree!

Chapter 5

134

I started by defining a
new key called
MySetting under
Folder. Then, I defined
all the values that I'd seen
the other leaves have:

After saving the changes to the registry, I opened the Folder Options dialog expectantly, but nothing
new appeared. In fact, though, there's an obvious reason for this: the code behind the dialog adds a
new item only if it is able to read its stored value. As I mentioned earlier, this value is in another area
of the registry — it's where HKeyRoot, RegPath and ValueName point.

The extra step required is the creation of a new value called MySetting under this key:

HKEY_CURRENT_USER
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Advanced

It should be set to the default value you expect for
the option. When I saved the changes and reopened
the Folder Options dialog, the new setting appeared,
as this screenshot demonstrates:

Browsing for Folders

135

When Custom Options Are Helpful
Adding new, custom options to the Folder Options dialog is not just a trick to impress colleagues —
rather, it could represent a very convenient way of allowing your users to customize your programs.
I don't suggest that you should use this dialog for all the settings an application can have, but it's
well worth considering for those options that revolve around the user interface and the folders. In
my opinion, the module that could best exploit this feature is a namespace extension.

The choice of the registry path to use is completely up to you, but it would seem to make sense to
store your settings away from the standard ones. An excellent choice could be to use an application-
specific registry key.

Summary
Folders are an extensive topic that this chapter has attempted to cover in detail. You've seen how to
browse for specific folders and how to work with them, enumerating their contents and setting
preferences. In particular, this chapter showed you:

! How to make best use of SHBrowseForFolder()
! How to enumerate the content of any folder
! The functions to deal with special system folders
! Which folder settings are available for reading, and how to set them programmatically

Along the way, we've built some potentially useful functions to extend the set of tools provided by the
API. Examples of such helper routines are SHEnumFolderContent() and SHPathToPidlEx().
Moreover, I also revealed how the shell stores the folder settings, and addressed an undocumented
way of adding new options to the standard Folder Options dialog.

Chapter 5

136

Further Reading
Complementary to this chapter is my article The Windows 98 Shell that appeared in MIND, in August
1998. It discusses how to take advantage of the scriptable objects of the Windows 9x shell, a topic
that will be covered in detail later in this book. That article also shows how to build an ActiveX
control that browses for folders. A similar subject was discussed in the August 1998 issue of MSJ,
where ADSI (Active Directory Service Interface) and namespace extensions combine to arrange a
'web view' for a folder.

I picked up some tips on how to go about writing the code that I presented in this chapter from
Knowledge Base articles such as:

! Knowledge Base Article ID Q179378: Browse for Folders from the Current Directory
! Knowledge Base Article ID Q132750: Convert a File Path to an ITEMIDLIST

A quick but useful definition of the role played by the memory allocator can be found in the Ask Dr
Gui column of MSDN News, Sept/Oct 97. The book Programming the Windows 95 User Interface by
Nancy Cluts (Microsoft Press, available on the MSDN Library CDs) is still the only source I know to
provide some code that allows you to form an idea about PIDLs.

As for PIDLs and folder content, there's a good article in Jeff Prosise's Wicked Code column in the
December 1997 issue MSJ, in which he illustrates how to get the handle of the context menu for a
given file object.

The Shortest Path to Shortcuts

The Windows shell allows you to store references to any object you might come across anywhere in
the system. When you drag-and-drop executables from one folder to another, for example, the mouse
cursor automatically changes its shape to offer a third choice in addition to those of copying and
moving the file.

Unless you specify otherwise, executables are not copied or moved. Instead, each time you attempt
such an operation, what actually gets copied or moved is a reference to their physical location. What
actually gets created is not a copy of the file, but a link to its original location.

All these are samples of shortcuts. Things of this kind have been around for a while in older versions
of Windows — the icons in Program Manager, for example, were a sort of 'early version' of shortcuts.
Don't be confused, however — they aren't the same, and the main difference lies in the fact that a
shortcut is a general mechanism that can point to file objects: not just executables, and not just files.

Shortcuts are everywhere in the Windows 9x and Windows NT shell. You can find them in any
folder, but most of all you find them in the special system folders. If you want your application to do
impressive things like adding items to the Favorites or SendTo folders, or even to the Start menu,
then creating shortcuts is the way to go. They are an important piece of the shell jigsaw that we need
to discuss thoroughly.

In this chapter, we're going to cover:

! Exactly what shortcuts are
! How the system stores and reloads them
! How you can create or delete shortcuts
! Examples of useful functions that you can code for shortcuts

Chapter 6

140

The examples we'll examine along the way assume a certain familiarity with topics that might be
considered at the margin of shell programming, but which will demonstrate more clearly the
flexibility of shortcuts. In this chapter, for instance, we'll be using hotkey controls and drag-and-drop
as built-in features of the sample applications.

What are Shortcuts?
A shortcut represents a link to a particular file object, and is implemented as a tiny binary file with a
.lnk extension. When I say, "tiny," I really mean it — the size of a shortcut file rarely reaches 1 KB.
Not all shortcuts have exactly the same size, but they do possess a fixed set of attributes: the target
file object, a description, an hotkey, an icon, and more. We'll examine all of these shortly.

Shortcuts pervade the whole of the Windows shell, and may be perceived as a service that the shell
provides you with. From the software point of view, shortcuts are implemented through a COM
server that exposes the IShellLink interface and is identified by the mnemonic
CLSID_ShellLink. By means of this interface, you're allowed to set the various attributes of a
shortcut, and call the methods that save it to or load it from disk.

The Shortcut File Type
When all is said and done, a shortcut is a file, but it's a kind of file that the shell handles in a
particular way. The shell knows that a file of type 'shortcut' is a reference to something else, so that
when you double-click it (or click it — it depends on your Active Desktop settings, as shown in
Chapter 5!) you're returned the object being pointed to, not the file you clicked on.

Creating Shortcuts
Although shortcuts are often associated with executable programs, this is by no means a rule — you
can create shortcuts to directories and non-executable files. From a software perspective, there's
absolutely no difference. However it's also possible to create shortcuts to non-file system objects (such
as printers); in this case there is a small difference, and you should use a different method for this
purpose.

To create a new .lnk file, you have two choices. The first one relies on the shell DDE interface,
which is inherited directly from the old Program Manager. We won't be covering it here, but more
details on shell DDE and full documentation of the syntax are available in the Internet Client SDK
and the MSDN Library. If you used to program using DDE but haven't been back to it recently, it
may interest you to know that there have been changes since Windows 3.x, and there are some
relatively new features in the DDE interface.

Using the IShellLink Interface
The second and recommended way of creating shortcuts is by means of the IShellLink COM
interface, and it's a surprisingly painless process.

The Shortest Path to Shortcuts

141

The steps involved are:

! Creating the appropriate COM server
! Getting a pointer to the IShellLink interface

! Setting some attributes through the methods of IShellLink
! Getting a pointer to the IPersistFile interface
! Saving the shortcut to a file using methods of IPersistFile

Creating the server is just a matter of calling CoCreateInstance(), making sure to have initialized
the COM libraries properly (with CoInitialize()) beforehand:

IShellLink* pShellLink = NULL;
HRESULT hr = CoCreateInstance(CLSID_ShellLink, NULL, CLSCTX_INPROC_SERVER,
 IID_IShellLink, reinterpret_cast<LPVOID*>(&pShellLink));
if(FAILED(hr))
 return hr;

The CLSID is defined in the shlobj.h header file, and the above call returns a pointer to the
IShellLink interface, which is the key to handling shortcuts. The following table presents a list of
all its methods, with brief descriptions of each. I'll point out some possible pitfalls a little later on, in
the course of writing a sample program.

Method Description

GetArguments()
SetArguments()

Returns/sets the command-line arguments.

GetDescription()
SetDescription()

Returns/sets the description string.

GetHotkey()
SetHotkey()

Returns/sets the hot key for the shortcut.

GetIconLocation()
SetIconLocation()

Returns/sets the path and index of the icon.

GetIDList()
SetIDList()

Returns/sets the PIDL of the linked object. Use these
methods instead of GetPath() and SetPath() if you're
working with non-file system objects.

GetPath()
SetPath()

Returns/sets the path and filename of the linked object.

GetShowCmd()
SetShowCmd()

Returns/sets the SW_XXX flag of the linked object.

GetWorkingDirectory()
SetWorkingDirectory()

Returns/sets the working directory.

SetRelativePath() Sets a relative path to the linked object.

Resolve() Retrieves the file object pointed to by the shortcut.

Chapter 6

142

Once you have a pointer to IShellLink, you can start configuring the shortcut by setting the target
object (a file, a directory, or a PIDL to a non-file object), and a list of optional attributes. You can set
a description, a hotkey to access the file quickly, a specific icon, a working directory, command-line
arguments, and a value that denotes how the window (if any) should be created. Here's a typical code
fragment:

pShellLink->SetPath(pszTarget);
pShellLink->SetDescription(pszDesc);
pShellLink->SetHotkey(wHotKey);
pShellLink->SetIconLocation(pszIconPath, wIconIndex);

At this point, the object only exists in memory. To make it persistent, we need to store it in a file. For
this reason, the COM server we're working with (the one identified by CLSID_ShellLink)
implements the IPersistFile interface together with IShellLink. The former is an interface that
comprises methods to read from and write to disk, and therefore serves the purpose of providing
callers with a common programming interface to load and save files.

IPersistFile* pPF;
pShellLink->QueryInterface(IID_IPersistFile, reinterpret_cast<LPVOID*>(&pPF));
MultiByteToWideChar(CP_ACP, 0, szLnkFile, -1, wszLnkFile, MAX_PATH);
pPF->Save(wszLnkFile, TRUE);

IPersistFile's two most important methods, Load() and Save(), both require Unicode strings,
and therefore we need to convert the buffer containing the filename to wide characters.

A Global Function for Shortcuts
We can already put this information together to form a new shell helper function that creates
shortcuts — remarkably, the Windows shell API doesn't provide a simple and direct function to create
(or resolve) a shortcut. In another feat of imagination, I'm going to call ours
SHCreateShortcutEx().

In fact, although the Win32 API doesn't have one, the Windows CE SDK does include a function called
SHCreateShortcut(), with the following prototype:

BOOL SHCreateShortcut(LPTSTR szShortcut, LPTSTR szTarget);

As input, our function will take the name of the target .lnk file, and a structure that will contain all
the attributes requested for the shortcut:

struct SHORTCUTSTRUCT
{
 LPTSTR pszTarget;
 LPTSTR pszDesc;
 WORD wHotKey;
 LPTSTR pszIconPath;
 WORD wIconIndex;
};

typedef SHORTCUTSTRUCT* LPSHORTCUTSTRUCT;

The Shortest Path to Shortcuts

143

Here's the source code for the function, which we'll be using in a sample program that we'll create
and discuss later on:

HRESULT SHCreateShortcutEx(LPCTSTR szLnkFile, LPSHORTCUTSTRUCT lpss)
{
 WCHAR wszLnkFile[MAX_PATH] = {0};
 IShellLink* pShellLink = NULL;
 IPersistFile* pPF = NULL;

 // Validate SHORTCUTSTRUCT pointer
 if(lpss == NULL)
 return E_FAIL;

 // Create the COM server assuming CoInitialize() has already been called
 HRESULT hr = CoCreateInstance(CLSID_ShellLink, NULL,
 CLSCTX_INPROC_SERVER, IID_IShellLink,
 reinterpret_cast<LPVOID*>(&pShellLink));
 if(FAILED(hr))
 return hr;

 // Set attributes
 pShellLink->SetPath(lpss->pszTarget);
 pShellLink->SetDescription(lpss->pszDesc);
 pShellLink->SetHotkey(lpss->wHotKey);
 pShellLink->SetIconLocation(lpss->pszIconPath, lpss->wIconIndex);

 // Get the IPersistFile interface to save
 hr = pShellLink->QueryInterface(
 IID_IPersistFile, reinterpret_cast<LPVOID*>(&pPF));
 if(FAILED(hr))
 {
 pShellLink->Release();
 return hr;
 }

 // Save to a LNK file (Unicode name)
 MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED,
 szLnkFile, -1, wszLnkFile, MAX_PATH);
 hr = pPF->Save(wszLnkFile, TRUE);

 // Clean up
 pPF->Release();
 pShellLink->Release();
 return hr;
}

Shell Scriptable Objects
A better possibility for working with shortcuts is offered by shell scriptable objects. These were
introduced with Internet Explorer 4.0, and are a standard part of Windows 98. In a nutshell, they are
Automation servers that expose a programming interface for creating and resolving shortcuts. (They
also do many other interesting things…)

Most interestingly, these components can be used from desktop applications, HTML pages, and also
throughout the Windows Scripting Host (WSH). We'll be covering these objects and WSH in detail in
Chapter 12.

Chapter 6

144

Giving Shortcuts the Right Name
Since version 4.71 of the shell, a new function called SHGetNewLinkInfo() has been available to
programmers. Despite what you might expect, though, this function doesn't actually create a shortcut.
Instead, it is useful when the time comes to arrange a correct name for a shortcut:

BOOL SHGetNewLinkInfo(LPCTSTR pszLinkTo,
 LPCTSTR pszDir,
 LPTSTR pszName,
 BOOL* pfMustCopy,
 UINT uFlags);

The function takes either a pointer to the path name, or the PIDL of the target object; this is stored in
pszLinkTo. Whether it gets considered as a PIDL or a path name depends upon the value in
uFlags. The destination folder is pszDir.

This routine will suggest the name for the shortcut file you're about to create. This name is returned
in pszName, which assumes a buffer of MAX_PATH characters. When you create shortcuts to existing
shortcuts, the shell doesn't create a new link, but simply copies and modifies the target. The
pfMustCopy flag serves the purpose of returning a Boolean value that denotes whether the shell will
create a shortcut file from scratch, or proceed with a copy. TRUE means that pszLinkTo is an
existing shortcut, in which case the shell will make a copy and modify it appropriately. A value of
FALSE means that a completely new shortcut will be created. Finally, the available flags are:

Flag Description

SHGNLI_PIDL If set, the pszLinkTo argument will be considered as a PIDL,
otherwise as a string.

SHGNLI_NOUNIQUE If set, the shell will first determine the shortcut name and then
check for possible collisions. If the name collides with others in
the same folder, it gets updated iteratively until a unique name is
found.

SHGNLI_PREFIXNAME If set, the name will always be prefixed by 'Shortcut to'.

In practice, SHGetNewLinkInfo() endeavors to provide a consistent name for the shortcut to the
given target. This means, for example, that it will have a .pif extension if it points to a DOS
executable and a .lnk extension otherwise. Another check the function performs regards the target
drive's support for long filenames. If the drive doesn't support long names, then it will return a name
in 8.3 format.

As for any other function that's available only from version 4.71 onwards, it's a good idea not to link this
function through the shell32.lib import library. Instead, you should consider loading it dynamically
by calling LoadLibrary("shell32.dll") and GetProcAddress().

Deleting Shortcuts
Deleting shortcuts is as easy as deleting a file. More importantly, you don't have to worry about the
destiny of the file being pointed to, because all you delete is the reference. The object being pointed
to remains completely unaffected.

The Shortest Path to Shortcuts

145

Resolving Shortcuts
Creating shortcuts is only half the job. It's completely plausible that sooner or later, you (and not just
the system) will need to read the contents of a shortcut file. While resolving shortcuts is not that
different from reading a file, the operation is usually referred as 'resolving' rather than 'reading'.

There are reasons for this difference in nomenclature. A shortcut points to a file object, but this is just
a link — it's not embedded. When you create your shortcut, the object is supposed to exist, but no
such assumption can be made when the time comes to read it. When you need to access the
referenced object, there is nothing to guarantee that it hasn't been deleted, moved, or renamed in the
meantime.

Reading a shortcut simply means that you will try to access the object specified in the .lnk file.
Resolving a shortcut means that the system will try to understand where the referenced object has been
moved to, or how it has been renamed.

How Explorer Resolves Shortcuts
We could say that, to begin with, each resolution of a shortcut is a reading. However, if Explorer
doesn't find a valid file object at the location specified in the .lnk file, then it will perform a
recursive search on all the drives and directories in the disk until it finds a file with the same size,
creation date and attributes as the one pointed to by the shortcut. If that search fails, Explorer will
display a dialog box like this one:

This dialog can be suppressed by setting the appropriate flag when calling
IShellLink::Resolve(). Of course, if you have deleted the referenced object, it's impossible for
Explorer to find it, even if it's still in the Recycle Bin.

A Function for Resolving Shortcuts
The shell API also lacks a function to resolve shortcuts, so once again we'll be writing our own. The
steps involved are:

! Creating the necessary COM server
! Getting a pointer to the IPersistFile interface
! Loading the shortcut from the .lnk file using methods of IPersistFile
! Getting a pointer to the IShellLink interface
! Resolving the shortcut

Chapter 6

146

The core of the whole operation is the call to Resolve(). This method has the following syntax:

HRESULT IShellLink::Resolve(HWND hwnd, DWORD fFlags);

The first parameter is the handle of the parent window for any dialog box the function should need to
show. More interesting from our point of view is the dwFlags argument, which can be a
combination of the following values:

Flag Description

SLR_NO_UI The function won't display any dialog box, even if it fails to locate the
file pointed to. In this case, the function returns after 3 seconds by
default; this timeout can be customized by specifying the number of
desired milliseconds in the high-order word of the argument.

SLR_ANY_MATCH Try to resolve the link, and display a dialog box if it fails.

SLR_UPDATE If this flag is set, and the referenced object has been moved or renamed,
then the shortcut is updated to point to the new location. This behavior
is not the default.

Notice here that updating the shortcut to have it point to the new location (if any) of the file object is
not automatic. It must be requested explicitly by passing the SLR_UPDATE flag to
IShellLink::Resolve().

Here's the complete source code for our SHResolveShortcut() function. Like its sister routine
SHCreateShortcutEx(), it will be used extensively in our sample program to illustrate shortcut
programming.

HRESULT SHResolveShortcut(LPCTSTR szLnkFile, LPSHORTCUTSTRUCT lpss)
{
 WCHAR wszLnkFile[MAX_PATH] = {0};
 IShellLink* pShellLink = NULL;
 IPersistFile* pPF = NULL;

 // Create the appropriate COM server
 HRESULT hr = CoCreateInstance(CLSID_ShellLink, NULL,
 CLSCTX_INPROC_SERVER, IID_IShellLink,
 reinterpret_cast<LPVOID*>(&pShellLink));
 if(FAILED(hr))
 return hr;

 // Get the IPersistFile interface to load the LNK file
 hr = pShellLink->QueryInterface(
 IID_IPersistFile, reinterpret_cast<LPVOID*>(&pPF));
 if(FAILED(hr))
 {
 pShellLink->Release();
 return hr;
 }

The Shortest Path to Shortcuts

147

// Load the shortcut (Unicode name)
 MultiByteToWideChar(CP_ACP, 0, szLnkFile, -1, wszLnkFile, MAX_PATH);
 hr = pPF->Load(wszLnkFile, STGM_READ);
 if(FAILED(hr))
 {
 pPF->Release();
 pShellLink->Release();
 return hr;
 }

 // Resolve the link
 hr = pShellLink->Resolve(NULL, SLR_ANY_MATCH);
 if(FAILED(hr))
 {
 pPF->Release();
 pShellLink->Release();
 return hr;
 }

 // Extract the information to fill lpss
 if(lpss != NULL)
 {
 TCHAR szPath[MAX_PATH] = {0};
 TCHAR szDesc[MAX_PATH] = {0};
 TCHAR szIcon[MAX_PATH] = {0};
 WORD w = 0;
 WORD wIcon = 0;
 WIN32_FIND_DATA wfd;

 pShellLink->GetPath(szPath, MAX_PATH, &wfd, SLGP_SHORTPATH);
 pShellLink->GetDescription(szDesc, MAX_PATH);
 pShellLink->GetHotkey(&w);
 pShellLink->GetIconLocation(
 szIcon, MAX_PATH, reinterpret_cast<int*>(&wIcon));

 lpss->pszTarget = szPath;
 lpss->pszDesc = szDesc;
 lpss->pszIconPath = szIcon;
 lpss->wHotKey = w;
 lpss->wIconIndex = wIcon;
 }

 pPF->Release();
 pShellLink->Release();
 return hr;
}

To load the file, we use the Load() method of IPersistFile, which takes two arguments. The
first one is the Unicode version of the .lnk file name to work with, while the second parameter
denotes the access mode with which the file should be opened.

Shortcuts and Special Folders
In most cases, if you need to create a shortcut programmatically, you need to create it in a special
folder. However, this is not a complication — it's just a matter of specifying the right path to the
folder. The sample program that we'll discuss in the next section allows you to create shortcuts in
many of the 'usual' special folders: My Documents, Desktop, Start Menu, Programs, SendTo
and Favorites. As we saw in Chapter 5, the SHGetSpecialFolderPath() function can discover
the path to a non-virtual folder.

Chapter 6

148

The Sample Program: Shortcut Manager
The application you can see in
the figure below was generated
by the Wrox AppWizard, and
is intended to work as a simple
console to create and resolve
shortcuts. Its dialog window is
divided in two parts: the upper
for resolving shortcuts, and the
lower to create new ones.

The user interface will let you select .lnk files to open, and it will work as a drop target too — that is,
you can drag-and-drop shortcuts from wherever you like, and have it resolve them.

Each shortcut that is resolved by the program will be reported in the view. The example we'll
develop here will only show target, description and hotkey information, but enhancing this aspect
should not pose you problems if you choose to do so.

Selecting a Shortcut
The first potential pitfall we have to consider arises when you try to arrange an Open dialog to select
a shortcut to resolve. The trouble is that by default, the Open dialog dereferences shortcuts, so you'll
never be returned the names of any .lnk files! To work around this, you must specify the
OFN_NODEREFERENCELINKS flag to the GetOpenFileName() function, as shown below in the
handler function that deals with both the browse buttons on the application dialog:

void OnBrowse(HWND hDlg, WPARAM wID)
{
 TCHAR szFile[MAX_PATH] = {0};

 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 if(wID == IDC_SHORTCUT)
 {
 ofn.lpstrFilter = __TEXT("Shortcuts\0*.lnk\0");
 ofn.Flags = OFN_NODEREFERENCELINKS;
 }
 else
 ofn.lpstrFilter = __TEXT("All files\0*.*\0");

 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrInitialDir = __TEXT("c:\\");
 ofn.lpstrFile = szFile;

The Shortest Path to Shortcuts

149

 if(!GetOpenFileName(&ofn))
 return;
 else
 SetDlgItemText(hDlg, wID, ofn.lpstrFile);
 return;
}

By this technique, if you double click on a .lnk file, Explorer will stop there and return the name of
that file instead of going down to the referenced file.

Shell Drag-and-Drop
All right, I admit it: even though we're in the land of shell programming, this is not a strictly related
topic. Just in case you haven't seen it before, though, it is worth a look. The Visual C++ Resource
Editor allows you to assign a drop-target attribute (by turning on the WS_EX_ACCEPTFILES bit) to
literally any window. However, it's then completely up to you to figure out how and when you can
handle drop events. We want to limit drag-and-drop to the list view, but if we assign it the attribute,
then we're faced with having to subclass the window in order to detect drop-related events.

Instead, we're going to use a simpler approach: the whole dialog will be drop-enabled, but when it
catches a WM_DROPFILES message, it will verify that the event occurred within the list view. If not, it
will ignore the event. The functions that handle drag-and-drop from the shell are all defined in
shellapi.h, and go by the names of DragQueryPoint(), DragQueryFile() and
DragFinish(). I'll have more to say on this subject later on.

Displaying the Results
This program has a report-style list view in its user interface, and to make using it a little easier, I've
created a couple of helper functions to assist with adding columns and strings to such views. Keep
them in mind, because we'll be using them again later on.

The first function is called MakeReportView(), and is meant to transform any list view window
into a report-style list view with the columns you specify. Its prototype requires you to pass in the
handle of the list view, an array of strings with name and width of each column, and the total number
of columns. To make the prototype as compact as possible, I've assumed that the array you pass
contains names in the even entries (0, 2, 4, and so forth) and numbers in the odd positions.

The array is actually an array of pointers to strings — namely, an array of 32-bit values. Provided that
you're aware of this, you can use an array like the following:

LPTSTR psz[] = {"Target", reinterpret_cast<TCHAR*>(170),
 "Description", reinterpret_cast<TCHAR*>(170),
 "Hotkey", reinterpret_cast<TCHAR*>(100)};
MakeReportView(hwndList, psz, 3);

MakeReportView() always treats the entries as name/width pairs, so the number of columns should
always be equal to half the size of the array.

void MakeReportView(HWND hwndList, LPTSTR* psz, int iNumOfCols)
{
 RECT rc;
 DWORD dwStyle = GetWindowStyle(hwndList);
 SetWindowLong(hwndList, GWL_STYLE, dwStyle | LVS_REPORT);
 GetClientRect(hwndList, &rc);

Chapter 6

150

 // Handle pairs of entries. Array size is assumed to be 2 * iNumOfCols
 for(int i = 0 ; i < 2 * iNumOfCols ; i = i + 2)
 {
 LV_COLUMN lvc;
 ZeroMemory(&lvc, sizeof(LV_COLUMN));
 lvc.mask = LVCF_TEXT | LVCF_WIDTH;
 lvc.pszText = psz[i];
 if(reinterpret_cast<int>(psz[i + 1]) == 0)
 lvc.cx = rc.right / iNumOfCols;
 else
 lvc.cx = reinterpret_cast<int>(psz[i + 1]);

 ListView_InsertColumn(hwndList, i, &lvc);
 }
 return;
}

The companion routine for MakeReportView() is AddStringToReportView(), which adds a
new row to the specified list view. Due to the low-level programming interface, filling all the columns
of a report-style list view requires you to go through several steps. You should add the new item
specifying the text for the first column (the main one), and then iterate on the remaining columns to
set the text in those. All these steps are executed by AddStringToReportView(); you just pass a
null-separated string that contains all the necessary substrings, and indicate how many there are in
iNumOfCols.

void AddStringToReportView(HWND hwndList, LPTSTR psz, int iNumOfCols)
{
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_TEXT;
 lvi.pszText = psz;
 lvi.cchTextMax = lstrlen(psz);
 lvi.iItem = 0;
 ListView_InsertItem(hwndList, &lvi);

 // Other columns
 for(int i = 1 ; i < iNumOfCols ; i++)
 {
 psz += lstrlen(psz) + 1;
 ListView_SetItemText(hwndList, 0, i, psz);
 }
 return;
}

In this example, the list view will have three columns: Target, Description, and Hotkey. The first two
of these are straightforward, but the third makes use of a common control that you may not have used
before, so it's worth just a little more explanation.

The Shortest Path to Shortcuts

151

The Hotkey Common Control
Windows 95 introduced a new common control that lets you choose a key combination 'graphically'
(see the figure):

To use the control, you hit the key
combination you want, and it interprets the
code and converts it into text. Clearly, this
control is perfect for creating a more pleasant
user interface around shortcut creation.

When it comes to resolving shortcuts, on the other hand, all you have is the number (a WORD to be
precise) that gets returned by IShellLink::GetHotkey(). It's up to you to translate it into a well-
formed string.

The word that identifies a hotkey is split into two bytes. The high-order byte is the modifier (Alt, Ctrl,
Shift, or a combination of the three), while the low-order byte is the code of the key you hit. Note that
if you press A, for example, the code is 65 (upper case letter) and not 97 (lower case).

To arrange a HotkeyToString() routine, then, we just need to check the bits of the high byte
against some known constants. Here's another function to join the ranks of those that make up our
project:

void HotkeyToString(WORD wHotKey, LPTSTR pszBuf)
{
 BYTE bKey = LOBYTE(wHotKey);
 BYTE bMod = HIBYTE(wHotKey);

 if(bMod & HOTKEYF_CONTROL)
 lstrcpy(pszBuf, __TEXT("Ctrl"));

 if(bMod & HOTKEYF_SHIFT)
 if(lstrlen(pszBuf))
 lstrcat(pszBuf, __TEXT(" + Shift"));
 else
 lstrcpy(pszBuf, __TEXT("Shift"));

 if(bMod & HOTKEYF_ALT)
 if(lstrlen(pszBuf))
 lstrcat(pszBuf, __TEXT(" + Alt"));
 else
 lstrcpy(pszBuf, __TEXT("Alt"));

Chapter 6

152

 TCHAR s[2] = {0};
 wsprintf(s, __TEXT("%c"), bKey);
 if(lstrlen(pszBuf))
 {
 lstrcat(pszBuf, __TEXT(" + "));
 lstrcat(pszBuf, s);
 }
 else
 lstrcpy(pszBuf, s);
}

As input, the HotkeyToString() function takes the hotkey and a buffer to fill with the resulting
string. It checks the modifier and builds the first part of the string – say, Ctrl + Alt. Then, it completes
the job by concatenating the character of the key pressed – say, Ctrl + Alt + X. The next picture shows
how the application looks when it has resolved a shortcut:

Collecting Arguments for Creation
The portion of the dialog that provides shortcut creation wouldn't be noteworthy if it weren't for a
little subtlety. Open an existing shortcut (one of the ones you have on the desktop is fine) and try to
assign it a new hotkey. You'll find that in some cases, the hotkey control corrects the key you pressed.
Try it with A, and it will become Ctrl + Alt + A.

"Just a feature," you might say, but it's an important feature, because if you try to assign a hotkey that's
not in the form Ctrl + Alt + ... programmatically, the hotkey will never be recognized. If you think
about it for a moment, this behavior isn't that strange — Ctrl + Alt + ... shouldn't conflict with other
possible accelerators. However, it took me a considerable amount of time to figure out what was
wrong with the Alt + Z combination of my first few examples!

Giving Rules to the Hotkey
To instruct a hotkey control to replace some wrong or invalid key combination automatically, you
must use key rules. Despite the important-sounding name, this just reduces to sending a simple
message to the hotkey window.

The Shortest Path to Shortcuts

153

To force it to accept only Ctrl + Alt prefixed keys, you must:

SendMessage(hwndHotkey, HKM_SETRULES,
 HKCOMB_NONE | HKCOMB_S | HKCOMB_A | HKCOMB_C,
 HOTKEYF_CONTROL | HOTKEYF_ALT);

The 'rule' can be rephrased like this:

! Invalid key combinations are all those that have one of the modifiers listed in wParam
! Replace each invalid key combination with those specified in lParam

If your hotkey combination begins with
nothing (HKCOMB_NONE), Shift
(HKCOMB_S), Alt (HKCOMB_A) or Ctrl
(HKCOMB_C), then discard them and
replace with Ctrl + Alt. The following
picture shows the program when it's
about to create a shortcut:

The Source Code
Let's now have a look at the remaining source code for this chapter's sample program. To compile it
correctly, make sure that you include shlobj.h, resource.h and commdlg.h, and that you're
linking against comdlg32.lib and ole32.lib. Also, because we're using COM, you'll need to
bracket the call to DialogBox() in WinMain() with calls to CoInitialize(NULL) and
CoUninitialize().

DoCreateShortcut()
This function is invoked when the user clicks on the Create button. It collects parameters from the
other controls and arranges a call to SHCreateShortcutEx(). The combo box with the names of
some special folders uses the same technique as we employed in Chapter 5.

void DoCreateShortcut(HWND hDlg)
{
 SHORTCUTSTRUCT ss;
 ZeroMemory(&ss, sizeof(SHORTCUTSTRUCT));
 TCHAR szTarget[MAX_PATH] = {0};
 TCHAR szDesc[MAX_PATH] = {0};

Chapter 6

154

 // Get the hotkey
 ss.wHotKey = static_cast<WORD>(SendDlgItemMessage(
 hDlg, IDC_HOTKEY, HKM_GETHOTKEY, 0, 0));

 // Get target and description
 GetDlgItemText(hDlg, IDC_TARGET, szTarget, MAX_PATH);
 GetDlgItemText(hDlg, IDC_DESCRIPTION, szDesc, MAX_PATH);
 ss.pszTarget = szTarget;
 ss.pszDesc = szDesc;

 // Determine the shortcut file name
 // Get the target folder & final backslash
 HWND hwndCbo = GetDlgItem(hDlg, IDC_SPECIAL);
 int i = ComboBox_GetCurSel(hwndCbo);
 DWORD nFolder = ComboBox_GetItemData(hwndCbo, i);

 TCHAR szPath[MAX_PATH] = {0};
 SHGetSpecialFolderPath(hDlg, szPath, nFolder, FALSE);
 if(szPath[lstrlen(szPath) - 1] != '\\')
 lstrcat(szPath, __TEXT("\\"));

 TCHAR szLnkFile[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_LNKFILE, szLnkFile, MAX_PATH);
 lstrcat(szPath, szLnkFile);
 lstrcat(szPath, __TEXT(".lnk"));

 // Create
 SHCreateShortcutEx(szPath, &ss);

 // Update UI
 SetDlgItemText(hDlg, IDC_SHORTCUT, szPath);
 return;
}

DoResolveShortcut()
This function gets called in response to a click on the Resolve button, although it also takes an
additional parameter pszFile that can be used to denote the file to resolve. If this parameter is
NULL, then the function works on the file name specified in the Shortcut edit box. The reason for this
argument is that it makes it easier to resolve any files dropped onto the program's window.
DoResolveShortcut() first resolves the shortcut calling our SHResolveShortcut(), and then
updates the user interface of the program, adding a new row to the report list view.

void DoResolveShortcut(HWND hDlg, LPTSTR pszFile)
{
 TCHAR szLnkFile[MAX_PATH] = {0};
 if(pszFile == NULL)
 GetDlgItemText(hDlg, IDC_SHORTCUT, szLnkFile, MAX_PATH);
 else
 lstrcpy(szLnkFile, pszFile);

 // Resolve the shortcut
 SHORTCUTSTRUCT ss;
 HRESULT hr = SHResolveShortcut(szLnkFile, &ss);
 if(FAILED(hr))
 return;

The Shortest Path to Shortcuts

155

 //
// Update UI

 // Create the string for the listview
 TCHAR pszBuf[1024] = {0};
 LPTSTR psz = pszBuf;

 lstrcpy(psz, ss.pszTarget);
 lstrcat(psz, __TEXT("\0"));
 psz += lstrlen(psz) + 1;

 lstrcpy(psz, ss.pszDesc);
 lstrcat(psz, __TEXT("\0"));
 psz += lstrlen(psz) + 1;

 // Try to get the text version of the hotkey
 TCHAR szKey[30] = {0};
 HotkeyToString(ss.wHotKey, szKey);

 lstrcpy(psz, szKey);
 lstrcat(psz, __TEXT("\0"));

 // Add a new item to the report list view (3 columns)
 HWND hwndList = GetDlgItem(hDlg, IDC_VIEW);
 AddStringToReportView(hwndList, pszBuf, 3);
 return;
}

HandleFileDrop()
Called in response to WM_DROPFILES, this function defines what the program must do when the user
drops files on its client area. Accepted data must be of type CF_HDROP, which is the interchange
format used by the shell to move files around when you drag-and-drop files from the Explorer
window or from the desktop. Any window with the WS_EX_ACCEPTFILES style set (we discussed
this earlier), is sensitive only to drag-and-drop operations that involve data in this format. In other
words, our program will accept drag-and-drop only if the source is the Windows shell, or another
program that transfers data in the CF_HDROP format.

CF_HDROP is a clipboard format intended to exchange data items that are basically file names — you
can look at the Visual C++ help files for more information about clipboard formats and the internal
structure of CF_HDROP data. What's important for us is that there are a number of functions capable
of reading data held in this format, through a type of memory handle called an HDROP.

When you drop files from the shell, the target window receives a WM_DROPFILES message in which
one of the arguments is the HDROP handle. Our HandleFileDrop() function first checks the
window onto which the drop occurred, and if this window is the list view, then it proceeds with
extracting and resolving the various file names. You can drop any file onto the list view, but only
shortcuts are handled correctly.

void HandleFileDrop(HWND hDlg, HDROP hDrop)
{
 // Check the window being dropped on
 POINT pt;
 DragQueryPoint(hDrop, &pt);
 ClientToScreen(hDlg, &pt);
 HWND hwndDrop = WindowFromPoint(pt);

Chapter 6

156

 if(hwndDrop != GetDlgItem(hDlg, IDC_VIEW))
 {
 Msg(__TEXT("Sorry, you have to drop over the list view control!"));
 return;
 }

 // Now check the files
 int iNumOfFiles = DragQueryFile(hDrop, -1, NULL, 0);
 for(int i = 0 ; i < iNumOfFiles; i++)
 {
 TCHAR szFileName[MAX_PATH] = {0};
 DragQueryFile(hDrop, i, szFileName, MAX_PATH);
 DoResolveShortcut(hDlg, szFileName);
 }

 DragFinish(hDrop);
}

DragQueryPoint() lets you know the client coordinates of the point where the drop occurred,
while DragQueryFile() extracts all the files packed in the HDROP handle, one after another. You
can also use this function to discover how many files have been dropped. Finally, DragFinish()
must be called when you've finished with the HDROP handle.

APP_DlgProc()
This is the window procedure of the application's main window, and because there are few more than
we've had to deal with in previous examples, it's worth a look at the handlers that need to be added
to the AppWizard code:

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg);
 break;

 case WM_DROPFILES:
 HandleFileDrop(hDlg, reinterpret_cast<HDROP>(wParam));
 break;

 case WM_COMMAND:
 switch(wParam)
 {

 case IDC_RESOLVE:
 DoResolveShortcut(hDlg, NULL);
 return FALSE;

 case IDC_CREATE:
 DoCreateShortcut(hDlg);
 return FALSE;

 case IDC_BROWSE:
 OnBrowse(hDlg, IDC_SHORTCUT);
 return FALSE;

The Shortest Path to Shortcuts

157

 case IDC_BROWSETARGET:
 OnBrowse(hDlg, IDC_TARGET);
 return FALSE;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;
 }

 return FALSE;
}

OnInitDialog()
There are a few more things to be initialized on the dialog in this project, as well. While dealing with
the combo box should be a familiar process by now, we also need to set up the list view control, and
to program the hotkey control to use the Ctrl + Alt + ... form:

void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 // Initialize the report view
 HWND hwndList = GetDlgItem(hDlg, IDC_VIEW);
 LPTSTR psz[] = {"Target", reinterpret_cast<TCHAR*>(170),
 "Description", reinterpret_cast<TCHAR*>(170),
 "Hotkey", reinterpret_cast<TCHAR*>(100)};
 MakeReportView(hwndList, psz, 3);

 // Special folders available
 HWND hwndCbo = GetDlgItem(hDlg, IDC_SPECIAL);
 int i = ComboBox_AddString(hwndCbo, "Desktop");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_DESKTOP);
 i = ComboBox_AddString(hwndCbo, "Favorites");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_FAVORITES);
 i = ComboBox_AddString(hwndCbo, "Programs");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_PROGRAMS);
 i = ComboBox_AddString(hwndCbo, "My Documents");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_PERSONAL);
 i = ComboBox_AddString(hwndCbo, "SendTo");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_SENDTO);
 i = ComboBox_AddString(hwndCbo, "Start Menu");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_STARTMENU);
 ComboBox_SetCurSel(hwndCbo, 0);

 // Initialize the hotkey control to prefix everything with Ctrl + Alt
 SendDlgItemMessage(hDlg, IDC_HOTKEY, HKM_SETRULES,
 HKCOMB_NONE | HKCOMB_S | HKCOMB_A | HKCOMB_C,
 HOTKEYF_CONTROL | HOTKEYF_ALT);

 SetDlgItemText(hDlg, IDC_TARGET, __TEXT("C:\\"));

}

Chapter 6

158

Creating Shortcuts in System Folders
The sample program, which you should now be able to compile and run, makes it easy to create
shortcuts in system folders — all you have to do is choose a folder name from a combo box and press
a button. If you need to do this silently from within one of your own programs, then once you know
which folder you're dealing with, all that remains is to format a string with the full path name.

Here's a simple function that does exactly this. As arguments, it takes the name of the .lnk file to be
created, the ID of the special folder (one of the CSIDL_XXX constants you saw earlier), and the name
of the file being pointed to. The code is an evolution of the SHCreateShortcutEx() function that
I presented above.

HRESULT SHCreateSystemShortcut(LPCTSTR szLnkFile, int nFolder, LPCTSTR szFile)

{
 WCHAR wszLnkFile[MAX_PATH] = {0};

 TCHAR szPath[MAX_PATH] = {0};

 IShellLink* pShellLink = NULL;
 IPersistFile* pPF = NULL;

 // Create the proper COM server
 HRESULT hr = CoCreateInstance(CLSID_ShellLink, NULL,
 CLSCTX_INPROC_SERVER, IID_IShellLink,
 reinterpret_cast<LPVOID*>(&pShellLink));
 if(FAILED(hr))
 return hr;

 // Set attributes
 pShellLink->SetPath(szFile);

 // Get the IPersistFile interface to save
 hr = pShellLink->QueryInterface(
 IID_IPersistFile, reinterpret_cast<LPVOID*>(&pPF));
 if(FAILED(hr))
 {
 pShellLink->Release();
 return hr;
 }

 // Prepare the name of the shortcut
 SHGetSpecialFolderPath(NULL, szPath, nFolder, FALSE);
 if(szPath[lstrlen(szPath) - 1] != '\\')
 lstrcat(szPath, __TEXT("\\"));
 lstrcat(szPath, szLnkFile);

 // Save to a LNK file (Unicode name)

 MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, szPath, -1, wszLnkFile, MAX_PATH);

 hr = pPF->Save(wszLnkFile, TRUE);

 // Clean up
 pPF->Release();
 pShellLink->Release();
 return hr;
}

The Shortest Path to Shortcuts

159

With the help of the above function, creating shortcuts on the Desktop, in the Start menu, in
Program Files, or in Favorites is really easy. To prove it, the code needed to add a new item in
the Start menu that points to Notepad is now just:

SHCreateSystemShortcut(
 __TEXT("Notepad.lnk"), CSIDL_STARTMENU, __TEXT("c:\\windows\\notepad.exe"));

Obviously, the c:\windows\ path should be replaced with the actual path to your own Windows
directory. Also notice that under NT, notepad.exe is stored in the System directory.

You can create shortcuts to directories and non-executable files as well. In fact, to refer to any file
system object, just pass the path to IShellLink::SetPath(), or call
IShellLink::SetIDList() passing the PIDL.

The SendTo Folder
The SendTo folder isn't as notable for shortcuts as it is for a couple of non-shortcut objects it hosts. If
you install Internet Explorer 4.0 on Windows 95 or Windows NT 4.0, or if you have Windows 98,
then it's likely that your SendTo folder will contain references to a mail recipient and to the desktop.
Using this mechanism, you can send a given file directly from the shell to your outbox as attachment
in a new message, or as a shortcut to the desktop.

The screenshot shows a couple of items that don't have the typical overlaid arrow. What are they?
Well, Desktop as Shortcut is an empty .DeskLink file with a length of 0 bytes. If you search the
registry for this extension, you'll find that there's a COM object behind it.

Knowing that it's a COM object is great news, but what kind of COM object? What interfaces does it
implement? In fact, it's a shell extension; more precisely, it's a drop handler. We'll cover shell
extensions in Chapter 15; for now, this just demonstrates that the SendTo folder doesn't only host
shortcuts. The .DeskLink extension is purely indicative, and could have been any other string.

Chapter 6

160

The Recent Folder
The Recent folder collects recently opened documents. The contents of this directory can be
verified by clicking on the Documents item in the Start menu, and its physical location is under the
Windows directory. Curiously, however, there isn't a 1:1 correspondence between the shortcuts it
contains and the items displayed through the menu.

The shell API exposes a function called SHAddToRecentDocs() solely for the purpose of letting
programmers store links to their documents in this folder.

void SHAddToRecentDocs(UINT uFlags, LPCVOID pv);

The first argument qualifies the type of the second: PIDL or pointer to path name. Accordingly, it can
take the value SHARD_PATH or SHARD_PIDL. If you use this function, you'll succeed in adding a
reference to your document in the menu. The same isn't true if you simply create a new shortcut in
the folder — in other words, creating a shortcut is necessary but not sufficient.
SHAddToRecentDocs() is clearly doing something more.

Ultimately, SHAddToRecentDocs() adds the item to the global MRU (Most Recently Used) list that
the Start menu uses; simply adding the file to the Recent folder, on the other hand, does not. The
function also handles duplicate shortcuts in the folder, and deals with the ordering of the menu for
you. For all these reasons, you should stick to using SHAddToRecentDocs() in case the method of
implementation changes at some point in the future.

Summary
This chapter covered shortcuts, a primary topic for any book or article that attempts to discuss the
Windows shell. Shortcuts are relatively simple and quick to write, but there is no single function to
create and resolve them. In this chapter, we discussed and then did just this, and also looked at:

! The role of shortcuts
! How to create and resolve them
! Some useful functions to work with shortcuts
! Drag-and-drop and hotkey controls (albeit briefly)
! The relationship between shortcuts and system folders

Further Reading
The lack of a direct function for creating or resolving shortcuts has originated many articles.
Although Windows 98 provides some COM facilities to create shortcuts programmatically, the lack of
an equivalent API function is arguably an oversight.

In this chapter, I've presented functions for creating and resolving shortcuts. Another function to
create shortcuts was presented by Ron Burk, in the December 1996 issue of WDJ. More recently, a
short piece on shortcut dereferencing, written by Bret Pehrson, appeared in the April 98 edition of
WDJ.

Shell Invaders

Like any other Win32 process, the shell has its own memory address space that is completely
unknown to other applications. To enter this space, we have to pass a number of control points, as if
we were crossing the frontier of a country. What's interesting in the land of the Windows shell? Is it a
kind of Garden of Eden? Are there rich gold mines? Or is it a fiscal paradise? Unfortunately, it's none
of these things. Getting inside the shell simply enables our code to carry out tasks that are impossible
to perform from outside. By injecting code into the memory address of a Win32 process, we are able
to control the behavior of that program. We can filter its events, have a look at the flow of messages,
and even force it to do (or not to do) certain actions.

To get this result, we can take a number of different roads. There's the brute-force approach that
exploits some Windows features (or weaknesses) to enter another process's address space and subclass
windows. There are programs that explicitly allow external modules to be hosted and work together.
In this case, what we have to do is write a module (usually a COM in-process server) with the
required interface, and register it wherever the host module requires.

A third road, however, leaves each process running in its own space, but establishes a 'channel'
through which they can communicate. You can imagine a situation in which one program legitimately
does something that can affect the behavior of another one — or rather, one program could do
something that another program should be aware of. In this case, an underlying channel that links the
modules is useful — it's something like this that allows Explorer to know about any changes you might
have made to files or folders.

Chapter 7

164

In this chapter, you'll be seeing examples of the three models listed above in practice. I'm going to
show you:

! How the shell detects changes in the file system
! How you can notify the shell of your events
! How to get into the shell's address space
! How to subclass Explorer's window
! As a consequence of all this, how to alter the behavior of the Start button

Along the way, I'll be emphasizing the use of two basic Win32 software components: hooks and
notification objects. They are part of the hidden machinery in many of the scenarios we'll be
examining.

Notifying the Shell of Events
You will certainly have noticed that Explorer is very quick at detecting any changes in the file
system. Periodically, it refreshes the current view and reflects any changes that other applications
may have caused. For example, if you open a DOS window and an Explorer window, select the same
directory in both, and then create a directory in the former, the latter will be updated without
intervention shortly afterwards.

It seems that something is telling Explorer that a new folder has been created. Under the hood, the
levers making all this possible are notification objects.

Notification Objects
A notification object is a kernel object that you can synchronize your threads on. The idea is that you
create such an object and assign to it some properties that configure an event. Then, you block your
threads on it, waiting for the event to occur. If you like, you can think of notification objects as highly
specialized events that automatically get signaled when they detect a change in the file system.

By means of a notification object, you can put a directory, a sub-tree, or even a whole drive under
control and watch for several events that relate to files and folders — creation, renaming, deletion,
attribute changes, and so on.

Using Notification Objects
The Win32 SDK defines three functions to work with notification objects. They are:

! FindFirstChangeNotification()
! FindNextChangeNotification()
! FindCloseChangeNotification()

Despite the misleading name, the first function creates a new change notification object, while the last
one deletes it. Curiously, you don't have to use CloseHandle() to release a notification object, as
you would do with all the other kernel objects.

As stated earlier, behind a notification object lies one of the standard Win32 synchronization objects,
but it has been specialized by adding specific behavior that takes care of file system changes. Behind
the façade, the FindFirstChangeNotification() and FindNextChangeNotification()
functions have the secret task of toggling the signaled state of this hidden kernel object.

Shell Invaders

165

When it first gets created by a call to FindFirstChangeNotification(), the object is in a non-
signaled state. When it detects an action that meets its filter condition, the state changes to signal any
waiting thread. To continue looking for events, it must be explicitly reset to the initial state, which is
what FindNextChangeNotification() does. Let's have a closer look at the details of the
prototypes.

Synchronization objects include mutexes, semaphores, events and critical sections, amongst others,
and are fully described in the Visual C++ help files. They have different behaviors, but
essentially they are all used to stop and then resume thread execution in order to synchronize
actions. From a high-level perspective, you can look at them as control points that a thread
encounters during execution.

There are two states that synchronization objects can be in: signaled and non-signaled. The
thread is stopped when the object is non-signaled, and resumes when the state is toggled to
signaled.

Creation Parameters
The FindFirstChangeNotification() function is declared as follows:

HANDLE FindFirstChangeNotification(LPCTSTR lpPathName,
 BOOL bWatchSubtree,
 DWORD dwNotifyFilter);

lpPathName is a pointer to a buffer containing the name of the directory to watch. The Boolean
value bWatchSubtree is quite self-explanatory and specifies whether or not the path should include
the sub-tree below it. More interestingly, dwNotifyFilter lets you set the criteria that will actually
trigger a change notification; by combining the flags available for dwNotifyFilter, you can decide
which types of file system events you want to monitor. The flags available are:

Flag Description

FILE_NOTIFY_CHANGE_FILE
_NAME

A file has been created, deleted, or removed.

FILE_NOTIFY_CHANGE_DIR
_NAME

A folder has been created, deleted, or removed.

FILE_NOTIFY_CHANGE
_ATTRIBUTES

Any attribute for a file or folder has changed.

FILE_NOTIFY_CHANGE_SIZE The size of a file or folder has changed. This is detected
only when any caches have been flushed to disk.

FILE_NOTIFY_CHANGE_LAST
_WRITE

The time of last writing for a file or folder changed. This
is detected only when any caches have been flushed to
disk.

FILE_NOTIFY_CHANGE
_SECURITY

Any security descriptor for a file or folder changed.

Chapter 7

166

Obviously, these events must occur within the watched path. For example, if you issued a call like
this:

HANDLE hNotify = FindFirstChangeNotification(__TEXT("c:\\"), TRUE,
 FILE_NOTIFY_CHANGE_FILE_NAME | FILE_NOTIFY_CHANGE_DIR_NAME |
 FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE);

Any new file created on the C drive will awaken a thread waiting on the notification object. If you
specify FALSE as the second argument, then only changes in the root directory of drive C will be
detected.

Calling FindFirstChangeNotification() causes the returned object to be in a non-signaled
state, meaning that a thread required to synchronize with that object will be stopped.

Watching Directories
Now that you know how to create a change notification object, another question arises: is this
sufficient to do a bit of directory watching? Actually, it's not. As with any other watching activity you
may practice, directory watching requires a bit of patience. Above all, you must be ready to catch the
event at any time. In software terms this means that you need to set up some kind of loop in your
code. Each time you've dealt with one event, you must promptly notify that you're ready for another
one to occur, or for any event that has occurred in the meantime.
FindNextChangeNotification() is the function to use.

BOOL FindNextChangeNotification(HANDLE hChangeHandle);

The following is a code snippet, taken from the sample application that I'll create shortly, which
shows a typical way of using it.

// Note that the Boolean guard is actually set outside this thread.
// This code snippet, in fact, is pulled from a worker thread.
while(g_bContinue)
{
 // Wait for the change to occur
 WaitForSingleObject(hNotify, INFINITE);

 // A change has occurred, so notify the main window of the fact.
 // This gives us a chance to refresh the UI of the program.
 // WM_EX_XXX is a custom message defined by the application for internal use.
 PostMessage(ci.hWnd, WM_EX_CHANGENOTIFICATION, 0, 0);

 // Get ready for the next change to arrive
 FindNextChangeNotification(hNotify);

 // NB:
 // At this point the underlying synchronization object wrapped by hNotify, is
 // non-signaled, so when this thread executes WaitForSingleObject() again,
 // it will be stopped until a new change occurs and makes the state signaled.
}

As you can see, there is no event inside the loop that can cause the loop to terminate. The Boolean
guard g_bContinue is a global variable set outside the thread executing the above code. In other
words, this code fragment implies the presence of two threads: the main application's thread, and a
worker thread to deal with the notification object (I'll say more on this shortly).

Shell Invaders

167

Since this code is supposed to execute after a call to FindFirstChangeNotification(), the
thread executing the fragment above will stop on the call to WaitForSingleObject() because the
object will be non-signaled. When an event that satisfies the hNotify notification object occurs, the
status of the object changes so that it becomes signaled. Consequently, the thread continues and posts
a custom message to a specified window to give it a chance to refresh the user interface, or do further
processing. Then, it stops again for a new event. After the call to
FindNextChangeNotification(), the status of the synchronization object whose handle is
contained in hNotify is changed to non-signaled.

When dealing with notification objects, it's advisable that you isolate all the code that will wait for an
event in a separate worker thread. This is to avoid your main program blocking indefinitely. If you
don't want a multithreaded application, you should resort to MsgWaitForMultipleObjects()
instead of WaitForSingleObject() and wait for either a message or an event.

It's quite possible to set multiple notification objects at the same time. For example, you might want
to run separate watches on different directories in the same or different drives. If you need to do so,
WaitForMultipleObjects() can help you to synchronize all the notification objects together.

Stopping Watching
To release a notification object, you must call FindCloseChangeNotification(). The single
argument you pass should be the handle previously created by
FindFirstChangeNotification():

BOOL FindCloseChangeNotification(HANDLE hChangeHandle);

Putting it all Together
Let's see a sample application that should give you an idea of what Explorer is doing behind the
scenes. The program lets you choose a path and creates a notification object that watches the whole
sub-tree. All the change notification handling is done in a separate thread. Each time an event is
detected, the application's main window is posted a message. For the purposes of this demonstration,
we don't need to do much more than simply add a line containing the current time to a report list
view. In a real-world scenario you might want to do rather more, although as I'll show you in a while,
you can't actually do that much under Windows 9x anyway.

The worker thread receives the path to
watch and the handle of the window to
which it should send messages through
a user-defined structure. The program's
user interface is shown in the figure; as
ever, it's the front-end of an application
generated with the Wrox AppWizard —
I called mine Notify.

Chapter 7

168

When you click the button, a notification object is installed with the same attributes as in the sample
call above: FILE_NOTIFY_CHANGE_FILE_NAME, FILE_NOTIFY_CHANGE_DIR_NAME,
FILE_NOTIFY_CHANGE_ATTRIBUTES and FILE_NOTIFY_CHANGE_SIZE. Here's the code you
need to add to the skeleton provided, starting with the 'global' section:

// Data
HICON g_hIconLarge;
HICON g_hIconSmall;
bool g_bContinue; // Should be set to false in WinMain()
const int WM_EX_CHANGENOTIFICATION = WM_APP + 1;

// Custom data to be passed to the thread
struct CUSTOMINFO
{
 HWND hWnd;
 TCHAR pszDir[MAX_PATH];
};

typedef CUSTOMINFO* LPCUSTOMINFO;

In the code above, I've explicitly declared the WM_EX_CHANGENOTIFICATION message as a
constant. In general, when defining constants to be used as Windows messages you should use
RegisterWindowMessage() to make sure that the number is unique throughout the system.
However, in the context of a single application, if you're not broadcasting the message, using an
explicit constant based on WM_APP is safe. WM_APP is the base constant from which custom messages
must be generated so they don't clash with Windows messages. As you can see, the only risk is a
conflict with custom messages from other applications, and that can't occur in this example.

There's a new handler to add to APP_DlgProc() that will be invoked when the notification object
detects a change. You also need to make a small change to the IDCANCEL handler to terminate the
new thread on shutdown:

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg);
 break;

 case WM_EX_CHANGENOTIFICATION:
 UpdateView(hDlg);
 break;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDOK:
 OnOK(hDlg);
 return FALSE;

 case IDCANCEL:
 g_bContinue = false;
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

Shell Invaders

169

 }
 return FALSE;
}

Next, the handler for the Install Notification Object button, which is still called OnOK() because I
didn't change its ID, only the label for the button!

void OnOK(HWND hDlg)
{
 TCHAR szDir[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_EDIT, szDir, MAX_PATH);
 SHInstallNotifier(hDlg, szDir);
}

OnOK() calls SHInstallNotifier(), a function that creates a CUSTOMINFO object and passes it
to a thread function called Notify():

HANDLE SHInstallNotifier(HWND hwndParent, LPCTSTR pszDir)
{
 DWORD dwID = 0;

 CUSTOMINFO ci;
 ZeroMemory(&ci, sizeof(CUSTOMINFO));
 ci.hWnd = hwndParent;
 lstrcpy(ci.pszDir, pszDir);

 // Create a new worker thread
 g_bContinue = true;
 HANDLE hThread = CreateThread(NULL, 0, Notify, &ci, 0, &dwID);

 return hThread;
}

Notify() itself is where the calls to FindXXXChangeNotification() are made, and is the
location of the loop that keeps its eye on the directory tree you've specified:

DWORD WINAPI Notify(LPVOID lpv)
{
 CUSTOMINFO ci;
 ci.hWnd = static_cast<LPCUSTOMINFO>(lpv)->hWnd;
 lstrcpy(ci.pszDir, static_cast<LPCUSTOMINFO>(lpv)->pszDir);

 HANDLE hNotify = FindFirstChangeNotification(ci.pszDir, TRUE,
 FILE_NOTIFY_CHANGE_FILE_NAME | FILE_NOTIFY_CHANGE_DIR_NAME |
 FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE);
 if(hNotify == INVALID_HANDLE_VALUE)
 {
 SPB_SystemMessage(GetLastError());
 return 0;
 }

 while(g_bContinue)
 {
 WaitForSingleObject(hNotify, INFINITE);
 PostMessage(ci.hWnd, WM_EX_CHANGENOTIFICATION, 0, 0);
 FindNextChangeNotification(hNotify);
 }

Chapter 7

170

 FindCloseChangeNotification(hNotify);
 return 1;
}

When the event becomes signaled, a message of type WM_EX_CHANGENOTIFICATION is sent,
resulting in a call to UpdateView():

void UpdateView(HWND hDlg)
{
 TCHAR szTime[100] = {0};

 HWND hwndList = GetDlgItem(hDlg,IDC_LIST);
 GetTimeFormat(LOCALE_SYSTEM_DEFAULT, 0, NULL, NULL, szTime, 100);
 AddStringToReportView(hwndList, szTime, 1);
}

You can see that this code uses the AddStringToReportView() function that we developed in the
last chapter to send strings to a report view. Its partner function, MakeReportView() (also
developed in the previous chapter), is called in OnInitDialog() to set up the report view in the
first place:

void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 LPTSTR psz[] = {__TEXT("Date and Time"), reinterpret_cast<LPTSTR>(400)};
 MakeReportView(GetDlgItem(hDlg, IDC_LIST), psz, 1);
}

Add a #include for resource.h to the top of the source file, and build the application When you
run it, you'll notice that if you copy a file, you get two notifications. You get three notifications for
each deletion. If you remove all the flags except FILE_NOTIFY_CHANGE_FILE_NAME, and repeat
the copy, you'll find that the number of notifications is reduced to 1, since we are no longer interested
in attribute or size changes. Curiously, though, there are still two notifications when you delete a file.

To see why this is, try deleting a file while holding down the Shift key — you'll find that there is now
just one notification. The difference is that deleting a file in this fashion destroys the file without
saving it in the Recycle Bin, thus eliminating the file copy step from the normal, two step, 'copy-to-
Recycle-Bin-and-then-delete' action. Simply deleting the file results in a single notification when the
file is actually deleted.

Explorer and Notification Objects
Explorer behaves in roughly the same way as the application I've just created: it sets a notification
object on the folder currently being displayed. Each time it receives a notification that something has
changed, it reloads the folder content to reflect those changes. If you think it over for a while, you'll
realize that the mechanism of the notification objects seems to be tailored precisely to the needs of
Explorer.

Shell Invaders

171

Explorer is not a file system monitoring utility; it needs to know whether something in the folder
currently being viewed has changed, in case that change affects the displayed data: file and sub-folder
names, attributes, sizes, dates, security, etc. Whatever the exact operation, what matters is that
something has occurred. This seems to be a good compromise between the performance concerns of
Explorer and those of the system itself.

Towards a File System Monitoring Utility
As we have seen, the greatest drawback of notification objects is the poor information they provide
about the event that actually occurred. A notification object is like a bell that's connected to a burglar
alarm and a fire alarm: when it rings, you don't know whether your house is being robbed, burned
down, or both! This restriction makes it difficult (if not impossible) to exploit this feature to create,
say, a file system monitoring utility to let us know which files are being manipulated by programs
throughout the system.

Later in the book, I'll consider a different approach to the same problem, which makes use of the
ICopyHook shell extension. I can say in advance, though, that this will still leave us some distance
from that ultimate objective, even if it is a significant step towards it.

What about Windows NT?
So far, I haven't said anything about different operating systems. You might have been led to think
that there are no significant differences between Windows 95, Windows 98, and Windows NT 4.0, but
in fact what we just wished for is a reality under Windows NT 4.0 and higher. The Win32 SDK for
Windows NT exports and documents a function called ReadDirectoryChangesW() that has a
prototype similar to FindFirstChangeNotification(), but with one big difference: it fills a
buffer with specific information about the action that took place, and the actors involved.

More information about ReadDirectoryChangesW(), and about notification objects in
general, can be found in Jeff Richter's excellent book, Advanced Windows. (See the Further
Reading section.)

SHChangeNotify()
When things about the system change, Explorer can detect some of them itself (changes to files in
particular), but must be told explicitly about changes carried out by programs.

To make this easy, the shell API defines a function called SHChangeNotify(). Its only purpose in
life is to notify Explorer that some system setting has been modified. Conceptually,
SHChangeNotify() produces the same effect as notification objects, but it follows a different logic.
In this case, an external application notifies Explorer of some changes it has made. In response to
such notifications, Explorer will refresh its user interface. This is a clear example of what I referred to
earlier as a 'channel' between applications and the shell.

Calling SHChangeNotify()
The function is defined in shlobj.h with the following prototype:

void WINAPI SHChangeNotify(LONG wEventId,
 UINT uFlags,
 LPCVOID dwItem1,
 LPCVOID dwItem2);

Chapter 7

172

The wEventId parameter specifies an event of which the system should be notified. It takes one or
more of a collection of possible values, the most frequently used of which are listed below:

Event Description

SHCNE_ASSOCCHANGED A file type association has changed; which one is not
specified.

SHCNE_NETSHARE A local folder is being shared via the network. This causes an
icon change. dwItem1 should contain the folder name. A
folder name can be either a fully qualified path name or
PIDL. (See below.)

SHCNE_NETUNSHARE A local folder is no longer shared. This causes an icon
change. dwItem1 should contain the folder name (a fully
qualified path name or PIDL).

SHCNE_SERVERDISCONNECT The PC has been disconnected from a server. dwItem1
should contain the name of that server.

SHCNE_UPDATEDIR The content of a given folder has changed, but the changes
don't affect the file system. dwItem1 should contain the
folder name (a full path name or a PIDL).

SHCNE_UPDATEIMAGE An icon in the system image list has changed. dwItem1
should contain the index of the icon. This causes Explorer to
refresh the user interface to draw the new icon where needed.
All the icons used by Explorer are stored in a global structure
referred to as the 'system image list' or the 'Explorer internal
icon cache'. I showed how to get the handle of this image list
in Chapter 4.

SHCNE_UPDATEITEM A non-folder item has changed. dwItem1 should contain the
full file name or the PIDL.

This list of events is not complete, and I'll cover the remaining flags later on. For the complete list of
flags right now, you can refer to the MSDN library.

The other three parameters to SHChangeNotify() are affected by the event identifier specified by
the wEventId argument. The dwItem1 and dwItem2 variables contain event-dependent values.
The uFlags parameter is used to denote the type of dwItem1 and dwItem2. It can indicate a DWORD
number (SHCNF_DWORD), a PIDL (SHCNF_IDLIST), a string (SHNCF_PATH) or a printer name
(SHCNF_PRINTER). In addition, uFlags can indicate whether the function should wait for the
notification to be handled completely. SHCNF_FLUSH is the constant to use if you want to wait;
SHCNF_FLUSHNOWAIT, on the other hand, causes the function to return immediately.

The Role of SHChangeNotify()
What does SHChangeNotify() do that makes it complementary to notification objects? Put another
way, when do you absolutely need to use SHChangeNotify()? Basically, this function attempts to
provide the same functionality as notification objects (although it follows a different logic), but it isn't
restricted only to file system objects.

Shell Invaders

173

As we saw in Chapter 5, the Windows shell is composed of file objects, and while most of them map
to a physical entity in the file system, that isn't always the case. File objects such as My Computer
and Printers don't have a corresponding directory. Furthermore, even if you have folders linked to
a directory, the items that they contain are not necessarily files. This means that you can add new
items to (or delete items from) such a folder without any impact on the file system. In this scenario,
how can Explorer detect the changes?

There are deeper aspects to this question. Is it plausible to plan a software module that is capable of
monitoring this whole range of possible actions? As we'll see later in this book, a namespace
extension can be used to display pretty much anything through a folder-style interface. The Internet
Client SDK, for example, comes with a sample called RegView that adds a new node to Explorer's
hierarchy, just like an ordinary folder. The one little peculiarity is that what it 'contains' is the
contents of the system registry, which is really just a file or two! How could Explorer, or indeed any
other tool, detect changes here? You could write a piece of software to hook for registry activity, but
what if someone replaces RegView with another namespace extension that does completely different
things?

Once we've gone beyond the context of the traditional file system, we need to change the way in
which notification occurs. It's no longer a matter of Explorer detecting changes itself, but of
applications sending notifications. This is the scenario into which SHChangeNotify() fits.

Some of the events defined for use in calls to SHChangeNotify() may appear redundant. For
example, an event like SHCNE_CREATE might seem useless — it indicates that a new file has been
created, but Explorer already knows about that, thanks to notification objects. However, if the item is
not a file system object, you absolutely must call SHChangeNotify() to let Explorer know about
this change:

SHChangeNotify(SHCNE_CREATE, SHCNF_IDLIST, pidl, NULL);

SHChangeNotify()'s Other Events
The rationale for SHChangeNotify() now a little clearer, it's time to make amends for the earlier
omissions. Here all the other events you can pass as the wEventId argument of the function:

Event Description

SHCNE_ATTRIBUTES Attributes of a file or folder changed. dwItem1 is the file or
folder name (a fully qualified path name or PIDL).

SHCNE_CREATE A file object has been created. dwItem1 is the name of the file
object.

SHCNE_DELETE A file object has been deleted. dwItem1 is the name of the file
object.

SHCNE_DRIVEADD A drive has been added. dwItem1 is the root of the drive in the
form C:\.

SHCNE_DRIVEADDGUI A drive has been added and a new window is needed. dwItem1
is the root of the drive in the form C:\.

Table Continued on Following Page

Chapter 7

174

Event Description

SHCNE_DRIVEREMOVED A drive has been removed. dwItem1 is the root of the drive.

SHCNE_FREESPACE The amount of free space on a drive changed. dwItem1 is the
root of the drive in the form C:\.

SHCNE_MEDIAINSERTED Storage media has been inserted into a drive. dwItem1 is the
root of the drive in the form C:\.

SHCNE_MEDIAREMOVED Storage media has been removed from a drive. dwItem1 is the
root of the drive in the form C:\.

SHCNE_MKDIR A folder has been created. dwItem1 is the name of the file
object.

SHCNE_RENAMEFOLDER A folder has been renamed. dwItem1 is the old name and
dwItem2 is the new one. These names can be either fully
qualified path names or PIDLs.

SHCNE_RENAMEITEM A file object has been renamed. dwItem1 is the old name and
dwItem2 is the new one.

SHCNE_RMDIR A file object has been deleted. dwItem1 is the name of the file
object.

Using SHChangeNotify()
SHChangeNotify() will be very useful when we begin writing namespace extensions, because it
lets you hide from Explorer the fact that an item or a folder might not be a real file system object. In
Chapter 16, I'll be developing a namespace extension that presents information about the windows
currently in existence on the system as if the windows themselves are the contents of a folder. By
combining that extension with, say, a global hook module that detects whenever a new window is
created and calls SHChangeNotify() with the SHCNE_CREATE flag, we will also be able to have
Explorer regularly refreshing the contents of our custom folder.

I'm not going to cover Windows hooks here, though I mentioned them in Chapter 2. You might
want to refer to the MSDN library for more information.

Ordinary applications, on the other hand, rarely need to exploit the services of
SHChangeNotify(). An example, though, might be a program that dynamically changes a file type
association — that is, it changes the program that's used to handle documents of a particular kind. This
information is stored in the registry at the following location:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Extensions

Shell Invaders

175

To inform Explorer of the update, you could call:

SHChangeNotify(SHCNE_ASSOCCHANGED, 0, NULL, NULL);

Invading the Shell's Memory Space
If you're a seasoned Win32 programmer, you'll be well aware that every process runs in its own
address space, and that a memory address has a consistent value only within the space in which it
originates. This means, for example, that you can't subclass a window created by another process
because the address of your new window procedure could be pointing absolutely anywhere if you
look at it from another address space. In fact, attempting this kind of thing is prevented by
SetWindowLong(), which returns zero instead of working if you try it.

It requires a few steps, but having your code programmatically mapped into another application's
process space is definitely possible. Microsoft discourages the practice because the potential for
making errors is higher than it is for other, more common programming techniques, but accessing
another application's address space is safe, provided that you know what you're doing and — above all
— what you have to do! There's nothing prohibited or intrinsically dangerous about breaking process
boundaries. It's just like working with pointers — they can introduce bugs if you handle them badly.

The shell is just another Win32 process, and you can invade its memory space in the same way you
would do with, say, Notepad. (I don't know why, but the unfortunate victim of the foulest
experiments in software genetic manipulation always seems to be Notepad!)

Why do we need to invade the shell? The reasons are the same ones that can lead you to enter any
other Win32 or Win16 process: the need to alter (or just filter) the behavior of a program. Have you
ever noticed that the copy of Notepad that ships with Windows NT 4.0 has the capability to maintain
some settings across sessions? If you run it and check the 'word wrap' mode, the setting is made
persistent and restored each time you launch it. If you plan to realize something like this under
Windows 95 or Windows 98, you have to customize the standard behavior of Notepad. In other
words, you need to invade its address space with your code.

In the remainder of this chapter, I'll show you three ways to get into Explorer's address space. The
first one relies on traditional SDK techniques such as hooks and subclassing. The second exploits a
little-known shell API function called SHLoadInProc(). Both these techniques work under all
Win32 platforms, except Windows CE. The third option is available only with version 4.71 (or
higher) of the shell, and exploits a feature that Explorer shares with Internet Explorer: browser
helper objects.

The Brute Force Approach
I started to think about subclassing the Explorer window when I realized that there was no way to
create folders other than by going through a couple of menus. Because I don't believe I'm the only
person on Earth not to have found a magical key combination, I endeavored to add a keyboard
accelerator that creates a new folder on the fly. Even in Knowledge Base article Q126449, which
contains the list of keyboard shortcuts for Windows, there's no mention of new folders.

I don't know about you, but I find all that work rather frustrating: right clicking (or clicking the File
menu), then selecting a couple of items, and finally clicking again.

Chapter 7

176

I decided to do something about it. My strategy was to develop a little application to put in the
StartUp folder, which installs a system-wide hook for keeping track of the creation of windows
belonging to a certain class. The class in question is that of the Explorer window, ExploreWClass.

In case you're wondering, I found the name of the class by snooping around the stack of existing
windows with Spy++.

Once I've obtained the handle to Explorer's window, I can install a keyboard hook on the specific
thread that created that window. This second hook is responsible for catching keyboard activity, and
creating a folder when a key combination meets the allotted criteria. The task can be split into two
parts:

! Getting inside Explorer
! Creating a folder in the same way as Explorer does

In Win32, there aren't many ways to have your own code mapped into another process's address
space. If you want your code to work unchanged on both Windows 9x and Windows NT, then you
have just one possibility: system-wide hooks.

Why Hooks?
Even if your eventual goal is not to hook but simply to subclass a window, if the window belongs to
another process, you must install a hook before you do your subclassing work. Regardless of the hook
you use, what matters is that it applies to all the threads in the system.

As mentioned in Chapter 2, where I briefly introduced the concept, using a hook means that you
specify a callback function that the system will invoke when a certain event, relevant to the hook,
occurs. If you want to watch all the threads across all running processes, your function must
necessarily reside in a DLL, because the system needs to map it into those processes.

Getting inside Explorer
The utility I have in mind will look for a window (specifically, an Explorer window) being created. A
hook procedure of type WH_CBT, which is triggered when the system is about to perform any action
on a window (creation, deletion, activation, and so on), therefore needs to be installed at program
startup:

g_hShellHook = SetWindowsHookEx(WH_CBT, ShellDll_MainHook, g_hThisDll, 0);

The hook must be removed before exiting:

if(g_hShellHook != NULL)
 UnhookWindowsHookEx(g_hShellHook);

Obviously, there's a concern that having a hook throughout the system may affect its performance.
Any system-wide hook will affect performance simply because it exists! It causes the system to do
additional work, and this undoubtedly introduces a proportional reduction in performance. For this
reason, it's highly recommended that you keep system-wide hooks as small as possible. Mine is a
minimal one, and this greatly reduces the risk of significant performance loss. Furthermore, I've
tested the utility under Windows 95 on several machines, with processors ranging from a 486 to a
P166 and achieved good results — far better than I expected, in fact. The code for the hook procedure
looks like this:

Shell Invaders

177

LRESULT CALLBACK ShellDll_MainHook(int nCode, WPARAM wParam, LPARAM lParam)
{
 TCHAR szClass[MAX_PATH] = {0};

 // Typical beginning for any hook procedure
 if(nCode < 0)
 return CallNextHookEx(g_hShellHook, nCode, wParam, lParam);

 // The system is creating a window. Notice that the hook is invoked
 // from within the code of both CreateWindow() and CreateWindowEx().
 // At this point the window already exists and its HWND is a valid one,
 // even if we're still in the middle of the creation process.
 if(nCode == HCBT_CREATEWND)
 {
 // Get the HWND of the window
 HWND hwndExplorer = reinterpret_cast<HWND>(wParam);

 // Compare it to 'ExploreWClass' and install the keyboard hook
 GetClassName(hwndExplorer, szClass, MAX_PATH);
 if(!lstrcmpi(szClass, __TEXT("ExploreWClass")))
 InstallKeyboardHook(hwndExplorer);
 }

 return CallNextHookEx(g_hShellHook, nCode, wParam, lParam);
}

This code executes each time a window is created. If the window class name matches the Explorer
window class name (which is ExploreWClass) then a keyboard hook is installed. At this point,
we're already inside Explorer's address space. Notice that the keyboard hook can be local to the
Explorer thread that owns the window of class ExploreWClass. There's no need to hook the
keyboard activity throughout the system, because when we're about to create a new folder it's natural
that the input focus is on Explorer (I'll say more about this in the section entitled Writing a Helper
Object).

The next picture shows a diagram that illustrates inter-process window subclassing. Keep this in
mind, as it will help you to understand the forthcoming code.

Chapter 7

178

How to Create a New Folder
To have hook code mapped into a process's address space, it's sufficient that a system-wide hook
procedure is invoked from within that process. The problem is now reduced to that of creating a new
folder. Clearly, we would like to get the same result as we do by manual intervention, and so the
easiest way would be to duplicate exactly what Explorer does when you click the New | Folder menu
item.

You may be wondering why I chose not to employ a method that made use of the theory we've
been discussing up to this point in the book — in other words, why not get the current directory
and create a new one using the Shell API? The reason is that the method has flaws in this
situation.

First, how do you know what folder is currently displayed in Explorer? It's not necessarily the
name returned by GetCurrentDirectory(). Second, many special folders don't allow you
to create sub-folders, and you could really cause problems if you tried.

I reasoned that Explorer must create new folders in response to a WM_COMMAND message being sent to
the main window procedure. To investigate, I wrote a program that subclassed the ExploreWClass
window in order to spy on the parameters of each processed WM_COMMAND message. By this means, I
discovered that in order to ask Explorer to create a new folder, you just need to send its window a
message like this:

PostMessage(hwndExplorer, WM_COMMAND, 29281, 0);

The magic number 29281 is the ID of the New | Folder menu item. This is unofficial information, and
it may be subject to change in newer versions of the shell, but for now it works well with Windows 9x
and Windows NT 4.0. However, if this number changes in upcoming releases, and unless there are
radical alterations to the structure of the shell, you should simply have to find out the new number.
The number didn't change from shell version 4.00 to 4.71.

The keyboard hook is installed so that the shell creates a new folder in response to a key. I've chosen
the F12 key out of personal preference — there is no particular reason for it, so feel free to employ any
other key you wish. When the keyboard hook procedure detects that F12 has been pressed, it simply
retrieves the Explorer window and posts it a message.

The Sample Program
As I've explained, the sample program necessarily comes in two parts: a DLL and an executable.
First, here's the source code for the DLL that contains both the hooks. It's based on the skeleton DLL
generated by the Wrox AppWizard, and I called my project ExpHook.

Here are the global variables and function declarations to add to ExpHook.h:

/*---*/
// PROTOTYPES section
/*---*/
HHOOK g_hShellHook;
HHOOK g_hKeybHook;
HWND g_hwndExplorer;

Shell Invaders

179

void InstallKeyboardHook(HWND hwnd);
void APIENTRY ShellDll_Hook();
void APIENTRY ShellDll_Unhook();
LRESULT CALLBACK ShellDll_KeybHook(int nCode, WPARAM wParam, LPARAM lParam);
LRESULT CALLBACK ShellDll_MainHook(int nCode, WPARAM wParam, LPARAM lParam);

And naturally enough, the implementations go in ExpHook.cpp. These functions are just the
realization of the theory we've discussed to this point:

// Sets up a hook to detect when Explorer starts
void APIENTRY ShellDll_Hook()
{
 g_hShellHook = SetWindowsHookEx(WH_CBT, ShellDll_MainHook, g_hThisDll, 0);
}

void APIENTRY ShellDll_Unhook()
{
 if(g_hKeybHook != NULL)
 UnhookWindowsHookEx(g_hKeybHook);

 if(g_hShellHook != NULL)
 UnhookWindowsHookEx(g_hShellHook);
}

// Insert the code for ShellDll_MainHook() from the listing above

LRESULT CALLBACK ShellDll_KeybHook(int nCode, WPARAM wParam, LPARAM lParam)
{
 // Typical beginning for any hook procedure
 if(nCode < 0)
 return CallNextHookEx(g_hKeybHook, nCode, wParam, lParam);

 // Normally this code executes both when the key is pressed and released.
 // The information about the transition state is stored in the 2 most
 // significant bits of lParam. In this way we process the key only once.
 if((lParam & 0x80000000) || (lParam & 0x40000000))
 return CallNextHookEx(g_hKeybHook, nCode, wParam, lParam);

 if(wParam == VK_F12)
 {
 // Get the Explorer window handle and post the message
 g_hwndExplorer = FindWindow("ExploreWClass", NULL);
 PostMessage(g_hwndExplorer, WM_COMMAND, 29281, 0);
 }

 return CallNextHookEx(g_hKeybHook, nCode, wParam, lParam);
}

// Install a keyboard hook
void InstallKeyboardHook(HWND hwnd)
{
 g_hwndExplorer = hwnd;
 DWORD dwThread = GetWindowThreadProcessId(g_hwndExplorer, NULL);
 g_hKeybHook = SetWindowsHookEx(WH_KEYBOARD, ShellDll_KeybHook,
 g_hThisDll, dwThread);
}

Chapter 7

180

To make the library export the functions we'll need, you should add these lines to the .def file,
which was also generated for you by the Wizard:

EXPORTS
 ShellDll_Hook @2
 ShellDll_Unhook @3
 ShellDll_KeybHook @4
 ShellDll_MainHook @5

That's all we need for the DLL, so you can build that and move on to the main program, which will
add an icon to the tray notification area to allow you to uninstall the hook easily, at any time.

Apart from creating a tray icon, the main program restricts itself to installing and uninstalling the
WH_CBT hook. You can use the Wrox AppWizard for the skeleton, although you'll find that because
of the nature of this application, there's rather more customization required than usual. First, create a
dialog-based application called ExpFold, and add a #include for the header that contains the
definitions of our DLL functions:

/*---*/
// INCLUDE section
/*---*/
#include "ExpFold.h"
#include "ExpHook.h"

Next, you need a couple of new constants: one for the custom message that will be sent when the tray
icon is clicked on, and one for the ID of the icon itself.

// Data
const int WM_MYMESSAGE = WM_APP + 1; // For the tray icon
const int ICON_ID = 13;

HICON g_hIconLarge;
HICON g_hIconSmall;
HINSTANCE g_hInstance;

The new global variable will be used to store a handle to this instance of the application, which will
be necessary in a later call to LoadMenu(). In the meantime, here are the changes you need to make
to WinMain():

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{
 // Save global data
 g_hInstance = hInstance;
 g_hIconSmall = static_cast<HICON>(LoadImage(hInstance, "APP_ICON",
 IMAGE_ICON, GetSystemMetrics(SM_CXSMICON),
 GetSystemMetrics(SM_CXSMICON), 0));

 // Create an invisible dialog to get messages from the icon
 HWND hDlg = CreateDialog(hInstance, "DLG_MAIN", NULL, APP_DlgProc);

 // Show the icon in the tray area
 TrayIcon(hDlg, NIM_ADD);

Shell Invaders

181

 // Install Explorer's hook
 ShellDll_Hook();

 MSG msg;
 while(GetMessage(&msg, NULL, 0, 0))
 {
 if(!IsDialogMessage(hDlg, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 // Uninstall the hook
 ShellDll_Unhook();

 // Remove the icon
 TrayIcon(hDlg, NIM_DELETE);

 DestroyWindow(hDlg);
 DestroyIcon(g_hIconSmall);
 return 1;
}

Rather than showing a dialog, this application creates an invisible one by calling CreateDialog()
instead of DialogBox(). The dialog procedure to go with it looks like this:

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_COMMAND:
 switch(wParam)
 {
 case IDCANCEL:
 PostQuitMessage(0);
 return FALSE;
 }
 break;

 case WM_MYMESSAGE:
 if(wParam == ICON_ID)
 {
 switch(lParam)
 {
 case WM_RBUTTONUP:
 ContextMenu(hDlg);
 break;
 }
 }
 break;
 }

 return FALSE;
}

Chapter 7

182

The TrayIcon() function is called by WinMain() after the dialog has been set up. It displays an
icon in (and later removes it from) the taskbar tray:

// Shows an icon in the tray area
BOOL TrayIcon(HWND hWnd, DWORD msg)
{
 NOTIFYICONDATA nid;
 ZeroMemory(&nid, sizeof(NOTIFYICONDATA));
 nid.cbSize = sizeof(NOTIFYICONDATA);
 nid.hWnd = hWnd;
 nid.uID = ICON_ID;
 nid.uFlags = NIF_TIP | NIF_ICON | NIF_MESSAGE;
 nid.uCallbackMessage = WM_MYMESSAGE;
 nid.hIcon = g_hIconSmall;
 lstrcpyn(nid.szTip, __TEXT("Explorer's Hook"), 64);
 return Shell_NotifyIcon(msg, &nid);
}

Finally, ContextMenu() is called when the user clicks on the icon in the tray. To make this work,
you'll need to add a menu resource called IDR_MENU to your project; the menu should contain a
single item called Close, whose ID is IDCANCEL.

// Shows up the context menu for the icon
void ContextMenu(HWND hwnd)
{
 POINT pt;
 GetCursorPos(&pt);

 HMENU hmenu = LoadMenu(g_hInstance, MAKEINTRESOURCE(IDR_MENU));
 HMENU hmnuPopup = GetSubMenu(hmenu, 0);
 SetMenuDefaultItem(hmnuPopup, IDOK, FALSE);
 SetForegroundWindow(hwnd);
 TrackPopupMenu(hmnuPopup, TPM_LEFTALIGN, pt.x, pt.y, 0, hwnd, NULL);
 SetForegroundWindow(hwnd);
 DestroyMenu(hmnuPopup);
 DestroyMenu(hmenu);
}

The Program in Action
Once you've compiled the program (you'll need to #include "resource.h" and link to
exphook.lib), you will have .exe and .dll files. You can then create a shortcut to the
executable, and copy it to the Startup folder.

The program can be removed by right-clicking its tray-icon and selecting Close. Once it is installed,
it hooks each Explorer window that's created and installs a keyboard hook in that thread. The
keyboard procedure looks for F12 and then posts a message to the window.

Invited into the Shell's Memory Space
There are basically two ways to inject external code into the shell's address space. There's invasion
(which we've already seen), and invitation (which is much friendlier, if only we can find a way to do
it). In the former case, the host program is completely unaware of what's going on. With the latter, on
the other hand, everything happens under its direct control.

Shell Invaders

183

The Windows shell does offer a means to get into its memory space by invitation rather than invasion
— the shell API provides an often-underestimated function called SHLoadInProc() that is defined
in shlobj.h, and is surprisingly powerful. I hadn't given it a great deal of thought myself until I saw
an article that appeared in Windows Developer's Journal. (See Further Reading.) Before that time, I
had only browsed its declaration and documentation without going any further.

Let me say, however, that the documentation is poor, and that even once you've read it you're still
miles away from even suspecting the real power of this function. To demonstrate just what it's capable
of, the example we're going to create in this section is a DLL that will enable us to retrieve and
replace the ubiquitous Windows Start button. Before we can begin that task, though, a little more
explanation is in order.

SHLoadInProc()
In a nutshell, SHLoadInProc() loads one of your modules into the shell's address space. This is
exactly the kind of thing we tried so hard to achieve in the previous section. SHLoadInProc() loads
the module and then leaves it alone to do whatever it wants. Here's how the documentation (in the
Internet Client SDK) available at the time of writing describes it:

WINSHELLAPI HRESULT WINAPI SHLoadInProc(
 REFCLSID rclsid
);

Creates an instance of the specified object class from within the context of the shell's process.

Returns NOERROR if successful, or an OLE-defined error result otherwise.

rclsid
CLSID of the object class to be created.

Now, I'm the first in line to state that the documentation is absolutely correct. The trouble is, there's
no mention at all about the structure of this 'object class'. Is there some interface that it must
implement? Is there some special policy it must follow? Does a COM server with no specific interface
to implement really make sense? If no particular interface is required, how can the object start
working?

All these are questions that arise almost immediately, but they have no answer in the documentation,
which is as concise as ever. Be honest: at this point, do you have a clear understanding of what's
needed to put this function to work?

A Minimal COM Object
Let me try to make things clearer. To begin, SHLoadInProc() is a quick and effective way to get
our code inside the shell's address space, and this code should be a COM object. To exploit the
function, however, we don't necessarily need a fully-fledged COM object — we can get by with
something halfway between that and an ordinary DLL. It must fulfill the criteria for a COM server
(and therefore needs to register itself and have a CLSID), but in practice it will look more like an old-
fashioned DLL than an in process COM object server.

Chapter 7

184

How a COM Object is Made
An in-process COM object is a DLL, which means that it has a DllMain() function. More
importantly, a COM object exports four other global functions that are the handles by which any
container works with any COM in-process object. These functions are:

! DllGetClassObject()
! DllCanUnloadNow()
! DllRegisterServer()
! DllUnregisterServer()

The last two of these are for automatic registration and unregistration, so provided that you promise
to do this manually, you can avoid implementing them. Our COM object is now reduced to a bare
DLL with two global, exported functions: DllGetClassObject() and DllCanUnloadNow().

The Role of DllGetClassObject()
Any client of a COM object must first load the library that contains it, and then get a pointer to the
interface it requires through DllGetClassObject():

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv);

Details aside, the important point is that this function always gets called, and shortly afterwards the
class object is loaded. In other words, the code we place here always gets executed. More interestingly
still, it executes in the shell's context (that is, its address space).

Meeting the Client's Expectations
Typically, the module that loads a class object will call DllGetClassObject() asking for the
IClassFactory interface. Our client — in this case, Explorer — will expect some interface pointer to
be returned via DllGetClassObject(). Since we don't implement this interface, how can we cope
with such expectations?

It's enough for us to state explicitly that the required class is not available, which simply involves
returning the appropriate error code:

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 return CLASS_E_CLASSNOTAVAILABLE;
}

The above is a possible implementation for DllGetClassObject() that makes sense for those
circumstances in which there's no specific interface to support.

Using the Shell's Address Space
Besides returning an error code, the function can do whatever it wants with any of the objects that
populate the shell's address space. When DllGetClassObject() is called, we're already in the
shell's context, and that's what will enable us to subclass the Start button. I'll begin that
demonstration very soon, but not before we take a little time to discuss DllCanUnloadNow().

Shell Invaders

185

The Role of DllCanUnloadNow()
A module that loaded a COM object through DllGetClassObject() calls DllCanUnloadNow()
to make sure that the DLL can be safely unloaded and freed. Explorer performs this check
periodically, although the period itself can range from ten seconds to ten minutes. I'll be expanding
on this point later on, when I cover shell extensions in Chapter 15.

If DllCanUnloadNow() returns S_OK, then the DLL that hosts it will be unloaded. If it always
returns S_FALSE, or if the DLL doesn't export a function with this name, the library will be released
when the host application calls CoUninitialize() to close the COM library. Because the host
application in this case is Explorer, it might be some time before this happens!

Source Code for the COM Object
What follows is the minimal source code for a 'fake' COM object to be used in conjunction with
SHLoadInProc(), and we can use it as the seed for an example that will grow to become the Start
button-subclassing application I keep promising! In Visual C++, create a new Win32 Dynamic-Link
Library called Start (I chose the Simple DLL option), and add this code to start.cpp:

#include "start.h"

HINSTANCE g_hInstance;

BOOL APIENTRY DllMain(HINSTANCE hInstance,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 g_hInstance = hModule;
 return TRUE;
}

/*---*/
// DllGetClassObject
// Main function for a COM in-proc object like this
/*---*/
STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 // Do something here
 return CLASS_E_CLASSNOTAVAILABLE;
}

/*---*/
// DllCanUnloadNow
// Confirm the unload for a COM library
/*---*/
STDAPI DllCanUnloadNow()
{
 return S_OK;
}

Chapter 7

186

The start.h header file that gets #include'd in the above file defines the CLSID of our 'fake'
COM object and incorporates some #include directives of its own:

#include <windows.h>
#include <windowsx.h>
#include <objbase.h>
#include <shlobj.h>

DEFINE_GUID(CLSID_NewStart, 0x20051998, 0x0020,
 0x0005, 0x19, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);

So that the DLL exports the functions we need it to, you should also create a short start.def file:

LIBRARY START

EXPORTS
 DllCanUnloadNow @1 PRIVATE
 DllGetClassObject @2 PRIVATE

To conclude this section, here's an idea of the kind of code that a sample program would use to load
this COM object into Explorer's address space via SHLoadInProc():

void DoGoInsideExplorer()
{
 const CLSID clsid = {0x20051998,0x0020,0x0005,
 {0x19,0x98,0x00,0x00,0x00,0x00,0x00,0x00}};
 SHLoadInProc(clsid);
}

Registering the COM Object
There are essentially two ways in which you can register COM objects: by inserting code through
DllRegisterServer(), or manually — best done by means of a registration script. Let's take a
look at both the approaches, starting with the simpler one: a registration script.

What follows is the content of a script REG file that is automatically handled by the Registry Editor.
It adds two keys that register the CLSID under the CLSID node of HKEY_CLASSES_ROOT, and store
the name of the executable that implements it.

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{20051998-0020-0005-1998-000000000000}]
@= "Start Button"
[HKEY_CLASSES_ROOT\CLSID\{20051998-0020-0005-1998-000000000000}\InProcServer32]
@= "C:\\Chap07\\Source\\Start\\start.dll"
"ThreadingModel" = "Apartment"

You should, of course, ensure that the path is replaced with the actual directory you're using. In
practice, a key needs to be added under CLSID with the name of the CLSID enclosed in brackets:

HKEY_CLASSES_ROOT
 \CLSID
 \{20051998-0020-0005-1998-000000000000}

Shell Invaders

187

Furthermore, we need to add another key under this one called InProcServer32, whose default
value points to the actual name of the server. The value ThreadingModel specifies the threading
model required. To register this server, it suffices that you double-click the REG file from Explorer,
or import it using the Registry Editor.

A neater approach is to code all this in the DllRegisterServer() function; doing so requires us
to program using the Win32 registry API. As I'll show you in Chapter 10, version 4.71 of the shell
contains a new set of high-level functions for dealing with the registry, and we could employ them
here, but then the code would work only on shell version 4.71 or higher. The following code makes
use of the traditional Win32 registry API:

STDAPI DllRegisterServer()
{
 TCHAR szSubKey[MAX_PATH] = {0};
 TCHAR szCLSID[MAX_PATH] = {0};
 TCHAR szModule[MAX_PATH] = {0};
 HKEY hKey;
 DWORD dwDisp;

 // Set the CLSID
 lstrcpy(szCLSID, __TEXT("{20051998-0020-0005-1998-000000000000}"));

 // Get the module name
 GetModuleFileName(g_hInstance, szModule, MAX_PATH);

 // HKCR: CLSID\{...}
 wsprintf(szSubKey, __TEXT("CLSID\\%s"), szCLSID);
 LRESULT lResult = RegCreateKeyEx(HKEY_CLASSES_ROOT, szSubKey, 0, NULL,
 REG_OPTION_NON_VOLATILE, KEY_WRITE, NULL, &hKey, &dwDisp);
 if(lResult == NOERROR)
 {
 TCHAR szData[MAX_PATH] = {0};
 wsprintf(szData, __TEXT("Start Button"), szModule);
 lResult = RegSetValueEx(hKey, NULL, 0, REG_SZ,
 reinterpret_cast<LPBYTE>(szData), lstrlen(szData) + 1);
 RegCloseKey(hKey);
 }

 // HKCR: CLSID\{...}\InProcServer32
 wsprintf(szSubKey, __TEXT("CLSID\\%s\\InProcServer32"), szCLSID);
 lResult = RegCreateKeyEx(HKEY_CLASSES_ROOT, szSubKey, 0, NULL,
 REG_OPTION_NON_VOLATILE, KEY_WRITE, NULL, &hKey, &dwDisp);
 if(lResult == NOERROR)
 {
 lResult = RegSetValueEx(hKey, NULL, 0, REG_SZ,
 reinterpret_cast<LPBYTE>(szModule), lstrlen(szModule) + 1);
 TCHAR szData[MAX_PATH] = {0};
 lstrcpy(szData, __TEXT("Apartment"));
 lResult = RegSetValueEx(hKey, __TEXT("ThreadingModel"), 0, REG_SZ,
 reinterpret_cast<LPBYTE>(szData), lstrlen(szData) + 1);
 RegCloseKey(hKey);
 }

 return S_OK;
}

Chapter 7

188

A COM object that exposes DllRegisterServer() via its DEF file may be registered via a call to
the system utility regsvr32.exe:

regsvr32.exe <full_server_name>

Deregistering the Object
The REG script doesn't allow you to deregister settings, so if this is the method you've chosen, the
only way to do it is through manual deletion with the help of the Registry Editor. If you have the
Windows Scripting Host (WSH) installed (more on this in Chapter 13) then an alternative solution
would be to write a small VBScript or JavaScript function that uses the WSH registry object to delete
keys and values. Because using a scripting language is more flexible and versatile than using REG
files, you can bet that this will become a popular approach in the future.

Speaking of scripting languages, it's worth noting that a COM object written with ATL may use RGS
files to provide registration and deregistration. RGS scripts look rather like an enhanced version of
the Registry Editor's REG files, and when I begin writing COM objects with ATL, I will examine the
features of RGS scripts in case you haven't had cause to manipulate them before.

Returning to the discussion at hand and our API functions, to make a COM object self-deregistering,
you can use code like this:

STDAPI DllUnregisterServer()
{
 TCHAR szSubKey[MAX_PATH] = {0};
 TCHAR szCLSID[MAX_PATH] = {0};
 TCHAR szModule[MAX_PATH] = {0};
 HKEY hKey;
 DWORD dwDisp;

 // Set the CLSID
 lstrcpy(szCLSID, __TEXT("{20051998-0020-0005-1998-000000000000}"));

 // Open HKCR
 LRESULT lResult = RegCreateKeyEx(HKEY_CLASSES_ROOT, "", 0, NULL,
 REG_OPTION_NON_VOLATILE, KEY_WRITE, NULL, &hKey, &dwDisp);
 if(lResult == NOERROR)
 {
 wsprintf(szSubKey, __TEXT("CLSID\\%s\\InProcServer32"), szCLSID);
 RegDeleteKey(hKey, szSubKey);
 wsprintf(szSubKey, __TEXT("CLSID\\%s"), szCLSID);
 RegDeleteKey(hKey, szSubKey);
 RegCloseKey(hKey);
 }

 return S_OK;
}

In this function, we open the HKEY_CLASSES_ROOT node and delete the keys, starting with the
innermost. The RegDeleteKey() function works slightly differently under Windows 9x and
Windows NT. The former allows you to delete keys even if they contain sub-keys, but recursive
deletion isn't supported under NT, and the function fails if the given key isn't empty. Notice that by
'empty' I mean 'without sub-keys', regardless of whether values are present. Since the code shown
above deletes the innermost key first, it works unchanged on both platforms.

Shell Invaders

189

A COM object exposing DllUnregisterServer() may be deregistered via a call to the system
utility regsvr32.exe:

regsvr32.exe /u <full_server_name>

A Brand New Start Button
To demonstrate the power of SHLoadInProc(), I'm going to show you how to expand the code of
DllGetClassObject() so that it creates a brand new Start button, with a different bitmap and a
different menu. We'll reach this result by following these steps:

! Getting the handle of the Start button
! Replacing its bitmap
! Subclassing the button window to change the menu and the cursor
! Creating a customized menu to display

You will then be able to control both the Windows key
and the Ctrl+Esc key combination. You can neutralize
them, leaving them to display the standard Start menu,
or associate them with the new, customized menu. The
screenshot shows the desired outcome:

The first thing to do is create a main function that will be called from within
DllGetClassObject(). This procedure will be our point of departure into the unexplored
territory of the shell.

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 InstallHandler();
 return CLASS_E_CLASSNOTAVAILABLE;
}

/*---*/
// InstallHandler
// Replace the Start button and install the hooks
/*---*/
void InstallHandler()
{
 if(g_bInstalled)
 {
 int irc = MessageBox(HWND_DESKTOP,
 __TEXT("The extension is installed. Would you like to uninstall?"),
 __TEXT("Start"), MB_ICONQUESTION | MB_YESNO | MB_SETFOREGROUND);

 if(irc == IDYES)
 UninstallHandler();
 return;
 }

Chapter 7

190

// Remember whether the handler is installed
 g_bInstalled = TRUE;

 // Set a new Start button
 SetNewStartButton(TRUE);
}

When we've finished with it and want to restore the standard behavior, we call the uninstaller:

void UninstallHandler()
{
 // Restore the Start settings
 SetNewStartButton(FALSE);

 // The handler is now uninstalled
 g_bInstalled = FALSE;
}

The presence of the handler is now the critical factor when Explorer calls DllCanUnloadNow() to
discover whether our library can be unloaded. The last thing we need to do in this section, then, is to
make sure that nothing nasty happens while the handler is installed:

STDAPI DllCanUnloadNow()
{
 return (g_bInstalled ? S_FALSE : S_OK);
}

Given that we can now go through the motions of installing and uninstalling a handler for the Start
button, let's see how to accomplish the various steps required to complete our task.

Getting the Button Handle
The results are striking because we're altering such a familiar component of the Windows interface,
but in fact we've already done the hardest part of the job, which was to get inside the shell's address
space. What remains are simply Win32 programming techniques applied to some shell objects.
Remember, what's really important here is that our minimal COM object (which I've placed in
start.dll) is working in the same environment as Explorer.

The Start button is an ordinary window of
class Button, as the following Spy++
screenshot demonstrates:

Shell Invaders

191

Locating the button among the enormous stack of windows is as easy as using the Spy++ finder tool:
just drag the finder over the desired window, and it will be selected in the list of windows. The finder
tool is available via the Search | Find Window... menu item.

If you want to retrieve the handle for a child window programmatically, you should use
FindWindowEx() rather than FindWindow(), the difference being that the former lets you specify
the root window from which the search should begin. In this case, we know that the Start button is a
child of the taskbar, which is the only window of class Shell_TrayWnd anywhere in the system.

hwndTray = FindWindowEx(NULL, NULL, "Shell_TrayWnd", NULL);
hwndStart = FindWindowEx(hwndTray, NULL, "Button", NULL);

The above fragment first retrieves a handle to the taskbar window, and then a handle to the first child
of class Button.

Despite appearances, all the other 'buttons' you see on the taskbar aren't buttons. In fact, they
aren't windows at all — they're simply the button-like tabs of a tab control. I'll say more about
this in Chapter 9.

Replacing the Bitmap
Looking once again at the screenshot from Spy++, you'll notice that the Start button has no caption.
This means that the famous word Start (which is localized for non-English versions of Windows) is
just a bitmap. However, you won't find any trace of this bitmap in shell32.dll, or
explorer.exe, or indeed any other system module. The bitmap is built dynamically by merging
the Windows logo bitmap with a text string read from the resources. Both resources are stored in
explorer.exe.

The Windows logo is the bitmap with an ID of 143, while
the Start string evaluates to an entry in the string table with
an ID of 578.

The composite bitmap is created in a memory device context by copying the Windows logo and
drawing the text.

Chapter 7

192

Reverse Engineering Explorer's Resources
If you look at Explorer's resources, you'll find that many of the bitmaps that populate the various
configuration dialogs (for instance, the bitmap that's displayed in the Taskbar Properties dialog) are
created dynamically in order to save space. In fact, the explorer.exe file only contains some
constituent bitmaps; not the final, displayed result.

If you want to browse through some application resources on your own, here are some suggestions on
how to go about it:

! Create a copy of the file you want to look into. This is necessary because the file could be in use.
! Open it with Visual C++, making sure to specify Resources in the Open as combo box.
! The IDE will warn you that under Windows 9x, you can't update the resources. Don't worry about

it!

Once your display has changed to the tree of all the resources, saving them as separate files is easy
too. Just right-click the desired resource and select Export…. This feature is available only for the
resources that map to a file, such as bitmaps, icons and cursors, and for custom resources like AVI
files. Curiously, you can't save a dialog template to a text file. (See Further Reading.)

Styles of the Start Button
The Start button has the BS_BITMAP style that means its surface is covered by a bitmap instead of
the more usual text. (You can confirm this by right clicking on the window in the Spy++ list, then
selecting Properties... | Styles). Getting the handle to this bitmap is as easy as calling:

g_hbmStart = reinterpret_cast<HBITMAP>(SendMessage(hwndStart,
 BM_GETIMAGE, IMAGE_BITMAP, 0));

Replacing the bitmap is no more difficult. First we use LoadImage() to load a new bitmap image
from the resources of our application. Next, SendMessage() allows us to assign the bitmap to a
button with the BS_BITMAP style. The lParam parameter refers to the handle returned by
LoadImage().

HBITMAP hbm = reinterpret_cast<HBITMAP>(LoadImage(g_hInstance,
 MAKEINTRESOURCE(IDB_NEWSTART), IMAGE_BITMAP, 0, 0, LR_DEFAULTSIZE));
SendMessage(hwndStart, BM_SETIMAGE,
 IMAGE_BITMAP, reinterpret_cast<LPARAM>(hbm));

Here's the bitmap I used in the sample. Its ID is IDB_NEWSTART, which is defined in resource.h:

For this demonstration, I chose a bitmap that simulates a hyperlink, and for simplicity I also hard-
coded the bitmap into the module's resources. The bitmap is the same size as the actual Start button
bitmap (48 x 16). You can use whatever bitmap you like, but I recommend that you stick to this size.

Simply changing the bitmap does not necessarily result in an immediate refresh of the button
interface. The button needs to redraw its non-client area in order to reflect the changes we've made.
We can force that action by calling SetWindowPos(), like this:

Shell Invaders

193

SetWindowPos(hwndStart, NULL, 0, 0, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_NOMOVE | SWP_DRAWFRAME);

To see the effects of the things we've done so far, we need to implement SetNewStartButton(),
which strings together all the snippets of code that we looked at earlier in this section in order to do
its job. Here's how it goes:

void SetNewStartButton(BOOL fNew)
{
 // Get the handle to the Start button
 HWND hwndTray = FindWindowEx(NULL, NULL, "Shell_TrayWnd", NULL);
 HWND hwndStart = FindWindowEx(hwndTray, NULL, "Button", NULL);

 // Change the bitmap
 g_hbmStart = NewStartBitmap(hwndStart, fNew);
}

Getting a handle to the button is a trivial affair, but replacing the bitmap in a way the allows the
process to be reversed requires a little more logic, which is why I moved the code off into a helper
function called NewStartBitmap():

HBITMAP NewStartBitmap(HWND hwndStart, BOOL fNew)
{
 if(!fNew)
 {
 if(g_hbmStart)
 SendMessage(hwndStart, BM_SETIMAGE, IMAGE_BITMAP,
 reinterpret_cast<LPARAM>(g_hbmStart));

 // Refresh the button to reflect the change
 SetWindowPos(hwndStart, NULL, 0, 0, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_NOMOVE | SWP_DRAWFRAME);
 return NULL;
 }

 // Save the current bitmap
 g_hbmStart = reinterpret_cast<HBITMAP>(
 SendMessage(hwndStart, BM_GETIMAGE, IMAGE_BITMAP, 0));

 // Load and set the new bitmap
 HBITMAP hbm = reinterpret_cast<HBITMAP>(LoadImage(g_hInstance,
 MAKEINTRESOURCE(IDB_NEWSTART), IMAGE_BITMAP, 0, 0, LR_DEFAULTSIZE));
 SendMessage(hwndStart, BM_SETIMAGE, IMAGE_BITMAP,
 reinterpret_cast<LPARAM>(hbm));

 // Refresh the button to reflect the change
 SetWindowPos(hwndStart, NULL, 0, 0, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_NOMOVE | SWP_DRAWFRAME);
 return g_hbmStart;
}

You now have all the code you need to build a working DLL. Once it has been registered, you should
be able to use a function like DoGoInsideExplorer() that I presented earlier to invoke
SHLoadInProc() and have your 'fake' COM object loaded into Explorer's address space.

Chapter 7

194

Subclassing the Window
Changing the Start button bitmap is a great result, but more can be achieved. My next goal is to
change the behavior of the button, which means:

! Setting a hand-shaped cursor instead of the ordinary arrow
! Removing the context menu
! Customizing the tooltip text

By far the most impressive thing that I'll demonstrate, though, is to make clicking on the Start button
produce a different menu.

A Hand-Shaped Cursor
Since we've made the button look like an HTML hyperlink, it would be nice to change the shape of
the cursor to the pointing finger that usually appears on HTML links. I got hold of this cursor from
Internet Explorer's resources by using the same technique as I discussed above for Explorer, and
called it IDC_HAND.

Every time Windows needs to display a cursor for a window, it sends a WM_SETCURSOR message. If
the application doesn't process it, then Windows sets up the predefined cursor for that class. The
cursor for a class is defined when you register the class using RegisterClass() or
RegisterClassEx() — it's one of the fields of a WNDCLASS (or WNDCLASSEX) structure. For system
controls (like buttons), the predefined cursor is the standard arrow; the only exceptions to this are
edit controls.

If we're going to start processing messages sent by the system that were intended for the Start button,
we do now need to subclass it. We can begin the operation by adding code to
SetNewStartButton() that will install (and uninstall) a custom window procedure called
NewStartProc():

void SetNewStartButton(BOOL fNew)
{
 // Get the handle to the Start button
 HWND hwndTray = FindWindowEx(NULL, NULL, "Shell_TrayWnd", NULL);
 HWND hwndStart = FindWindowEx(hwndTray, NULL, "Button", NULL);

 // Change the bitmap
 g_hbmStart = NewStartBitmap(hwndStart, fNew);

 // Subclass the button
 if(fNew)
 {
 if(!g_bSubclassed)
 {
 g_pfnStartProc = SubclassWindow(hwndStart, NewStartProc);
 g_bSubclassed = TRUE;
 }
 }
 else
 {
 if(g_pfnStartProc != NULL)
 SubclassWindow(hwndStart, g_pfnStartProc);
 g_bSubclassed = FALSE;
 }
}

Shell Invaders

195

To have a different cursor appear when the mouse pointer is over the area of the window, you just
need now to specify it in response to the WM_SETCURSOR message when it's received by the window
procedure we're writing to subclass the Start button:

LRESULT CALLBACK NewStartProc(
 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_SETCURSOR:
 SetCursor(LoadCursor(g_hInstance, MAKEINTRESOURCE(IDC_HAND)));
 return 0;
 }

 return CallWindowProc(g_pfnStartProc, hwnd, uMsg, wParam, lParam);
}

It's extremely important that you return from the window procedure after dealing with the
WM_SETCURSOR message. If you don't, Windows will end up executing the default code for the
message and restore the arrow cursor!

Removing the Standard Context Menu
Hiding the standard context menu is even simpler. All you need to do is return 0 whenever you
receive a WM_CONTEXTMENU message:

 switch(uMsg)
 {
 case WM_SETCURSOR:
 SetCursor(LoadCursor(g_hInstance, MAKEINTRESOURCE(IDC_HAND)));
 return 0;
 case WM_CONTEXTMENU:
 // Create your own pop-up menu here!
 return 0;
 }

Of course, there's nothing to prevent you from displaying your own pop-up menu in place of the
standard one — just replace the comment in the above snippet with code of your own.

Customizing the Tooltip
Another possible form of customization might involve tooltips — you could consider changing the
default message, Click here to begin. If you've ever worked with tooltips in Win32 programs, though,
you'll know that they are hard nuts to crack. There's no easy way to detect which tooltips are
currently active, and even if you catch the TTN_SHOW notification (a notification message sent when a
tooltip window is about to be displayed), you can't cancel the tip.

The Start button tooltip is handled away from the code for the button itself. At startup, the taskbar
creates a tooltip window and sets up some tools. Therefore, to get the handle of the window used for
displaying the Start button's tooltip, a possible approach is to walk all the windows created by the
current thread by using the EnumThreadWindows() function. The chances are that there's only one
tooltip window: the right one. The following code shows how to get the tooltip window and the tool
that relate to the Start button. (A tool here is the area in which you want the tip to appear — the client
area in the case of the Start button.)

Chapter 7

196

void RemoveTooltip(HWND hwndStart)
{
 EnumThreadWindows(GetCurrentThreadId(), EnumThreadWndProc,
 reinterpret_cast<LPARAM>(hwndStart));
}

// This thread created just one tooltip window. All the windows that belong
// to the thread are enumerated in order to find the tooltip. This
// callback receives the handle of all the windows the thread created. The
// lParam is the handle (hwndStart) of the Start button.
BOOL CALLBACK EnumThreadWndProc(HWND hwnd, LPARAM lParam)
{
 TCHAR szClass[MAX_PATH] = {0};
 GetClassName(hwnd, szClass, MAX_PATH);
 if(0 == lstrcmpi(szClass, TOOLTIPS_CLASS))
 {
 // Tooltip window found, so try to locate the tool
 int iNumOfTools = SendMessage(hwnd, TTM_GETTOOLCOUNT, 0, 0);
 for(int i = 0 ; i < iNumOfTools ; i++)
 {
 // Get information about the ith tool
 TOOLINFO ti;
 ti.cbSize = sizeof(TOOLINFO);
 SendMessage(hwnd, TTM_ENUMTOOLS, i, reinterpret_cast<LPARAM>(&ti));
 if(ti.uId == static_cast<UINT>(lParam))
 {
 // Tool for the Start button found.
 ti.lpszText = __TEXT("Buy this book!");
 SendMessage(hwnd, TTM_UPDATETIPTEXT, 0,
 reinterpret_cast<LPARAM>(&ti));
 }
 }
 return FALSE;
 }
 return TRUE;
}

Once we have the tooltip window handle, we use the programming interface of tooltips to enumerate
the various tools. A tool is a rectangular region that originates a tip if the mouse hovers over it for a
while, and is described by a TOOLINFO structure. During the enumeration of the tools, the tool for
the Start button is found by comparing the uId field of TOOLINFO with the handle of the Start
button. It can then be removed, or better still, the text can be replaced through the
TTM_UPDATETIPTEXT message.

There are a couple of aspects of this code that I deduced by trial and error. First, the current thread
creates just one tooltip window. Second, the tool that relates to the Start button has the
TTF_IDISHWND flag set. This means that the tool relates to the client area of a window, and not to a
generic rectangle. Third, the uId member of the TOOLINFO structure contains the HWND of that
window. This is actually not surprising at all, since it's common practice to assign the
TTF_IDISHWND flag when you want to define a tooltip for an entire window. Knowing these things
greatly simplifies our work, since we can easily identify (and even remove) the tool for the Start
button. TOOLTIPS_CLASS is a window class name provided by the common control library — these
controls (believe it or not!) display tooltips.

Shell Invaders

197

If it's your intention to change the tooltip text, remember that this change is not tied to the
module being run. It will continue to appear even when the module that installed it has been
unloaded. The only way to restore the old tip is by changing the tool back to its previous settings.

A New Menu
The default Start menu appears when the user clicks on the button. More precisely, it is shown when
the button receives the BM_SETSTATE message with the wParam argument set to TRUE.
BM_SETSTATE is a button-specific message that's used to ask the button to draw in 'pressed' or
'released' mode; a wParam value of TRUE means that the button is required to be pressed, while a
value of FALSE means it should be released. If your goal is simply to hide the standard menu, just
process the BM_SETSTATE message and return 0.

When you hit the Windows key or press Ctrl-Esc, you cause a BM_SETSTATE message to be sent
to the button. By acting on the handler for that message, you have trapped those key combinations
too.

Correct Behavior
Suppose that you have your own menu to display. You might try to show it by processing the
WM_LBUTTONDOWN message:

TrackPopupMenu(hmnuPopup, uFlags, ix, iy, 0, hwnd, NULL);

Provided that you specify the correct coordinates, the menu will appear near the button. However,
the button will not be drawn 'pressed'.

To fix this, you need to send BM_SETSTATE messages to 'press' and 'release' the button. However, if
you send the button itself such a message, it ends up being handled by the original window
procedure, which we've just replaced. As a result, the standard Start menu appears!

The trouble is that the Start button is a child window of the taskbar. Each time you click on it (or
send a BM_SETSTATE message), Windows automatically notifies the parent window of the event. For
buttons, this means a BN_CLICKED message. By handling this BN_CLICKED message, the taskbar (not
the button) displays the standard menu.

We want the button to provide the menu, but need a way to draw it 'pressed'. How can we obtain this
behavior? What we need is an 'independent' function to draw the button with that look, and the
solution is to resort to the original button procedure — the one that just draws the button in the normal
way, without doing anything else or causing anything else to happen. The address of this function
may be found in the WNDCLASS structure retrieved by GetClassInfo():

 switch(uMsg)
 {
 case WM_SETCURSOR:
 SetCursor(LoadCursor(g_hInstance, MAKEINTRESOURCE(IDC_HAND)));
 return 0;
 case WM_CONTEXTMENU:
 return 0;

Chapter 7

198

 case WM_LBUTTONDOWN:
 {
 WNDCLASS wc;
 GetClassInfo(NULL, "Button", &wc);
 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, TRUE, 0);

 // Call TrackPopupMenu() here

 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, FALSE, 0);
 return 0;
 }
 }

The code above ensures that our Start button behaves correctly and appears 'pressed' when the menu
is up. This line:

 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, TRUE, 0);

now works as if it's an external function that takes the Start button handle as an argument.

In case you're wondering, there is an alternative way to do all this: I could have subclassed the
taskbar window and intercepted the BN_CLICKED message. However, I prefer the approach
detailed here, as it minimizes the number of subclassed windows.

How to Trap Ctrl-Esc and the Windows Key
When pressed, both Ctrl-Esc and the Windows key send a BM_SETSTATE message (with wParam set to
TRUE) to the Start button, causing it to display the Start menu. By subclassing the Start button, we
can decide to ignore that event:

 case BM_SETSTATE:
 return 0;

Or we could choose to display our own menu instead:

 case BM_SETSTATE:
 case WM_LBUTTONDOWN:
 {
 ...
 }

Creating Owner-Drawn Menus
TrackPopupMenu() is fine for displaying a menu at a certain screen position, but Start has two
additional features that differentiate it from ordinary menus. Firstly, it is an owner-drawn menu, and
secondly, it must appear at rigorously defined positions that depend on the edge of the taskbar and
the absolute location of the Start button.

If the taskbar is docked at the bottom of the screen, the menu must be displayed above the Start
button; if it's at the top, the menu should go below it. Therefore, to determine the correct coordinates
for the menu, we first need to know the position of the system taskbar.

Shell Invaders

199

Determining the Menu's Screen Position
TrackPopupMenu() needs a position expressed in (x, y) screen coordinates. Interestingly, you can
tell the function how to interpret each coordinate, and how to align the menu accordingly. For
example, if you specify the TPM_BOTTOMALIGN flag, then the y-coordinate is intended to be the
bottom of the menu. If you set TPM_RIGHTALIGN, the x-coordinate is where the right edge of the
menu will lie.

The position of a pop-up menu depends on these three pieces of information: x- and y-coordinates,
and alignment flags. I packed them into a custom structure called STARTMENUPOS, and defined a
helper function that checks the position of the taskbar and fills the structure accordingly:

struct STARTMENUPOS
{
 int ix;
 int iy;
 UINT uFlags;
};

typedef STARTMENUPOS* LPSTARTMENUPOS;

void GetStartMenuPosition(LPSTARTMENUPOS lpsmp)
{
 // Get the taskbar's edge and position
 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);
 SHAppBarMessage(ABM_GETTASKBARPOS, &abd);

 switch(abd.uEdge)
 {
 case ABE_BOTTOM:
 lpsmp->ix = 0;
 lpsmp->iy = abd.rc.top;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_BOTTOMALIGN;
 break;

 case ABE_TOP:
 lpsmp->ix = 0;
 lpsmp->iy = abd.rc.bottom;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_TOPALIGN;
 break;

 case ABE_LEFT:
 lpsmp->ix = abd.rc.right;
 lpsmp->iy = 0;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_TOPALIGN;
 break;

 case ABE_RIGHT:
 lpsmp->ix = abd.rc.left;
 lpsmp->iy = 0;
 lpsmp->uFlags = TPM_RIGHTALIGN | TPM_TOPALIGN;
 break;
 }
}

SHAppBarMessage() is an API function defined in shellapi.h that can return the edge and the
position of the system taskbar. It can also serve other purposes that I'll look at in Chapter 9.

Chapter 7

200

The GetStartMenuPosition() function allows us to display the Start menu in the correct
position relative to the taskbar. The code to display the pop-up menu may then look like this:

 case WM_LBUTTONDOWN:
 {
 WNDCLASS wc;
 GetClassInfo(NULL, __TEXT("Button"), &wc);
 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, TRUE, 0);

 STARTMENUPOS smp;
 GetStartMenuPosition(&smp);
 HMENU hmenu = LoadMenu(g_hInstance, MAKEINTRESOURCE(IDR_MENU));
 HMENU hmnuPopup = GetSubMenu(hmenu, 0);

 TrackPopupMenu(hmnuPopup, smp.uFlags, smp.ix, smp.iy, 0, hwnd, NULL);
 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, FALSE, 0);
 return 0;
 }

Each menu item you select sends a WM_COMMAND message to the hwnd window, which is none other
than the button itself! Thus, our subclassing procedure is also handling the user's selections, which I'll
process further in a moment.

Loading a New Menu
I created a very simple, predefined menu to be used as a replacement
for the standard menu called IDR_MENU (as above). You could do this
yourself, loading and displaying it through TrackPopupMenu(), but
you'll soon realize that it is rather uninspiring. What you'll get, in fact,
is a traditional, text-based menu:

The Windows Start menu, on the other hand, is an owner-drawn menu, in which each item is drawn
separately by a user-defined procedure. Unfortunately, Visual C++'s resource editor doesn't allow
you to create owner-drawn menus in a 'visual' fashion, so you have to do everything
programmatically.

If the menu you want to draw already exists (if it's stored in the module's resources, say), then your
first step should be to walk through all the items and assign each one the special MF_OWNERDRAW
attribute. This flag qualifies it as an item whose contents must be drawn by a user-defined procedure.
Here's a piece of code that takes a pop-up menu and sets the owner-drawn style for each item:

// Maximum size allowed item names in an owner-drawn menu
const int ITEMSIZE = 100;

struct MENUSTRUCT
{
 TCHAR szText[ITEMSIZE];
 int iItemID;
 TCHAR szFile[MAX_PATH];
};
typedef MENUSTRUCT* LPMENUSTRUCT;

Shell Invaders

201

void MakePopupOwnerDraw(HWND hwnd, HMENU hmnuPopup)
{
 // Iterate over all popup items
 for(int i = 0 ; i < GetMenuItemCount(hmnuPopup) ; i++)
 {
 // Saves some data for the owner-draw functions
 LPMENUSTRUCT lpms = GlobalAllocPtr(GHND, sizeof(MENUSTRUCT));
 int iItemID = static_cast<int>(GetMenuItemID(hmnuPopup, i));
 GetMenuString(hmnuPopup, iItemID, lpms->szText, ITEMSIZE, MF_BYCOMMAND);
 lpms->iItemID = iItemID;

 UINT uiState = GetMenuState(hmnuPopup, iItemID, MF_BYCOMMAND);
 ModifyMenu(hmnuPopup, iItemID, uiState | MF_BYCOMMAND | MF_OWNERDRAW,
 iItemID, reinterpret_cast<LPCTSTR>(lpms));
 }
}

When you assign the owner-drawn style to a menu item, you might want to store some per-item
information, such as the string to be displayed. In our case, this is done through the custom structure
MENUSTRUCT, a pointer to which is passed as the final parameter to ModifyMenu(). This memory
buffer is then passed to the functions that actually draw the items. This memory must be freed by a
similar routine that should be called when you have finished with the menu.

Owner-Drawn Separators
If we're really going to produce a menu that's akin to the standard Windows Start menu, we'll also
need to make owner-drawn separators. That's because the Start menu contains a continuous vertical
band at one edge that can't be broken by separators, effectively reducing the horizontal area available
for items and separators. By default, a separator is drawn as an inset line that runs from edge to edge.
This means that we need to consider separators as items to be drawn as well.

Collecting Menu Items Dynamically
For this example, I decided not to load the new menu from project resources. The Start menu is a
semi-dynamic menu, in the sense that the menu items are partially determined at runtime. If you
create shortcuts in the Start Menu special folder (see Chapter 6), you can cause a new item to
appear on the menu. I will define a similar mechanism for this custom handler.

I created a directory (hard-coded to C:\MyStartMenu) to be filled with the shortcuts to add to the
menu. Apart from these dynamic items, my Start menu will always contain a 'fixed' command to
restore the previous settings and the original menu. A click on a shortcut will call the target file, while
a click on the fixed item causes the handler to uninstall.

The following function, GetMenuHandle(), creates the menu to be displayed by the new Start
button. It scans the C:\MyStartMenu directory searching for LNK files, resolves them, and adds the
relevant icon and name to the menu.

HMENU GetMenuHandle(LPTSTR szPath)
{
 LPMENUSTRUCT lpms;
 int iItemID = 1;

 // These globals are a reminder that the menu drawing is starting now
 g_bAlreadyDrawn = FALSE; // Not already drawn
 g_bFirstTime = TRUE; // First time we enter

Chapter 7

202

 // Creates an empty menu
 HMENU hmenu = CreatePopupMenu();

 // Filter string for *.lnk
 TCHAR szDir[MAX_PATH] = {0};
 lstrcpy(szDir, szPath);
 if(szDir[lstrlen(szDir) - 1] != '\\')
 lstrcat(szDir, __TEXT("\\"));

 TCHAR szBuf[MAX_PATH] = {0};
 wsprintf(szBuf, __TEXT("%s*.lnk"), szDir);

 // Search for .lnk files
 WIN32_FIND_DATA wfd;
 HANDLE h = FindFirstFile(szBuf, &wfd);
 while(h != INVALID_HANDLE_VALUE)
 {
 // Resolve the shortcut
 SHORTCUTSTRUCT ss;
 ZeroMemory(&ss, sizeof(SHORTCUTSTRUCT));
 wsprintf(szBuf, __TEXT("%s\\%s"), szDir, wfd.cFileName);
 SHResolveShortcut(szBuf, &ss);

 // Prepare per-item data using ID, description and target file
 lpms = reinterpret_cast<LPMENUSTRUCT>(
 GlobalAllocPtr(GHND, sizeof(MENUSTRUCT)));
 lpms->iItemID = iItemID;
 if(!lstrlen(ss.pszDesc))
 lstrcpy(lpms->szText, wfd.cFileName);
 else
 lstrcpy(lpms->szText, ss.pszDesc);
 lstrcpy(lpms->szFile, ss.pszTarget);

 // Add the item
 AppendMenu(hmenu, MF_OWNERDRAW,
 iItemID++, reinterpret_cast<LPTSTR>(lpms));

 // Next file
 if(!FindNextFile(h, &wfd))
 {
 FindClose(h);
 break;
 }
 }

 // Add the separator and the 'Restore' item
 AppendMenu(hmenu, MF_OWNERDRAW | MF_SEPARATOR, 0, NULL);

 lpms = reinterpret_cast<LPMENUSTRUCT>(
 GlobalAllocPtr(GHND, sizeof(MENUSTRUCT)));
 lpms->iItemID = ID_FILE_EXIT;
 lstrcpy(lpms->szText, __TEXT("Restore Previous Settings"));
 lstrcpy(lpms->szFile, "");
 AppendMenu(hmenu, MF_OWNERDRAW, ID_FILE_EXIT,
 reinterpret_cast<LPTSTR>(lpms));
 return hmenu;
}

Shell Invaders

203

As you can see, this function introduces two new global, Boolean variables. g_bAlreadyDrawn is
used to remember whether the bitmap has already been drawn in the vertical band, because we need
to do this only once. g_bFirstTime, on the other hand, is used to remember whether this is the first
time items have been drawn in the menu. If this variable is TRUE, the top edge of the menu item
rectangle is saved, in order to determine the height of the menu. You'll see these values being
changed in later functions.

Items are drawn from top to bottom, and the last item in this implementation is determined by ID —
it's my fixed item that will uninstall the handler. It relies on the existence in the DLL's resources of
an appropriate 32 x 32-pixel icon with the identifier ID_FILE_EXIT. The other thing that this code
relies on is the function called SHResolveShortcut() that we put together in the previous chapter.

Setting the Measurements
Owner-drawn resources cause two messages to be sent to their parent's window procedure. In this
case, these messages will reach our new Start button procedure. They are:

! WM_MEASUREITEM
! WM_DRAWITEM

The first of these is intended to obtain the width and height (in pixels) of a single menu item, which
we must do by filling in a structure that comes with the message. The second requires you to do any
painting work that needs to be done. Here's a typical example of a function for handling the
WM_MEASUREITEM message:

// These are absolute constants (expressed in pixels) that define
// measurements for the items to draw
const int DEFBITMAPSIZE = 32; // 32 x 32 is the area reserved for bitmaps
const int DEFBANDSIZE = 25; // Width of the vertical band
const int DEFSEPSIZE = 6; // Height of the area reserved for separators
const int DEFBORDERSIZE = 2; // Gap between item text and edge of the menu

void MeasureItem(HWND hwnd, LPMEASUREITEMSTRUCT lpmis)
{
 SIZE size;
 int iItemID = lpmis->itemID;
 LPMENUSTRUCT lpms = reinterpret_cast<LPMENUSTRUCT>(lpmis->itemData);

 // Calculate the size of the item string
 HDC hdc = GetDC(hwnd);
 GetTextExtentPoint32(hdc, lpms->szText, lstrlen(lpms->szText), &size);
 ReleaseDC(hwnd, hdc);

 // Set width and height for the item
 lpmis->itemWidth = DEFBITMAPSIZE + DEFBANDSIZE + size.cx;

 // A separator has a zero ID
 if(iItemID)
 lpmis->itemHeight = DEFBITMAPSIZE;
 else
 lpmis->itemHeight = DEFSEPSIZE;
}

Chapter 7

204

The lParam argument of a WM_MEASUREITEM message points to a MEASUREITEMSTRUCT structure,
the itemHeight and itemWidth fields of which must be filled with the actual size of the item. In
the code above, the height is set to 32 pixels, while the width depends on the length of the text, the
space reserved for bitmaps (icons), and the band that runs up the edge of the menu (the 'Windows 98'
banner, for example).

Note that explicit constants are used here so that the appearance of the Start menu will remain the
same whatever the display settings are.

For more information about the structures employed here, and the owner-drawn mechanism, you
should take a look at the official documentation in the MSDN library, or read the suggestions in
the Further Reading section of this chapter.

Drawing the Items
The WM_DRAWITEM message is sent each time Windows needs to paint a given menu item. The
lParam argument of the message points to a DRAWITEMSTRUCT structure that provides all the
information you need to do the work. Basically, we want a menu window with a vertical band on the
left and then, for each item, an icon and a string. The most interesting feature is that the area on the
left will be filled with a bitmap.

Drawing icons and strings is quite straightforward, and can be accomplished by common APIs such
as DrawIcon() and ExtTextOut(). (See Further Reading.) When you draw items, you work on a
per-item basis and see only a slice of the menu window. When it comes to drawing a bitmap along
the edge of the menu window, it's a bit different. The drawing procedures are called item by item
when selection changes, but we need to find out a way of drawing the bitmap only once, and the
global variable that remembers we have already drawn it was my solution. However, there's more to
drawing a bitmap than that!

How would you draw the bitmap at all? Using BitBlt() is probably as good a method as any.
Windows paints its owner-drawn menus using top-down logic, so if we pass (0, 0) as the origin of the
destination device context, the bitmap will be aligned with the top of the menu.

If you look at the Start menus of Windows 95, 98 and NT, you'll see that the bitmap is always aligned
with the bottom of the menu. This introduces further complications — what are the correct coordinates
to pass to BitBlt()? The x coordinate will be 0, or an absolute offset from the left edge. The y
coordinate should be given by the height of the menu window, minus the height of the bitmap we're
using. Because BitBlt() draws from top to bottom, the bitmap will be aligned with the bottom.

There's a fairly simple solution to the problem of finding the height of the menu window. We know
that the DRAWITEMSTRUCT contains the rectangle for the current item, so if we remember the top of
the first element and the bottom of the last one, the height of the window must be the difference
between the two.

So, we know the height of the bitmap, and we know the height of the window. That makes it easy to
determine the correct y-coordinate for BitBlt() to work. Things should now work in the same way
as they do in the standard Start menu. The necessary code is shown on the next page:

Shell Invaders

205

void DrawItem(LPDRAWITEMSTRUCT lpdis)
{
 TCHAR szItem[ITEMSIZE] = {0};
 TCHAR szFile[MAX_PATH] = {0};
 COLORREF crText, crBack;
 HICON hIcon = NULL;

 LPMENUSTRUCT lpms = reinterpret_cast<LPMENUSTRUCT>(lpdis->itemData);
 int iItemID = lpdis->itemID;
 int iTopEdge = 0;

 // Save the item text and target file
 if(lpms)
 {
 lstrcpy(szItem, lpms->szText);
 lstrcpy(szFile, lpms->szFile);
 }

 // Manage how to draw
 if(lpdis->itemAction & (ODA_DRAWENTIRE | ODA_SELECT))
 {
 COLORREF clr;
 RECT rtBand, rtBmp, rtText, rtItem, rt;
 SIZE size;

 // Defines rectangles for further use:
 // lpdis->rcItem is the menu item rectangle
 // rtBand: portion of the menu item area for vertical band
 // rtBmp: portion of the menu item area for item icon
 // rtText: portion of the menu item area for item text
 CopyRect(&rt, &(lpdis->rcItem));
 CopyRect(&rtBand, &rt);
 rtBand.right = rtBand.left + DEFBANDSIZE;
 CopyRect(&rtBmp, &rt);
 rtBmp.left = rtBand.right + DEFBORDERSIZE;
 rtBmp.right = rtBmp.left + DEFBITMAPSIZE;
 CopyRect(&rtText, &rt);
 rtText.left = rtBmp.right + 2 * DEFBORDERSIZE;
 CopyRect(&rtItem, &rt);
 rtItem.left += DEFBANDSIZE + DEFBORDERSIZE;

 // If it is the first item, store the y-coordinate
 if(g_bFirstTime)
 {
 iTopEdge = rtBand.top;
 g_bFirstTime = FALSE;
 }

 // Draw the band rectangle and the vertical bitmap
 if(!g_bAlreadyDrawn)
 {
 // Draw the band area in blue
 clr = SetBkColor(lpdis->hDC, RGB(0, 0, 255));
 ExtTextOut(lpdis->hDC, 0, 0,
 ETO_CLIPPED | ETO_OPAQUE, &rtBand, NULL, 0, NULL);
 SetBkColor(lpdis->hDC, clr);

 // If the last item, determine menu height, load bitmap, and draw
 if(iItemID == ID_FILE_EXIT)
 {
 int iMenuHeight = rtBand.bottom - iTopEdge;

Chapter 7

206

 HBITMAP hbm = LoadBitmap(g_hInstance, MAKEINTRESOURCE(IDB_LOGO));
 DrawBitmap(lpdis->hDC, 0, iMenuHeight, hbm);
 DeleteObject(hbm);
 g_bAlreadyDrawn = TRUE;
 }
 }

 // Everything so far is unaffected by selection state. Now need to
 // draw icon and text with respect to this and hence backgnd color
 if(lpdis->itemState & ODS_SELECTED)
 {
 crText = SetTextColor(lpdis->hDC, GetSysColor(COLOR_HIGHLIGHTTEXT));
 crBack = SetBkColor(lpdis->hDC, GetSysColor(COLOR_HIGHLIGHT));
 }

 // Clear the area with the correct background color
 ExtTextOut(lpdis->hDC, rtText.left, rtText.left,
 ETO_CLIPPED | ETO_OPAQUE, &rtItem, NULL, 0, NULL);

 // Get icon to draw. Load it from resources if it is the last item.
 // Otherwise, determine system icon for the shortcut's target file.
 if(iItemID == ID_FILE_EXIT)
 hIcon = LoadIcon(g_hInstance, MAKEINTRESOURCE(iItemID));
 else
 {
 SHFILEINFO sfi;
 ZeroMemory(&sfi, sizeof(SHFILEINFO));
 SHGetFileInfo(szFile, 0, &sfi, sizeof(SHFILEINFO), SHGFI_ICON);
 hIcon = sfi.hIcon;
 }

 // Draw the icon (transparence is automatic)
 if(hIcon)
 {
 DrawIcon(lpdis->hDC, rtBmp.left, rtBmp.top, hIcon);
 DestroyIcon(hIcon);
 }

 // Draw the text (one line centered vertically)
 if(!iItemID)
 {
 // It's a separator
 rt.top++;
 rt.bottom = rt.top + DEFBORDERSIZE;
 rt.left = rt.left + DEFBANDSIZE + DEFBORDERSIZE;
 DrawEdge(lpdis->hDC, &rt, EDGE_ETCHED, BF_RECT);
 }
 else
 {
 // Get the size of the text according to the font
 GetTextExtentPoint32(lpdis->hDC, szItem, lstrlen(szItem), &size);

 // Center it vertically
 int iy = ((lpdis->rcItem.bottom - lpdis->rcItem.top) - size.cy) / 2;
 iy = lpdis->rcItem.top + (iy >= 0 ? iy : 0);
 rtText.top = iy;
 DrawText(lpdis->hDC, szItem, lstrlen(szItem),
 &rtText, DT_LEFT | DT_EXPANDTABS);
 }
 }
}

Shell Invaders

207

The large but relatively straightforward function above deals with drawing text and icons, but it
passes off the drawing of the bitmap with the vertical logo (which it expects to find in a 25 pixel wide
resource called IDB_LOGO) to the next routine, DrawBitmap():

void DrawBitmap(HDC hdc, int x, int iHeight, HBITMAP hbm)
{
 // This function calculates the y-coordinate based on the height
 // of the area to cover. The bitmap will be aligned with the bottom
 BITMAP bm;

 // Creates a memory device context and selects the bitmap in it
 HDC hdcMem = CreateCompatibleDC(hdc);
 HBITMAP hOldBm = static_cast<HBITMAP>(SelectObject(hdcMem, hbm));

 // Obtains information about the bitmap
 GetObject(hbm, sizeof(BITMAP), &bm);

 // Determine the y-coordinate
 int y = iHeight - bm.bmHeight;
 y = (y < 0 ? 0 : y);

 // Transfer the bitmap from memory DC to the menu DC
 BitBlt(hdc, x, y, bm.bmWidth, bm.bmHeight, hdcMem, 0, 0, SRCCOPY);

 // Free the memory DC
 SelectObject(hdcMem, hOldBm);
 DeleteDC(hdcMem);
}

Finally, you need to amend our button-subclassing window procedure so that it correctly constructs
our custom menu, and so that it can process the WM_MEASUREITEM and WM_DRAWITEM messages:

 switch(uMsg)
 {
 case WM_SETCURSOR:
 SetCursor(LoadCursor(g_hInstance, MAKEINTRESOURCE(IDC_HANDY)));
 return 0;
 case WM_MEASUREITEM:
 MeasureItem(HWND_DESKTOP, reinterpret_cast<LPMEASUREITEMSTRUCT>(lParam));
 break;
 case WM_DRAWITEM:
 DrawItem(reinterpret_cast<LPDRAWITEMSTRUCT>(lParam));
 break;
 case WM_CONTEXTMENU:
 return 0;
 case BM_SETSTATE:
 case WM_LBUTTONDOWN:
 {
 WNDCLASS wc;
 GetClassInfo(NULL, "Button", &wc);
 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, TRUE, 0);

 STARTMENUPOS smp;
 GetStartMenuPosition(&smp);
 HMENU hmnuPopup = GetMenuHandle("c:\\myStartMenu");
 int iCmd = TrackPopupMenu(hmnuPopup,
 smp.uFlags | TPM_RETURNCMD | TPM_NONOTIFY,
 smp.ix, smp.iy, 0, hwnd, NULL);

Chapter 7

208

 // Handle the user's mouse clicks
 HandleResults(hmnuPopup, iCmd);

 // Free memory
 DestroyMenu(hmnuPopup);

 CallWindowProc(wc.lpfnWndProc, hwnd, BM_SETSTATE, FALSE, 0);
 return 0;
 }
 }

Executing Commands
The menu is now complete and operational, with only the slight drawback that none of the items we
add to it actually does anything! From the listing above, you can see that the answer will have
something to do with the HandleResults() function, but a question arises as to what kinds of item
we expect on the menu. Will they just be application commands, or shortcuts to documents and
programs?

Of course, this ultimately depends on your requirements. I've chosen to read the contents of a
directory on disk and arrange a menu dynamically. (This is exactly what the shell does when you add
shortcuts to the Start or Programs menus.) As mentioned earlier, the assumption is that the handler
will find shortcuts to file objects, which it then resolves and appends to the menu. Finally, it adds a
separator and a standard 'quit' item.

A shortcut's description becomes the menu item's text. If the shortcut hasn't got a description (a
common situation), then the file name is used. When the item is clicked, the module simply calls the
file pointed to by the shortcut:

void HandleResults(HMENU hmenu, int iCmd)
{
 MENUITEMINFO mii;
 LPMENUSTRUCT lpms;

 if(iCmd <= 0)
 return;

 if(iCmd == ID_FILE_EXIT)
 {
 UninstallHandler();
 return;
 }

 mii.cbSize = sizeof(MENUITEMINFO);
 mii.fMask = MIIM_DATA;
 GetMenuItemInfo(hmenu, iCmd, FALSE, &mii);
 lpms = reinterpret_cast<LPMENUSTRUCT>(mii.dwItemData);
 ShellExecute(NULL, __TEXT("open"), lpms->szFile, NULL, NULL, SW_SHOW);
}

If the item clicked on was Restore Previous Settings then UninstallHandler() is called and the
function exits. For any other selection, the path to the file to be executed is extracted from the item
data, and then the ShellExecute() API function, which we will examine in detail in the next
chapter, is used to execute the file. Our custom Start menu is complete!

Shell Invaders

209

Browser Helper Objects
SHLoadInProc() is the lever that allows your programs to insert COM objects into the shell. I've
used a minimal COM object for this purpose, but you can, of course, use normal COM objects as
well. The point is that you don't have to be an expert COM programmer to exploit this function.
What you are required to build is something that presents itself as a COM object: it must have a
CLSID, it must be registered, and it must implement the minimum functions of any COM server. You
aren't required to implement any interfaces, but nothing prevents you from doing so if you need to.

Browser helper objects, on the other hand, are fully qualified, in-process COM servers that Internet
Explorer (and Explorer too, if you're running shell version 4.71) loads whenever a new instance of
itself is created. Note that these objects always need an instance of a browser to be open in order to
come into play, as I'll explain in the Activation Mechanism section, shortly.

With SHLoadInProc(), it's your program that decides when and if it should head off into
Explorer's address space. The big difference with browser helper objects is that it's the browser
(Explorer or Internet Explorer) that automatically loads all the modules that are registered in a
particular area of the registry.

As their name implies, browser helper objects affect only a specific part of Explorer — the
browser, which lets you browse for files and folders.

You can now choose between two complementary methods — it's down to you to decide which of the
two options best suits your specific needs. In order to assist you in your choice, I shall examine the
relative merits of the two approaches. The main points of difference are:

! Backward compatibility
! Activation mechanism
! Registration
! Structure of the COM object
! Communication with the host
! Usage

It is important to keep in mind that both options are valid means of loading a COM object into the
shell's memory space, and I shall evaluate them in those terms. Technically speaking, the two are
completely different: SHLoadInProc() is a function, while a browser helper object is a COM
object.

Backward Compatibility
While SHLoadInProc() is supported from shell version 4.00 onwards, browser helper objects are
specific to shell 4.71 — they were introduced with Internet Explorer 4.0. Both work well on all Win32
platforms, with the exception of Windows CE.

Remember that shell version 4.71 means that you must have Internet Explorer 4.0 or higher and
Active Desktop. Both are included in Windows 98.

Chapter 7

210

Activation Mechanism
The two methods are quite different from this point of view. SHLoadInProc() allows your
application to load a COM object into the shell's context programmatically. Browser helper objects,
on the other hand, are registered objects that are loaded into memory by Internet Explorer and
Explorer each time a new instance is started. You can't control when browser helper objects are
loaded into memory.

To have helper objects in action, you must open an instance of Explorer or Internet Explorer.
Furthermore, an instance of the helper is associated with every instance of Explorer or Internet
Explorer — the helper will be unloaded as soon as the instance with which it is associated is closed.

Registration
SHLoadInProc() can load any COM object that is correctly registered as such. A browser helper
object must also be registered in a specific registry path so that Explorer and Internet Explorer can
see it. (See the Registering Helper Objects section for more information on this.)

Structure of the COM Object
As shown above, SHLoadInProc() can manage and successfully load any COM object — even fake
objects that don't implement interfaces. A browser helper object must have a well-defined format,
which is verified by the browser (both IE and Explorer). There's just one rule: implement the
IObjectWithSite interface.

Communication with the Host
Objects loaded via SHLoadInProc() don't receive a pointer to the IUnknown interface of the shell.
This might constitute a significant limitation, but if your goal is simply 'subclassing' shell objects, then
you don't need that pointer. By 'subclassing' I mean any technique that allows you to modify and
filter the behavior of an object (the Start button, for example) using brute force, in such a way that
the object is 'unaware' of your actions.

Having a reference to the objects of the host environment, on the other hand, allows contact with
them through their public programming interface, which is a much neater (and almost certainly safer)
approach. This also opens up a new range of exploitable functionality, of which event handling is the
most useful. A helper object loaded by the browser can retrieve a pointer to IWebBrowser2, and
handle all the events that the browser fires. (See Further Reading.) This communication is supported by
the IObjectWithSite interface.

Usage
SHLoadInProc() has the advantage that it can be used to load a variety of objects, including 'fake'
objects as shown earlier. In principle, you can use SHLoadInProc() to load helper objects too.
Unfortunately, though, it doesn't allow you to communicate with the shell through the latter's
IUnknown interface, so in this respect browser helper objects are more versatile, although they can't
be loaded programmatically. SHLoadInProc() works only with Explorer, whereas helper objects
work with both Internet Explorer and Explorer, but SHLoadInProc() doesn't require an instance of
Explorer or Internet Explorer to be open.

Shell Invaders

211

I took the fake COM module that I developed earlier and tried registering it as a helper object, and it
worked fine! In this scenario, the 'minimal' COM object works in the same way and for the same
reasons as it does with SHLoadInProc(): it exports DllGetClassObject(), which is always
invoked.

Registering Helper Objects
A browser helper object is a COM module that must register itself under the following path:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Browser Helper Objects

The CLSIDs of all the enabled modules are listed under the Browser Helper Objects key. Explorer
(and Internet Explorer) loads them one after another. Remember that a new instance of the browser
is also created when you open the Recycle Bin or the Printers folder, which means that the helper
objects get called very frequently — or at least, more frequently than you might expect. (Look out for
dialog boxes or modal windows…) The list of the helpers is never cached, and always re-read from
disk, so it only takes a second to get rid of modules that are no longer useful — you just have to
remove the corresponding CLSID line in the registry. Happily, removing an object from this sub-tree
doesn't affect the server's global registration status. Other applications will find it the same as they
did before.

The IObjectWithSite Interface
With SHLoadInProc(), a module gets loaded into Explorer's address space, but there is no COM-
based connection to it. In other words, it doesn't receive the IUnknown pointer of the browser, and it
can't access the object model. Helper objects fix this by implementing the IObjectWithSite
interface.

When the browser loads one of the COM servers listed in the registry, it queries for the
IObjectWithSite interface. If it is found, the module is passed a pointer to the browser's
IUnknown interface via the SetSite() method.

The IObjectWithSite interface includes just two methods in addition to the IUnknown triplet:
SetSite() and GetSite().

HRESULT IObjectWithSite::SetSite(IUnknown* pUnkSite);
HRESULT IObjectWithSite::GetSite(REFIID riid, void** ppvSite);

SetSite() is called by the browser and may be considered to be a kind of entry point. GetSite()
works much like QueryInterface(), and returns a pointer to the specified interface on the site last
set by SetSite().

Writing a Helper Object
If you plan to write a browser helper object, ATL can provide considerable assistance. Once you've
created a skeleton DLL with the ATL COM AppWizard, you can add a new simple object with the
Object Wizard and derive it from IObjectWithSiteImpl. All that remains then is to fill the body
of SetSite() with the helper's logic.

Chapter 7

212

To demonstrate this, I'll rewrite the tool that creates a new folder when a specific key is pressed as a
helper object. Browser helper objects are more applicable to creating small utilities that enhance
Explorer than to generic extensions to shell objects, and so a browser helper object seems to be the
ideal means to add new accelerators to Explorer. We no longer need an application to inject code
into Explorer's context; instead, we have to create a COM object that implements
IObjectWithSite.

There are two points to consider:

! Finding the handle of Explorer's window
! The keyboard hook to detect the accelerator

My previous solution was based on a global hook on window creation. When the hook procedure
detected the creation of a window of a certain class (ExploreWClass), it installed a local hook on
keyboard activity. When F12 was pressed, Explorer's window received the command message that
caused it to create a new folder. A helper object, on the other hand, is loaded when an Explorer
window already exists. However, FindWindow() is not necessarily the right function for finding the
handle of Explorer's window, because it returns the handle of the top level window of the specified
class. Consequently, if multiple copies of Explorer are running at the same time, we can't be sure it is
our window.

If multiple copies of Explorer are running at the same time, each of them runs in its own thread. For
browser helper objects, a better approach to finding the handle of Explorer's window is to enumerate
the windows owned by the current thread, like this:

EnumThreadWindows(GetCurrentThreadId(), WndEnumProc,
 reinterpret_cast<LPARAM>(&m_hwndExplorer));
if(!IsWindow(m_hwndExplorer))
 return E_FAIL;

EnumThreadWindows() is an API function that enumerates all the windows created by the
specified thread. Each window is then processed by the callback function passed as the second
argument, which in this case is WndEnumProc():

BOOL CALLBACK CNewFolder::WndEnumProc(HWND hwnd, LPARAM lParam)
{
 TCHAR szClassName[MAX_PATH] = {0};
 GetClassName(hwnd, szClassName, MAX_PATH);
 if(!lstrcmpi(szClassName, __TEXT("ExploreWClass")))
 {
 HWND* phWnd = reinterpret_cast<HWND*>(lParam);
 *phWnd = hwnd;
 return FALSE;
 }

 return TRUE;
}

The third parameter of EnumThreadWindows() is a 32-bit value that can be used by the caller in
whatever way it sees fit. In this case, we need a way to get the handle of the Explorer window (if
there is one) returned, and for this reason we use the third parameter to pass a pointer to an HWND
variable. When WndEnumProc() finds a window of type ExploreWClass, it copies a handle to it to
the pointer, and then stops the enumeration process by returning FALSE.

Shell Invaders

213

Despite appearances, Explorer's window is actually
composed of a whole stack of windows; the figure
should give you a better idea of its layout. Refer to
Spy++ for the exact window classes and styles.

Each keypress is processed differently according to which window has the input focus. By installing a
local keyboard hook, we can process each key before it enters the traditional channels for distribution
among the windows.

An ATL COM Object
Let's have a look at the source code for the browser helper object. Here, the ATL COM AppWizard
has been used to generate the skeleton of the code, and a new Simple Object called NewFolder has
been added. The code for the header file newfolder.h looks like this:

#ifndef __NEWFOLDER_H_
#define __NEWFOLDER_H_

#include "resource.h" // main symbols

///
// Constants
const int NEWFOLDERMSG = 29281; // WM_COMMAND to send
const int NEWFOLDERKEY = VK_F12; // Key to detect

///
// CNewFolder
class ATL_NO_VTABLE CNewFolder :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CNewFolder, &CLSID_NewFolder>,
 public IObjectWithSiteImpl<CNewFolder>,
 public IDispatchImpl<INewFolder, &IID_INewFolder, &LIBID_OBJFOLDERLib>
{
public:
 CNewFolder()
 {
 m_bSubclassed = false;
 }
 ~CNewFolder();

DECLARE_REGISTRY_RESOURCEID(IDR_NEWFOLDER)

DECLARE_PROTECT_FINAL_CONSTRUCT()

Chapter 7

214

BEGIN_COM_MAP(CNewFolder)
 COM_INTERFACE_ENTRY(INewFolder)
 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY_IMPL(IObjectWithSite)
END_COM_MAP()

// INewFolder
public:
 STDMETHOD(SubclassExplorer)(bool bSubclass);

// IObjectWithSite
public:
 STDMETHOD(SetSite)(IUnknown* pUnkSite);

private:
 bool m_bSubclassed;
 HWND m_hwndExplorer;

// Callback functions
 static BOOL CALLBACK WndEnumProc(HWND, LPARAM);
 static LRESULT CALLBACK KeyboardProc(int, WPARAM, LPARAM);
 static LRESULT CALLBACK NewExplorerWndProc(HWND, UINT, WPARAM, LPARAM);
};

#endif //__NEWFOLDER_H_

I've derived NewFolder from the standard implementation that ATL provides for
IObjectWithSite. The only change we need to make to it is an override for SetSite(), which is
the key function for a helper object.

The code below figures out which is Explorer's window and installs the keyboard hook. Even though
it's not strictly necessary for this sample, I've subclassed Explorer's window so that the code is ready
for further enhancements.

#include "stdafx.h"
#include "ObjFolder.h"
#include "NewFolder.h"

// These constants are used inside the static members of the class
static WNDPROC g_pfnExplorerWndProc = NULL;
static HHOOK g_hHook = NULL;
static HWND g_hwndExplorer;

///
// CNewFolder

CNewFolder::~CNewFolder()
{
 if(m_bSubclassed)
 {
 SubclassExplorer(false);
 m_bSubclassed = false;
 }
}

Shell Invaders

215

/*--*/
// SetSite
// Called by Explorer/IExplorer to get in touch
/*--*/
STDMETHODIMP CNewFolder::SetSite(IUnknown* pUnkSite)
{
 HRESULT hr = SubclassExplorer(true);
 if(SUCCEEDED(hr))
 m_bSubclassed = true;

 return S_OK;
}

/*--*/
// SubclassExplorer
// Subclass the Explorer window and install the keyboard hook
/*--*/
STDMETHODIMP CNewFolder::SubclassExplorer(bool bSubclass)
{
 // Get the HWND of the Explorer's window
 EnumThreadWindows(GetCurrentThreadId(), WndEnumProc,
 reinterpret_cast<LPARAM>(&m_hwndExplorer));

 if(!IsWindow(m_hwndExplorer))
 return E_FAIL;
 else
 g_hwndExplorer = m_hwndExplorer;

 // Subclass Explorer's window
 if(bSubclass && !m_bSubclassed)
 {
 g_pfnExplorerWndProc = reinterpret_cast<WNDPROC>(SetWindowLong(
 m_hwndExplorer, GWL_WNDPROC,
 reinterpret_cast<LONG>(NewExplorerWndProc)));

 // Set a keyboard hook to detect F12
 g_hHook = SetWindowsHookEx(
 WH_KEYBOARD, KeyboardProc, NULL, GetCurrentThreadId());
 }

 // Unsubclass Explorer's window
 if(!bSubclass && m_bSubclassed)
 {
 SetWindowLong(m_hwndExplorer, GWL_WNDPROC,
 reinterpret_cast<LONG>(g_pfnExplorerWndProc));

 // Remove the hook
 UnhookWindowsHookEx(g_hHook);
 }

 return S_OK;
}

/*--*/
// WndEnumProc
// Static member to enumerate thread windows
/*--*/

// Insert this code as given in the above discussion.

Chapter 7

216

/*--*/
// NewExplorerWndProc
// Static member to replace Explorer's wndproc
/*--*/
LRESULT CALLBACK CNewFolder::NewExplorerWndProc(
 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 // This does nothing, so just call into the standard procedure
 return CallWindowProc(g_pfnExplorerWndProc, hwnd, uMsg, wParam, lParam);
}

/*--*/
// KeyboardProc
// Static member to handle keys
/*--*/
LRESULT CALLBACK CNewFolder::KeyboardProc(
 int nCode, WPARAM wParam, LPARAM lParam)
{
 // Typical start-off for any hook
 if(nCode < 0)
 return CallNextHookEx(g_hHook, nCode, wParam, lParam);

 // Process the key only once
 if((lParam & 0x80000000) || (lParam & 0x40000000))
 return CallNextHookEx(g_hHook, nCode, wParam, lParam);

 if(wParam == NEWFOLDERKEY)
 PostMessage(g_hwndExplorer, WM_COMMAND, NEWFOLDERMSG, 0);

 return CallNextHookEx(g_hHook, nCode, wParam, lParam);
}

Another thing you might wish to do when writing a helper object is to make it completely self-
registering. In order to register the browser helper object correctly, you need to add the following
code to the RGS script:

HKLM
{
 SOFTWARE
 {
 Microsoft
 {
 Windows
 {
 CurrentVersion
 {
 Explorer
 {
 'Browser Helper Objects'
 {
 {B4F8DE53-65F4-11D2-BC00-B0FB05C10627}
 }
 }
 }
 }
 }
 }
}

Shell Invaders

217

A problem with browser helper objects is that while they aren't completely undocumented, they
are certainly under-documented. In the Further Reading section, I'll point out a good article that
includes useful code.

That completes the code for this project; you should now be able to build the project, registering the
browser helper object in the process. Any new instances of Explorer that you invoke after installing
the object will have the keyboard hook, and pressing F12 will once again produce a new folder in the
directory being displayed.

Helper Objects under Windows NT
Browser helper objects work the in the same way under Windows NT as they do under Windows 9x.
The registration process is identical, as is the design logic that you should follow. There's just one
pitfall to avoid: Unicode. Under Windows NT, helper objects really need to be Unicode modules. If
they aren't, the code will still work after a fashion, but some strings in Explorer's user interface will
be truncated!

Fortunately, because we're using ATL, recompiling for Unicode is just a matter of choosing the
appropriate setting from the Active Configuration combo box on the Build menu. For browser helper
objects, then, you need to create and deploy two different versions: ANSI for Windows 9x, and
Unicode for Windows NT.

Glossary of Techniques for Entering the Shell
I've now explored three ways to access the shell's address space. Below is a table that summarizes the
techniques, and allows you to cross-reference them.

Parameter Brute force SHLoadInProc() Helper Object

Backward
compatibility

Shell 4.00 Shell 4.00 Shell 4.71

Activation
mechanism

Programmatically Programmatically Loaded automatically by
the shell

Registry impact None Ordinary COM
object registration

Ordinary COM object
registration plus specific
registration for helpers

Structure of the
code

Based on global
hooks

A COM object
with no specific
interface

A COM object
implementing
IObjectWithSite

Communication
with the host

Through
subclassing

Through
subclassing

Through the site's
IUnknown interface

Required
knowledge

Win32
programming

Win32
programming and
minimal COM
competence

Win32 programming and
good knowledge of COM

Chapter 7

218

Summary
In this chapter, I've examined various ways of invading the shell's territory and modifying the
behavior and the look of the shell. I started with notification objects, which enable Explorer to
become aware of changes in the file system, and then touched upon shell notifications, which are a
more general way to achieve the same result. (In fact, they are quite different, but they share the same
goal.)

Next, I covered the topic of interprocess communication, talked about subclassing and hooking, and
demonstrated a utility that adds a keyboard accelerator to Explorer and allows you to create new
folders by pressing a single key. I showed you how a single shell API can be used to take your code
straight into the shell's context. Later on I looked at how to replace the Start button, and scratched
the surface of many Win32 programming topics, including owner-drawn controls, tooltips and button
styles. Finally, I introduced browser helper objects — a new way to enhance the behavior of both
Explorer and Internet Explorer. In summary, I demonstrated:

! How to get file system notifications
! How to get into the shell's address space
! How to subclass the Start button
! How to implement a fully customized menu
! The differences between SHLoadInProc() and Browser Helper Objects

Further Reading
I've covered many topics in this chapter, so I'll revisit them in order and address additional sources of
information. First, notification objects, of which an example may be found in the Wicked Code column
of the October 1996 edition of MSJ. The author, Jeff Prosise, shows how to build an MFC class that
works in roughly the same way as Explorer's tree view — that is, it loads and displays drives and
folders. This class uses notification objects to detect changes.

Notification objects are also covered in Jeff Richter's Advanced Windows book (Microsoft Press, ISBN
1-57231-548-2). Additionally, you'll find information about file monitoring under Windows NT, an
explanation of the whys and wherefores of separate address spaces in Win32, and three examples of
how to break process boundaries.

When it comes to fundamental techniques like subclassing, owner-drawing, and hooks, I'd
recommend Petzold's Programming Windows 95 book (Microsoft Press, ISBN 1-55615-676-6). If you're
more oriented towards MFC programming, then Mike Blaszczak's Professional MFC with Visual C++
(Wrox Press, ISBN 1-861000-14-6) is a good choice. (I'd also recommend my first Win32 book, but
unfortunately it only exists in Italian! If you're interested, the title is Progettare applicazioni per Win32
(McGraw-Hill, 88386-0444-4.)

Shell Invaders

219

Earlier in the chapter, I mentioned an article that stimulated my curiosity in SHLoadInProc(). It
was written by Eric Heimburg, and appeared in the February 1998 edition of WDJ under the title
Monitoring System Events by Subclassing the Shell. Similarly, I heard about browser helper objects from
an article published in the May 1998 issue of MIND. Scott Roberts' piece Controlling Internet Explorer
4.0 with Browser Helper Objects shows how to build an ATL-based COM server that will be loaded each
time a new instance of (Internet) Explorer executes. Specifically, the sample provided displays a log
window to trace all the events fired. Other related material, more oriented to Internet Explorer and
its object model, are my article Hooking the IE 4.0 Object Model, which appeared in the December 1997
edition of MIND, and Scott Roberts' Keeping an Eye on your Browser by Monitoring IE 4.0 Events, which
appeared in MSJ, June 1998.

To conclude, here are a few Knowledge Base articles that I found useful:

! Knowledge Base Article Q142276: Icon Handlers in Start Menu Don't Match Those in Explorer
! Knowledge Base Article Q160976: Controlling the Currently Running Instance of IE3 via DDE
! Knowledge Base Article Q176792: Connecting to a Running Instance of Internet Explorer

Program Executors

With the advent of Windows 95, the concept of a 'document' gained importance. Behind this word
there are more than just bare ASCII text files, and I'm not just talking about more complex Word or
Excel files. By 'document', I mean a more general object that is part of the system's namespace, and
for which there is (or may be) a program that can 'open', 'print', 'explore', or 'find' it. In other words,
a document is an item upon which a program can execute verbs — command strings such as, "Open,"
"Print," and "Explore."

The ability to be executed is no longer a privilege only of the small category of files with extensions
like .exe, .com, .pif or .bat. From Windows 95 on, all files with an associated set of verbs have
become executable.

A direct consequence of this is that today there is less and less sense in having a function that only
executes programs. Programs are just files, and running them is just an action that you perform on a
file. When it comes to finding a way to spawn an external program, we now have a range of choices,
but as I will show, the correct choices are fairly obvious. There has been some evolution, but
essentially we're moving from one single function — WinExec() — to another —
ShellExecuteEx() — through a couple of intermediate stages.

In this chapter, I will present the various options that you have for starting applications, creating
processes and opening documents. In particular, I'll cover:

! The differences between WinExec() and CreateProcess()
! How ShellExecute() and ShellExecuteEx() supersede the other functions
! Verbs, documents and policies
! How to customize the execution process via hooking

Chapter 8

222

I'll also present some quick code examples that illustrate things such as:

! How to detect the default browser
! How to run programs and wait for them to terminate
! How to display the Properties dialog box for a file
! How to display the Find dialog box
! How to prevent users from accessing certain folders or running certain applications

To begin, let's see how and why CreateProcess() is far superior to dear old WinExec().

From WinExec() to CreateProcess()
Under Windows 3.1, WinExec() was the only way to run an external program. It has the world's
simplest prototype — one of very few that you can remember on the fly, without even a quick glance
at the online help. You want to launch another program? All you need to do is specify its name, and
the attribute that you want the new window to have:

UINT WinExec(LPCSTR lpCmdLine, UINT uCmdShow);

The lpCmdLine parameter is a pointer to a NULL-terminated string that contains the command line
of the application that you want to start: the program name and any arguments you want it to receive.
uCmdShow is one of the well-known SW_ constants that determine whether the resulting window
should be iconic, maximized, hidden, visible, etc.

The major drawback of WinExec() is that you can't detect whether the newly started process has
terminated, when many of the real-world uses of this functionality require exactly that sort of
synchronization. What WinExec() returns is a value that's an error code if it's less than 32, and
something related to the task otherwise. While it's possible to find a way of establishing a minimum
level of communication between caller and callee, doing so is an unofficial, unnatural, and potentially
unsafe road to follow. See Further Reading for more information on these topics.

Externally, WinExec() has changed little in the process of being ported from Win16 to Win32, but
internally it now calls CreateProcess() to help with its duties. This latter function should be the
first one you consider when you need to create a new process.

A Comparison of WinExec() with CreateProcess()
A good measure of the differing powers of WinExec() and CreateProcess() can be obtained by
comparing their respective prototypes. You've already seen the one for WinExec(), so let's now take
a look at that of CreateProcess():

BOOL CreateProcess(
 LPCTSTR lpApplicationName, // Pointer to name of executable module
 LPTSTR lpCommandLine, // Pointer to command line string
 LPSECURITY_ATTRIBUTES lpPA, // Pointer to process security attributes
 LPSECURITY_ATTRIBUTES lpTA, // Pointer to thread security attributes
 BOOL bInheritHandles, // Handle inheritance flag
 DWORD dwCreationFlags, // Creation flags
 LPVOID lpEnvironment, // Pointer to new environment block
 LPCTSTR lpCurrentDir, // Pointer to current directory name
 LPSTARTUPINFO lpStartupInfo, // Pointer to STARTUPINFO
 LPPROCESS_INFORMATION lpPI // Pointer to PROCESS_INFORMATION
);

Program Executors

223

As you can see, there are a great many new features here. However, CreateProcess() is well
documented in the MSDN Library (see also the Further Reading section at the end of the chapter), so I
won't be covering it in detail here. Something that is worth doing, though, is examining what a
minimal call to CreateProcess() looks like:

ZeroMemory(&si, sizeof(STARTUPINFO));
bResult = CreateProcess(NULL, szPrgName, NULL, NULL, TRUE,
 NORMAL_PRIORITY_CLASS, NULL, NULL, &si, &pi);

Whichever way you look at it, it's a lot more complex than WinExec(). However,
CreateProcess() has at least one interesting practical advantage. While spawning a new process
requires a bit of work, as the above code demonstrates, waiting for it to terminate is really easy and
relatively inexpensive.

BOOL WinExecEx(LPCSTR lpCmdLine, UINT uCmdShow)
{
 PROCESS_INFORMATION pi;
 STARTUPINFO si;

 // Create a new process
 ZeroMemory(&si, sizeof(STARTUPINFO));
 BOOL b = CreateProcess(NULL, const_cast<LPTSTR>(lpCmdLine), NULL,
 NULL, TRUE, NORMAL_PRIORITY_CLASS, NULL, NULL, &si, &pi);
 if(!b)
 return FALSE;

 // Block the caller thread
 WaitForSingleObject(pi.hProcess, INFINITE);
 return TRUE;
}

The above code shows a function that falls somewhere between CreateProcess() and
WinExec(). Once the new process has been created, it blocks the caller thread waiting for the
process handle to become signaled. The process handle hPROCESS, returned by CreateProcess()
through the PROCESS_INFORMATION structure, is a kernel object that becomes signaled only when
the handle itself becomes NULL. The handle becomes NULL only when the process has terminated.

If the program that calls the above function has a user interface, it would be better if it first
minimized or hid itself in order to prevent painting problems. When an application is suspended, it
stops responding to the system and rejects all messages. If painting messages are being ignored, the
window won't be able to redraw itself properly if you move it around or overlap it with another
window.

Is CreateProcess() Manna from Heaven?
Apparently, CreateProcess() has solved all the problems we identified with WinExec(). We can
run programs, we can synchronize them, and we've gained great control over the entire startup
'process'. Is there anything else we could want? Considering things from the point of view of wanting
to launch applications, the answer is no, but what about documents? More specifically, what about
documents that have benefited from updates to the shell? If you think it over, the things that
CreateProcess() does, albeit very well, are just a fraction of the whole. Executable programs, in
the traditional sense of the term, are just one type of document.

Chapter 8

224

The evolution of the Windows 9x shell follows a document-centric vision, in which the verb
"Execute" is a synonym of "Use." In general, you and your users will be using documents of all types,
not just programs.

ShellExecute()
ShellExecute() was a wrapper for WinExec() that originally appeared in Windows 3.x, and was
the first example of a function that tried to put a kind of document-centric vision of Windows into
practice. It has been ported to Windows 95 and later systems, preserving the same prototype for
compatibility purposes. Under Win32 it became a wrapper for both WinExec() and
CreateProcess() because as I said earlier, WinExec() makes internal use of
CreateProcess(). Its prototype is:

HINSTANCE ShellExecute(HWND hwnd,
 LPCTSTR lpOperation,
 LPCTSTR lpFile,
 LPCTSTR lpParameters,
 LPCTSTR lpDirectory,
 INT nShowCmd);

It accepts more arguments than WinExec(), but at first sight it looks less powerful than
CreateProcess(). What really makes ShellExecute() different, though, is that it is capable of
handling file type associations. In other words, when you pass in the name of a non-executable file,
the function scans the registry and searches for an executable program capable of handling
documents of that type. As long as such a handler exists, the function will work.

I'll return to this important concept later in the chapter. In the meantime, let's take a closer look at
the function's prototype.

Parameter Description

hwnd The parent window for any message box that the function should
display.

lpOperation A string denoting the operation you want to perform on the file. (See
below.)

lpFile The name of the file on which the function is called to operate. It may
be an executable or a document.

lpParameters A string containing all the parameters you want to be passed to the
executable. Ignored if lpFile is a document file.

lpDirectory A string with the working directory for the executable. Ignored if
lpFile is a document file.

nShowCmd The display attributes for the newly created window — one of the SW_
constants. This flag isn't ignored if lpFile is a document file. (See A
Frustrating Documentation Error.)

Program Executors

225

The operations (also called verbs) you can execute on a file vary quite a bit according to the file type.
Common operations include those listed in the following table:

Operation Applies to

Open Programs, documents, folders

Explore Folders

Print Documents

Print to Documents

Find Folders

Note that by, "Common operations," I simply mean that those verbs that are commonly supported by
all types of file for which they make sense. It's a bit odd, for example, to imagine an executable being
printed. Likewise, the 'Applies to' column indicates only the types of documents to which the
command normally applies. There are no fixed and rigorous rules. Provided that you write the
necessary code, there's nothing preventing you from implementing a print operation for
executables that dumps the file header, or a find operation for a certain type of document that
retrieves pieces of information.

The default operation is open, and this is the action that takes place if you set the lpOperation
argument to NULL. Accepting the operation name, however, doesn't automatically mean that the
operation will execute. The function needs to figure out which command line to execute in response
to that verb, and this information is stored in the registry. Before we get on to that, though, let's
examine in a bit more detail how each of the 'common' operations works.

The Open Operation
You can call open to open a document, to run a program, or to dereference a shortcut. In doing so,
you may need the other parameters to have specific values:

ShellExecute(hwnd, __TEXT("open"), __TEXT("c:\\prg.exe"),
 __TEXT("/nologo"), __TEXT("d:\\"), SW_SHOW);

The above line runs c:\prg.exe, passing /nologo as its command line and specifyng d:\ as its
working directory. If the document to be opened is not an executable, then both lpParameters and
lpDirectory are ignored. As I'll show in a moment, the same doesn't hold true for nCmdShow. The
following code snippet shows how to open a .txt file in the program registered for handling them.
(Normally, notepad.exe.):

ShellExecute(hwnd, __TEXT("open"), __TEXT("c:\\file.txt"),
 NULL, NULL, SW_SHOW);

Chapter 8

226

The important thing here is that ShellExecute() is capable of opening documents if and only if
there's a program registered to handle them. If no program is registered, then the function will
prompt you for the program to use:

There are file types for which the concept of 'opening' is ambiguous. For example, suppose you have
a VBScript .vbs file. When we talk of opening this file, are we intending to edit its contents, or to
run it? Within the context of the shell, the second option is appropriate.

The Explore Operation
The explore operation applies only to
folders; it displays the given folder
inside Explorer. In the case of folders,
there's a subtle difference between the
explore and open operations. Both
let you see the contents of a folder
through Explorer, but with the latter
you get a new, single folder window,
while the former causes the creation of
a two-paned window:

The explore operation is automatically enabled for folders — that is, for documents of type File
Folder. This setting is saved during the Windows installation process. However, if an explore
operation makes sense for your documents, you can register it as well. The following code causes the
window in the picture to appear:

ShellExecute(hwnd, __TEXT("explore"), __TEXT("c:\\windows"),
 NULL, NULL, SW_SHOW);

Program Executors

227

The Print Operation
The print operation is meant to print documents, but it relies on the information stored in the
registry to identify the program and command line capable of printing the specified document. The
snippet of code here demonstrates how to print a text file:

ShellExecute(hwnd, __TEXT("print"), __TEXT("c:\\file.txt"),
 NULL, NULL, SW_SHOW);

In this configuration, the function searches for the program registered to handle text files and sees
whether it supports a command for printing. Normally, this program is notepad.exe and the
command line is:

notepad.exe /p <file_name>

Note that specifying /p is a widely supported way of issuing a print command using the
command line.

By default, the print operation tries to use the default printer. Throughout the Windows shell,
however, users can print documents by dropping the file onto a printer's icon. In this case, the code
that the shell executes looks like this

ShellExecute(NULL, __TEXT("printto"), filename, NULL, NULL, SW_SHOW);

As you can see, there's another
operation called printto. If this
is supported by the document,
then the registered command line
is executed. Otherwise, you'll be
prompted by the following dialog:

Unlike the open and explore operations, folders don't have native support for print and
printto.

The printto operation is intended to allow you to print documents from the shell using non-default
printers. Apart from the file name, there are three additional parameters that you have to pass, and
these are formatted in the lpParameter argument. The first is the name of the printer as it appears
in the Printers folder, while the other two are the name of the driver for it, and the name of the
port. If you're adding support for the printto command, then the command line will look
something like this:

MyProgram.exe %1 %2 %3 %4

Here, the first parameter is the name of the file. Consider also that it's common practice for a
Windows program to specify the printer port with the /pt option. In other words, if you're writing an
application and want it to print its documents on different printers connected on different ports, it's
recommended that you detect this option on the application's command line, via a /pt prefix:

MyProgram.exe /pt %1 %2 %3 %4

Chapter 8

228

Once again, however, this is only a convention, not a rule.

Printing to Ports
The additional three command line parameters are required to allow the system to build a device
context (DC) for the required printer. A device context is a kind of logical surface where the
Windows GDI functions send their output, and you need a specific DC for each printer you want to
print to. A printer DC is created using the CreateDC() API function, whose prototype is:

HDC CreateDC(LPCTSTR lpszDriver, // Driver name (e.g. wspuni.drv)
 LPCTSTR lpszDevice, // Device name (e.g. OKIPage 4W)
 LPCTSTR lpszOutput, // Do not use; set to NULL
 CONST DEVMODE* lpInitData); // Optional printer data

Interestingly, this function has maintained the same prototype it had in Windows 3.1 despite the fact
that in practice it needs just one argument: lpszDevice. Under Win32, printers are identified by
their descriptive names and you don't need to handle information such as the driver name and the
port name explicitly. In Windows 3.1, lpszOutput was a pointer to a string with the name of the
port. (LPT1:, for example.) Under Win32, this information remains important, but for a less direct
reason. The functions use the device name as a search key to find the registry entries where the other
information is kept.

The Find Operation
Apart from the operations mentioned above, there's another one that is completely ignored by the
documentation but hinted at by a recent Knowledge Base article in the MSDN Library (Q183903).
This new operation is find, and it applies to folders. Its effect is to run the Find: All Files system
dialog box, starting from the specified folder:

The important point to take away from this section is that ShellExecute() isn't limited to
a finite set of strings as the content of lpOperation. By editing the registry, you can add new
verbs and associate them with command lines. We'll see this in action later in the chapter.

Program Executors

229

A Frustrating Documentation Error
I don't use calls to ShellExecute() everyday, and I must confess that sometimes I don't read the
documentation from top to bottom. In many cases, I feel confident once I have understood the role of
the function. Over time, the impression formed in my mind that ShellExecute() was a highly
specialized version of WinExec(), and so when I wrote calls to it I relied on memory rather than
consulting the documentation. For this reason, I always passed SW_SHOW as the value of the
nCmdShow argument.

Then, one day, I did look at the documentation, and discovered that nCmdShow should be 0 if
lpFile isn't pointing to an executable. "Why should that be?" I wondered, "Presumably, they're
forcing SW_SHOW to be the only possible value."

To be faithful to the documentation, I replaced SW_SHOW with 0 wherever applicable, but from then
on I was able only to spawn programs. ShellExecute() appeared no longer able to open
documents. It took me a few days to realize what had happened, and the more I tested the function,
the more the system's performance slowed down.

The documentation notwithstanding, the value you pass through nCmdShow is not ignored if the
target is a file and not an executable. By passing 0, you're actually telling the function to show the
new window with the SW_HIDE attribute (which evaluates to 0). After running a bunch of test
applications and discovering this, I summoned up the courage to look at the Task Manager and
counted 23 Notepad, 12 WScript and 3 MSPaint instances running perfectly, but hidden from view!

This is definitely an error in the documentation, but there's still no mention of it on the MSDN.
Happily, I have found reference to it in WDJ Notes (available from
http://www.wdj.com/utilities.html), and this is a confirmation of my findings.

More Details of the Verbs
All the operations (also known as verbs) I have examined so far have an intuitive implementation. To
open a program, for example, means calling CreateProcess(). Exploring or even opening a
folder usually means calling explorer.exe with some specific flags on the command line, and the
Find dialog also appears due to the magic of an internal shell function — the folder name is merely an
argument that you pass. All this is simple, and somewhat 'static'.

When it comes to opening a generic document, however, things start to get complicated. Earlier in
the chapter, I mentioned VBScript files, so which program knows about those? Does it require a
specific command line? More importantly, how can the shell know about it? This is where the twin
concepts of verbs and file handlers come into play.

Verbs and File Handlers
As I mentioned earlier, a verb is a string that denotes an action that a program is capable of executing
on a particular type of file. The program can be called a 'file handler', since it knows how to deal with
that type of document.

http://www.wdj.com/utilities.html

Chapter 8

230

The association between file types, verbs and handlers can be seen in the system registry, under the
key HKEY_CLASSES_ROOT:

The figure shows a view of the sub-tree that contains a list of all the file extensions for which it's likely
that a proper handler is correctly registered. The presence of a node — say, .xyz — is not sufficient to
have that type of file perfectly managed by the system's shell. To demonstrate this point, let's
consider the VBScript files with extension .vbs, which are simply ASCII files that contain VBScript
source code.

A .vbs key under HKEY_CLASSES_ROOT is only the first step. In its Default entry, the node
contains a string that points to another key in the same sub-tree. In this case, it is:

HKEY_CLASSES_ROOT
 \VBSFile

The Default entry of this node defines the string that Explorer considers as a description of the file
type, and below it is the section that's relevant to us here. It contains all the verbs that are defined,
along with their command lines. In the case of VBScript (and on my home PC), the situation is as
depicted in the figure:

Every 'verb' key has a sub-key called Command whose Default entry points to the command line.
It's this string that will determine the actual behavior of the shell. In this case, to open (or run) a
VBScript file, the shell must use a file called wscript.exe. (I'll cover wscript.exe in Chapter 13,
when I talk about the Windows Scripting Host.) Printing a VBScript file, on the other hand, just
requires a call to Notepad with the conventional /p option:

C:\WINDOWS\Notepad.exe /p %1

Program Executors

231

As you may have realized by now, these verbs are the main components of the context menu for a
particular type of file:

The contents of these verbs are decided by programs and by expert end-users. After all, there's no
rule that tells you how to print a document: it's up to you (or the programs you install) to know the
way to do it, and to save that command line to the registry. From the shell's point of view, all that
matters is that it can find a print key under HKEY_CLASSES_ROOT\DocumentType\Shell, and
that print has a sub-key called command.

Notice here that print is not a keyword handled by ShellExecute(), but simply a word that you
would reasonably want to associate with a command line in the registry that's able to print a given
type of document.

Executing a Verb
Let's see in practice how ShellExecute() handles a sample call. This should clarify how to use the
function, and how to edit the registry if you need to do so. The call we're analyzing is:

ShellExecute(hwnd, __TEXT("OpenWithIE"), __TEXT("file.txt"),
 NULL, NULL, SW_SHOW);

The verb here is the rather strange OpenWithIE, and the intention of the call is that it be applied to
a text file. The verb is no problem for ShellExecute(), though, which just follows its normal
process:

! Find out the path to the shell registry key for the document
! Search for an OpenWithIE key
! Read the Command sub-key
! Execute the specified command line using CreateProcess(), passing the name of the

document as an argument

Chapter 8

232

First of all, let's assume that
someone has created the key
shown in this figure:

The function ends up calling this command line:

"C:\PROGRA~1\INTERN~1\iexplore.exe" -nohome %1

As it does so, it replaces %1 with the file name, file.txt. Then it's the turn of CreateProcess():

CreateProcess(NULL, const_cast<LPTSTR>(lpCmdLine), NULL, NULL, TRUE,
 NORMAL_PRIORITY_CLASS, NULL, NULL, &si, &pi);

Where the lpCmdLine argument will be:

"C:\PROGRA~1\INTERN~1\iexplore.exe" -nohome file.txt

Ultimately, as a result of the call, Internet Explorer will open the text file in read-only mode.

Static and Dynamic Verbs
All the keys found in the registry should be considered static verbs, and they are the only sorts of
verbs that we can expect a function like ShellExecute() to recognize. However, there are also
dynamic verbs, which are context menu items that are added at runtime under conditions that may
vary on the fly, or on a per-file basis. To handle static verbs, the shell always needs to create a new
process, starting from the command line that you stored in the registry. Dynamic verbs, on the other
hand, are handled by shell extensions that exist in the same process as the shell.

Getting the Executable Name for a File
If your goal is simply to open a particular file, then ShellExecute() is what you need. All that you
then need to know is the name of the file to open. However, there may be other circumstances in
which you need to know the exact name of the program registered to handle files of a given type on a
given computer. Let's see an example of that.

Have you ever wondered how browsers detect when they are no longer your default browser, and
promptly complain about this? Roughly speaking, they try to read the name of the executable file
registered to handle HTML files. If they don't find their name, they realize that you have changed
your allegiance, and feel authorized to reproach you officially!

The Windows SDK defines a function that returns the name of the executable file that's registered to
handle a given file type. Its name is FindExecutable(), and it's declared in shellapi.dll:

HINSTANCE FindExecutable(LPCTSTR lpFile, LPCTSTR lpDirectory, LPTSTR lpResult);

Program Executors

233

The prototype is quite self-explanatory. It accepts the name of the document, and a base directory if
the name isn't fully qualified. If the file name is complete (specifies both drive and directory) then
lpDirectory is redundant. The name of the file is returned through lpResult.

FindExecutable() searches the registry for the file extension provided, and returns the contents
of the shell\open\command\default entry.

Flaws in FindExecutable()
There are a few points about this function that need clarification: FindExecutable() isn't perfect,
and it suffers from at least one known bug. For a start, the documentation claims that the return value
should be greater than 32 to denote success, but I have no idea of what it really means — is it an
HINSTANCE (of what?), a DDE conversation ID (why does it need DDE?) or a just a random number
(I hope not!). On Win32 platforms, I would have found a Boolean value far more reasonable.

The File Must Exist
FindExecutable() has a couple of other, more interesting, flaws. The first one regards the file
name: even though this is not clearly pointed out in the documentation, the file name you're passing
must exist. I suspect that this behavior is forced by backward compatibility; in my opinion, there's no
reason for not retrieving the executable associated with a file name just because the file itself doesn't
exist. The information you're seeking is only tied to the extension of that file name. If I want to know
the name of the default browser, I should be able to call FindExecutable() and pass *.htm as the
file name. To demonstrate that these are not far-fetched ideas, let me say that SHGetFileInfo()
(which we examined in Chapter 4) lets you do just this.

Avoiding Spaces in Path Names
Last but not least, FindExecutable() has real problems with long file names that include spaces.
There's an MSDN article (See Further Reading) about this with a few workarounds, and I suggest that
you pay close attention. This is a definite bug in the code, and this time Microsoft appears to be fully
aware of the problem.

When you ask FindExecutable() to retrieve a path name, it reads the registry and returns the
string. The problem is that sometimes, these strings include command line arguments, but it's not
easy for the function to determine where they begin. A good rule of thumb to follow is that you
should enclose the file name in quotes, so that the function can assume everything after the last quote
to be arguments:

Default = "c:\my Dir\theApp.exe" \n

If you don't do this, the chances are that the function will cut off a portion of the string while trying to
locate possible command line arguments, because it will assume that the arguments begin after the
first space. Thus, if the path name includes spaces, it will be truncated. For example, if the string to
be retrieved is:

c:\My Dir\theapp.exe

Then what actually gets returned to you is:

c:\My

Chapter 8

234

I have noticed that Internet Explorer (see above) registers its 8.3 name in the registry (under the
HKEY_CLASSES_ROOT\htmlfile\shell\command key), rather than its long file name. Many
other Microsoft programs do the same thing, and the problems with long file names when using
FindExecutable() are the reason.

Using Long File Names without Rules
This bug has been known since December 1995, but nearly 3 years later it is still waiting for a fix.
However, FindExecutable() is only partially responsible for problem — it simply inherits the
complexity that derives from using long file names without rules. Let me emphasize again that if you
enclose the path name in quotes, everything works perfectly.

The MSDN article that describes the bug (see Further Reading for references) points out that you can
just replace the terminating \0 of the string returned to you with a space (ASCII 32), and the string
will then be fixed. Unfortunately, this is not quite true; let's see why.

Microsoft is right when it claims that replacing the null character that truncated the string with a
space restores the string to its initial state. This occurs because the memory buffer hasn't actually
been changed or set to zero. The function shown below should work fine:

HINSTANCE FindExecutableEx(LPCTSTR lpFile, LPCTSTR lpDirectory, LPTSTR lpResult)
{
 HINSTANCE hi = FindExecutable(lpFile, lpDirectory, lpResult);

 lpResult[lstrlen(lpesult)] = 32; // 32 is the ASCII value of space

 return hi;
}

Or rather, it would do, if it weren't for a small problem. As a result of this modification, what you're
returned is the string read from the registry. The trouble is that this is the string with the command
line arguments that originated the problem! For example, suppose that the shell\command string
is:

c:\My Dir\theapp.exe %1

Now suppose further that the file name for which you want the executable is c:\myFile.xyz.
Normally, FindExecutable() would return:

c:\My

By applying the suggested workaround (by using FindExecutableEx()), the string returned
becomes:

c:\My Dir\theapp.exe c:\myFile.xyz

Now it's up to you to extract the real file name! Remember that you can't rely on spaces to break the
string into its component parts, because it might be one long file name with spaces everywhere, even
in the extension.

Program Executors

235

A More Reliable Workaround for FindExecutable()

If you use the faithful old _splitpath() function to break a file name like the one above into its
component parts, your directory item will be \My Dir\theapp.exe c:\

_splitpath() extracts whatever is between the first and the final backslash in the string you pass
to it. If there's a file name as an argument, then there will always be a ':' in the extracted string.
Thus, it suffices to truncate the string at that point and then split it again. Here's the code:

HINSTANCE FindExecutableEx(LPCTSTR lpFile, LPCTSTR lpDirectory, LPTSTR lpResult)
{
 // These _MAX constants defined in stdlib.h
 TCHAR drive[_MAX_DRIVE];
 TCHAR dir[_MAX_DIR];
 TCHAR dir1[_MAX_DIR];
 TCHAR file[_MAX_FNAME];
 TCHAR ext[_MAX_EXT];

 HINSTANCE hi = FindExecutable(lpFile, lpDirectory, lpResult);
 lpResult[lstrlen(lpResult)] = 32;

 _splitpath(lpResult, drive, dir, file, ext);

 // Search for : in the directory name, and truncate the string
 LPTSTR p = strchr(dir, ':');
 if(p != NULL)
 {
 --p;
 dir[p - dir] = 0;

 // Now split what remains again to get file and extension
 _splitpath(dir, NULL, dir1, file, ext);
 _makepath(lpResult, drive, dir1, file, ext);
 }

 return hi;
}

It works! Or rather, it works provided that there's nothing on the command line between the program
name and the file. In other words, if the layout is like this, then you're OK:

c:\My Dir\theapp.exe %1 [whatever you want]

But if it's like this, you still have a problem:

c:\My Dir\theapp.exe [option list] %1

Unfortunately, this isn't an unusual choice, and I can't offer you a 100% safe solution — I'm not at all
sure that a solution is even possible. If you've ever worked with long file names, you will know that
when it comes to free parsing, they are really hard nuts to crack.

What happens is that the option list is automatically appended to the file extension, and unless it
contains invalid long file name characters, an extension containing a space like .exe -p is perfectly
acceptable. Moreover, _splitpath() and _makepath() just handle strings and don't check the
components for long file name compatibility.

Chapter 8

236

To cut a long story short, I think that truncating the file extension to the first space would be a good
first approximation. In my experience, I've never seen a real-world use of spaces in file extensions. In
conclusion, then, the final FindExecutableEx() function looks like this:

HINSTANCE FindExecutableEx(LPCTSTR lpFile, LPCTSTR lpDirectory, LPTSTR lpResult)
{
 ...

 // Search for : in the directory name, and truncate the string
 LPTSTR p = strchr(dir, ':');
 if(p != NULL)
 {
 --p;
 dir[p - dir] = 0;

 // Now split what remains again to get file and extension
 _splitpath(dir, NULL, dir1, file, ext);
 p = strchr(ext, 32);
 ext[p - ext] = 0;
 _makepath(lpResult, drive, dir1, file, ext);
 }

 return hi;
}

The FindExecutable() bug is a long story that began a few months after the release of Windows
95, and is still far from ending. The bug lives on in Windows 98!

You may be aware that shell versions 4.71 and later support a new library called
shlwapi.dll that's full of apparently useful functions for string and path name
manipulation. You might be wondering whether such functions, with promising names like
PathRemoveArgs(), could have helped here. Unfortunately, they don't — I tried them out,
but they aren't smart enough to handle long file names successfully. (I'll cover shlwapi.dll in
Chapter 10.)

ShellExecute() Tips and Tricks
I mentioned earlier that ShellExecute() is a very useful function for performing operations on
files and system objects. In addition to this, when used in conjunction with FindExecutable(), it
can help you to perform some tricky tasks more quickly. Here's a collection of examples.

Detecting the Default Browser
To determine the default browser for a machine, you need to specify the name of an existing .htm
file to FindExecutable(). A self-contained routine might create an empty file on the fly, call
FindExecutable(), and then delete the file again:

void GetDefaultBrowser(LPTSTR szBrowserName)
{
 HFILE h =_lcreat("dummy.htm", 0);
 _lclose(h);

 FindExecutable("dummy.htm", NULL, szBrowserName);
 DeleteFile("dummy.htm");
}

Program Executors

237

Of course, to detect whether your default browser is Internet Explorer or Netscape Communicator,
you can simply check the value of the Default entry in the HKEY_CLASSES_ROOT\.htm key. It
will be htmlfile if the browser is Internet Explorer or NetscapeMarkup if the browser comes
from Netscape. Each browser writes (and leaves) its own settings in a separate registry sub-tree. Then,
just by changing the magic word in the .htm key, the default browser is switched.

Connecting to a URL
If you need to know the browser's name in order to connect to a remote URL, or to view a HTML
file, then there's a quicker solution: ShellExecute().

ShellExecute(NULL, NULL, __TEXT("http://www.wrox.com"), NULL, NULL, SW_SHOW);

The function itself does the job of retrieving and launching the browser (if one is installed). When the
file name is prefixed by http, ShellExecute() searches under HKEY_CLASSES_ROOT\
http\shell\open\command.

Sending e-mail Messages
To send e-mail messages programmatically, you have a number of choices: there are Collaborative
Data Objects (CDO), the Messaging API, or you can rely on the services of other applications like
Microsoft Outlook. I always envied the simplicity of this task in HTML pages, where you just need a
link through the specialized mailto protocol:

Dino Esposito

Well, thanks to ShellExecute(), the same simplicity is available also to Windows programs:

ShellExecute(NULL, NULL, __TEXT("mailto:desposito@infomedia.it"),
 NULL, NULL, SW_SHOW);

Once more, the key is in the registry:

HKEY_CLASSES_ROOT
 \mailto
 \shell
 \open
 \command

http and mailto are examples of pluggable protocols — custom URL protocols built into an in-
process COM server that guide the browser through the process of accessing the resource. With
ShellExecute(), you can invoke resources through any registered protocol, even a custom
protocol like res: or about:. (See Further Reading.)

Printing Documents
As long as a program that enables printing via the command line for certain kinds of documents
exists, you can issue a command like this:

ShellExecute(NULL, __TEXT("print"), szDocName, NULL, NULL, SW_SHOW);

A common convention is to enable printing of a document by using the /p option on the command
line, but it is just a convention — feel free to use any option you want to denote printing.

http://www.wrox.com
mailto:desposito@infomedia.it>Dino
mailto:desposito@infomedia.it

Chapter 8

238

Finding Files and Folders
If you need to run the Find dialog, starting from a specific folder, it's as easy as calling:

ShellExecute(NULL, __TEXT("find"), szDirName, NULL, NULL, SW_SHOW);

If you specify NULL or the empty string as the folder name, the dialog will appear ready to work on
drive C. If you pass a non-zero string that points to a non-existent folder, you'll get an error.

ShellExecute() vs. CreateProcess()
I have now said enough about ShellExecute() for us to be able to hazard a comparison with
CreateProcess(). The point is not to determine which function is better (they are quite different,
and both are very useful), but which function to use when it comes to creating a process.

The first thing to take into account is that internally, ShellExecute() calls CreateProcess(),
and so ShellExecute() is necessarily a smaller and simpler-to-use wrapper for
CreateProcess(). On the other hand, ShellExecute() is flexible enough to let you open and
print documents, not to mention more specific verbs that are available to document classes.

Unless you need to create processes that exploit the advanced features CreateProcess() makes
available (debug mode, priority, environment settings, startup information and the like), I
recommend that you always choose ShellExecute(), which has a simpler syntax.

Why You Should Use ShellExecute() to Run Programs
Another argument that tilts the balance in favor of using ShellExecute() is a guideline from
Microsoft that forms part of the current draft for the new Logo Requirements — that hefty tome you
should depend upon when creating logo-compliant Microsoft Windows 98 and Windows NT
applications.

Microsoft recommends that you use ShellExecute() to run external applications because it
ensures that any restrictive policy adopted by the system administrator will be carefully checked.
System policies allow administrators to decide which applications can or can't be started from
Windows. ShellExecute() takes this blacklist into account, whereas CreateProcess() does
not.

Policies
A policy is simply a collection of related settings that's normally saved in the system registry. One of
the most interesting of these collections is called Shell Restrictions, which contains registry entries
that let you control the functionality of the Start menu and Explorer.

One of the things you can do is to prevent the shell from displaying the Run or the Find item in the
Start menu. In the same way, you can forbid the changing of settings through the Control Panel, or
through the taskbar Properties dialog. Let's see how to set such things up.

Program Executors

239

The Shell Restrictions Policy
The registry key involved in the Shell Restrictions policy is:

HKEY_CURRENT_USER
 \Software
 \Microsoft

 \Windows
 \CurrentVersion
 \Policies
 \Explorer

To do what was outlined above, you need to create some new entries that don't exist by default,
setting them to 0 or 1 as appropriate:

Entry Description

NoRun If the entry is set to 1, this hides the Run... command from the Start menu

NoFind If 1, hides the Find command from the Start menu

NoSetFolders If 1, hides all the standard Settings commands from the Start menu

NoSetTaskbar If 1, hides the Taskbar Properties dialog

For the update to take place, all the entries must be DWORDs. When you remove commands in this
way, the changes take place immediately, but the user interface isn't updated until next time you
reboot the machine. If you try to use one of the commands during this period, you'll get a message
box like this:

A good source of information about the registry keys to use for implementing policies may be
found in the Platform SDK area of the MSDN Library. In particular, check out the Windows
Logo and Programming Guidelines.

Extending ShellExecute()
Despite supporting policies, ShellExecute() has a significant drawback that can make using it
difficult: it doesn't return, or let you know, the handle of the newly created process. This means that
we can't, for example, spawn a program and wait for it to terminate before continuing execution. In
other words, ShellExecute() suffers from its 16-bit origins that allow it to exploit only a subset of
the new and more powerful features of CreateProcess() — the one that's also supported by
WinExec().

Chapter 8

240

However, a new function was introduced with shell version 4.0: ShellExecuteEx(). It has a
compact prototype that is typical of many shell functions, supports many flags, and, above all,
extends ShellExecute() by providing support for process synchronization and PIDLs.

ShellExecuteEx()
ShellExecuteEx() clearly supersedes ShellExecute(). It is declared in shellapi.h:

BOOL ShellExecuteEx(LPSHELLEXECUTEINFO lpExecInfo);

The SHELLEXECUTEINFO structure has the following layout:

typedef struct _SHELLEXECUTEINFO
{
 DWORD cbSize;
 ULONG fMask;
 HWND hwnd;
 LPCTSTR lpVerb;
 LPCTSTR lpFile;
 LPCTSTR lpParameters;
 LPCTSTR lpDirectory;
 int nShow;
 HINSTANCE hInstApp;

 // Optional members
 LPVOID lpIDList;
 LPCSTR lpClass;
 HKEY hkeyClass;
 DWORD dwHotKey;
 HANDLE hIcon;
 HANDLE hProcess;
} SHELLEXECUTEINFO, FAR *LPSHELLEXECUTEINFO;

Before using this structure, it's highly recommended that you fill it with zeros and set cbSize to the
actual length, like this:

SHELLEXECUTEINFO sei;
ZeroMemory(&sei, sizeof(SHELLEXECUTEINFO));
sei.cbSize = sizeof(SHELLEXECUTEINFO);

As you can see from the comment inside the declaration, the members are divided into two groups.
In practice, the first group makes ShellExecuteEx() functionally equivalent to
ShellExecute(), while the collection of optional members makes it more powerful and justifies
the 'Ex' suffix.

The hwnd, lpVerb, lpFile, lpParameters, lpDirectory and nShow members are identical in
intention to the parameters for ShellExecute() that we have already seen. The hInstApp
member, however, is an output buffer that will be filled with what was formerly the return value of
ShellExecute().

The nShow member always denotes the style of the created window, even though the documentation
says that it only specifies how the application is to be displayed if lpFile is an executable. Whether
lpFile is an executable or a document file, nShow must always be assigned the SW_ constant that
you require. Be aware that if you set it to 0, you'll have a hidden window.

Program Executors

241

Here's the simplest way to call ShellExecuteEx():

SHELLEXECUTEINFO sei;
ZeroMemory(&sei, sizeof(SHELLEXECUTEINFO));
sei.cbSize = sizeof(SHELLEXECUTEINFO);
sei.lpFile = __TEXT("explorer.exe");
sei.nShow = SW_SHOW;
sei.lpVerb = __TEXT("open");
ShellExecuteEx(&sei);

The Optional Members
One of the members that doesn't have a corresponding entry in the parameter list of
ShellExecute() is fMask. This can be a combination of one or more of the following values:

Flag Description

SEE_MASK_CLASSKEY The hkeyClass member should be used.

SEE_MASK_CLASSNAME The lpClass member should be used.

SEE_MASK_CONNECTNETDRV lpFile will be interpreted as a file name expressed in
UNC (Universal Naming Convention) format.

SEE_MASK_DOENVSUBST Any environment variables specified in the lpDirectory
and lpFile members will be expanded. %WINDIR%, for
example, opens the Windows folder.

SEE_MASK_FLAG_DDEWAIT If the function starts a DDE conversation, wait for it to
terminate before returning.

SEE_MASK_FLAG_NO_UI Don't display a message box in the case of errors.

SEE_MASK_HOTKEY The dwHotkey member should be used.

SEE_MASK_ICON The hIcon member should be used.

SEE_MASK_IDLIST Forces the function to use the contents of lpIDList
instead of lpFile.

SEE_MASK_INVOKEIDLIST Causes the function to use the PIDL specified in
lpIDList. If the member is NULL, a PIDL to lpFile is
created on the fly and used. This flag overrides
SEE_MASK_IDLIST.

SEE_MASK_NOCLOSEPROCESS Sets the hProcess member with the handle to the process.

The lpIDList member can contain a PIDL that will be used instead of lpFile. hProcess returns
the HPROCESS handle of the new process spawned.

Chapter 8

242

Additional Features
The optional fields serve to implement some additional functionality over ShellExecute(). First
and foremost, you can use PIDLs to run applications and open folders. Here's the code to open the
Printers folder:

LPITEMIDLIST pidl;
SHGetSpecialFolderLocation(NULL, CSIDL_PRINTERS, &pidl);
SHELLEXECUTEINFO sei;
ZeroMemory(&sei, sizeof(SHELLEXECUTEINFO));
sei.cbSize = sizeof(SHELLEXECUTEINFO);
sei.nShow = SW_SHOW;
sei.lpIDList = pidl;
sei.fMask = SEE_MASK_INVOKEIDLIST;
sei.lpVerb = __TEXT("open");
ShellExecuteEx(&sei);

If you also specify the SEE_MASK_DOENVSUBST flag, then you can use any environment variable in
either lpFile or lpDirectory. To open the Windows directory, for example, you can just indicate
%WINDIR%.

Lastly, we have the ability to synchronize an application launched by ShellExecuteEx()!
Provided that you turn on the SEE_MASK_NOCLOSEPROCESS bit in the fMask member, you will be
returned the handle of the new process via the hProcess member. That means the line:

WaitForSingleObject(sei.hProcess, INFINITE);

will cause the calling application to block while waiting for the other one to terminate.

Displaying a File's Properties Dialog
The SEE_MASK_INVOKEIDLIST flag is important because it gives ShellExecuteEx() another big
advantage over ShellExecute(): it enables the function to invoke dynamic verbs as well as static
ones. As I explained earlier, dynamic verbs are added at runtime by context menu shell extensions.

It works like this: if ShellExecuteEx() is unable to find the verb in the list of static verbs, it tries
to locate the context menu for the given file. This search results in a pointer to the IContextMenu
interface. The dynamic verb is then invoked through the functions exposed by the interface.

I'll deal with context menu and shell extensions later on, in Chapter 15. To discover how to get
the handle of the context menu for a given file, see Further Reading.

As a consequence of this, you can easily display the file's Properties dialog box — the same dialog
that shows up when you right-click on a file and choose Properties. Here's a simple function that
does just that:

void ShowFileProperties(LPCTSTR szPathName)
{
 SHELLEXECUTEINFO sei;
 ZeroMemory(&sei, sizeof(SHELLEXECUTEINFO));
 sei.cbSize = sizeof(SHELLEXECUTEINFO);

Program Executors

243

 sei.lpFile = szPathName;
 sei.nShow = SW_SHOW;
 sei.fMask = SEE_MASK_INVOKEIDLIST;
 sei.lpVerb = __TEXT("properties");
 ShellExecuteEx(&sei);
}

ShellExecuteEx() Return Values
The function returns a Boolean value that describes the success of the call: TRUE if successful, and
FALSE in the case of failure. GetLastError() and the value returned in hInstApp can be used to
gain more information about what has happened when something goes wrong.

Example: Program Executors
The screenshot below shows the interface of a simple demonstration program called Execute that
allows you to test verbs. As usual, it's based on the skeleton for dialog-based applications generated
by the Wrox AppWizard.

You can choose the file to test either by typing its name, or by browsing for it with the ... button. In
the Operation edit box, you should write the name of the verb you want to execute on the file.

The first two buttons – ShellExecute and ShellExecuteEx – allow you to test the respective functions.
The FindExecutable button, on the other hand, calls that function to return the name of the
executable registered to open (always the verb open) the specified file. This name is then displayed
in the Executable found edit box, while Return shows FindExecutable()'s return code.

Implementing the application's functionality is simply a matter of providing handlers for the four
buttons on the dialog. OnBrowse() is the easiest, so let's start with that.

void OnBrowse(HWND hDlg)
{
 TCHAR szFile[MAX_PATH] = {0};
 TCHAR szWinDir[MAX_PATH] = {0};
 GetWindowsDirectory(szWinDir, MAX_PATH);

 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));

Chapter 8

244

 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.lpstrFilter = __TEXT("All files\0*.*\0");
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrInitialDir = szWinDir;
 ofn.lpstrFile = szFile;
 if(!GetOpenFileName(&ofn))
 return;
 else
 SetDlgItemText(hDlg, IDC_FILENAME, ofn.lpstrFile);
}

Next comes OnShellExecute(), while simply extracts the file name and the operation from the
dialog, assembles a call to ShellExecute() itself, and displays the return value:

void OnShellExecute(HWND hDlg)
{
 TCHAR sFile[MAX_PATH] = {0};
 TCHAR sOp[MAX_PATH] = {0};
 TCHAR sRC[MAX_PATH] = {0};

 GetDlgItemText(hDlg, IDC_FILENAME, sFile, MAX_PATH);
 GetDlgItemText(hDlg, IDC_OPERATION, sOp, MAX_PATH);
 HINSTANCE h = ShellExecute(NULL, sOp, sFile, NULL, NULL, SW_SHOW);

 wsprintf(sRC, __TEXT("%ld"), h);
 SetDlgItemText(hDlg, IDC_RETVAL, sRC);
 return;
}

Thirdly, there's OnShellExecuteEx(), which does pretty much the same thing, but using a
SHELLEXECUTEINFO structure:

void OnShellExecuteEx(HWND hDlg)
{
 TCHAR sFile[MAX_PATH] = {0};
 TCHAR sOp[MAX_PATH] = {0};
 TCHAR sRC[MAX_PATH] = {0};

 GetDlgItemText(hDlg, IDC_FILENAME, sFile, MAX_PATH);
 GetDlgItemText(hDlg, IDC_OPERATION, sOp, MAX_PATH);

 SHELLEXECUTEINFO sei;
 ZeroMemory(&sei, sizeof(SHELLEXECUTEINFO));
 sei.cbSize = sizeof(SHELLEXECUTEINFO);
 sei.lpFile = sFile;
 sei.nShow = SW_SHOW;
 sei.fMask = SEE_MASK_DOENVSUBST | SEE_MASK_INVOKEIDLIST;
 sei.lpVerb = sOp;
 DWORD rc = ShellExecuteEx(&sei);

 wsprintf(sRC, __TEXT("%ld"), rc);
 SetDlgItemText(hDlg, IDC_RETVAL, sRC);
 return;
}

Program Executors

245

Finally, OnFindExec() uses the FindExecutableEx() function that we put together earlier in the
chapter to do its work:

void OnFindExec(HWND hDlg)
{
 TCHAR sFile[MAX_PATH] = {0};
 TCHAR sPrg[MAX_PATH] = {0};
 TCHAR sRC[MAX_PATH] = {0};

 GetDlgItemText(hDlg, IDC_FILENAME, sFile, MAX_PATH);
 HINSTANCE h = FindExecutableEx(sFile, NULL, sPrg);

 wsprintf(sRC, __TEXT("%ld"), h);
 SetDlgItemText(hDlg, IDC_RETVAL, sRC);
 SetDlgItemText(hDlg, IDC_EXE, sPrg);
 return;
}

Add #includes for shlobj.h, commdlg.h and resource.h to the top of your source file, make
sure that you're linking to comdlg32.h, and you should be able to compile and link the application.
The screenshot below shows it getting to grips with the Properties dialog of a GIF file:

Multi-Monitor Support
To conclude our discussion of the ShellExecute() and ShellExecuteEx() functions, I want to
say a few words about a cool feature that was new in Windows 98. I'm talking about multi-monitor
support, which is the ability programmatically to span the output of programs across multiple
monitors. Personally, I find the new Windows 98 function called MonitorFromPoint() amazing,
although at the time of writing I've yet to meet a program who has really experimented with it.

What's the relationship between multi-monitor support and ShellExecute()? Well, the Windows
98 version of this function supports multiple monitors. This means, for instance, that any child
process will be shown on the same monitor as the parent. However, this is only the default behavior.
If you specify an hwnd parameter, then you can redirect the new window to the same monitor as the
window that has that hwnd parameter.

Chapter 8

246

Hooking on ShellExecute()
Have you ever heard of the IShellExecuteHook interface? As its name rather suggests, its logic
follows the traditional Windows hook model, while the practical implementation requires you to write
an in-process COM server. Methods of the interface are called from the code of both
ShellExecute() and ShellExecuteEx() in order to let the user gain more control of the startup
process. By using IShellExecuteHook, a module can parse (in a customized way) the command
line that is being executed, and resolve it to the right program.

When using MS DOS, for example, we sometimes write small batch procedures with very short or
easy-to-type names. In this way we can run a program, or perform a repetitive task, quickly and
easily. Well, IShellExecuteHook gives us the ability to do roughly the same thing under
Windows. A module implementing IShellExecuteHook is invoked whenever ShellExecute()
or ShellExecuteEx() is about to execute a verb on a file, no matter what kind of file it is. The
module is in the middle, and can do whatever suits it, such as:

! Trace (and log in a file) all the applications started through the shell
! Prevent unauthorized access to certain programs or folders
! Implement named objects — that is, keywords that map to a specific program or action

Implementing the IShellExecuteHook interface really is quick and easy. Unfortunately, there's no
mention anywhere in the documentation of how to let the shell know that you've done so, and it's this
point that I shall address in the next section.

Registering an IShellExecuteHook Handler
First and foremost, an IShellExecuteHook handler is a COM server, and must be registered
properly under the following path:

HKEY_CLASSES_ROOT
 \CLSID

Of course, this is far from the end of the matter. The Windows shell must know that the handler
exists, and where it is located. Since an IShellExecuteHook handler isn't very different from the
Browser Helper Objects that I examined in Chapter 7, I guessed and hoped that the registration
pattern was similar in this case, and I was right. Both helper objects and shell execute hooks must also
be registered under:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer

Program Executors

247

Helpers go under a key named
Browser Helper Objects,
while hooks are located under
ShellExecuteHooks:

As shown in the figure, each key may contain a collection of strings that each evaluate to a CLSID.
The shell just walks that list, and attempts to load the servers.

The IShellExecuteHook Interface
IShellExecuteHook is one of the simplest COM interfaces I've ever seen. It's composed of a
single function called Execute(), which is declared as follows:

HRESULT Execute(LPSHELLEXECUTEINFO pei);

SHELLEXECUTEINFO is the same structure we met earlier when talking about ShellExecuteEx().
This function is invoked by the system just before a new application or document is opened through
the shell interface. In other words, this hook gets involved when you run a new application, or you
invoke a verb on a document in one of the following ways:

! Programmatically, through ShellExecute() or ShellExecuteEx()
! Through the Run dialog box
! Double-clicking from the Explorer

If you run another program through CreateProcess() or WinExec(), the hook module won't be
notified. The same problem occurs if you run a program or open documents via a DOS box, or use
any other low-level techniques.

Thanks to the structure passed as an argument, the Execute() method receives a verb, a file name,
arguments, a directory and whatever else the user has passed to ShellExecute() or its sister
function.

As mentioned earlier, both ShellExecute() and ShellExecuteEx() end up calling
CreateProcess(). However, they do much more than simply obtaining the command line
and passing it to CreateProcess(). For a start, they handle policies and support this hook!

Chapter 8

248

Returning from the Hook
The hook will return S_FALSE if the shell can proceed as usual and create the required process. If no
further processing is required, however — that is, the hook doesn't want the shell to start the process —
then the hook will return a value of S_OK. This may happen because the hook checked some
conditions and wants to prevent the currently logged user to run that program or document, but
another possibility is that the hook code wants to run the document itself, giving (say) a non-standard
priority to the thread. This requires that you arrange the call to CreateProcess() yourself. More
importantly, if we return S_OK to the shell, we also need to set the hInstApp member of
SHELLEXECUTEINFO properly.

"Setting the hInstApp member properly," means assigning it a value that denotes to the shell the
success or failure (with a relevant error message) of our processing. If we run the application
ourselves, then this will be the HINSTANCE of the new process. If we break the processing, then we
can assign to it any value greater than 32 in order to prevent the shell from displaying an error
message box.

As an example, suppose that we decide to block any new process:

HRESULT Execute(LPSHELLEXECUTEINFO lpsei)
{
 return S_OK
}

No matter what parameters we receive, we immediately return S_OK. In this case, the shell finds a
value of 0 in the hInstApp member and interprets the return value as an error code. It then displays
an appropriate message box for that error number. Here's a screenshot:

Writing an IShellExecuteHook Handler

When it comes to writing COM servers, the
Active Template Library (ATL) is a great
resource. Having run the ATL COM AppWizard
to generate a skeleton COM server called Hook,
we can add a new class to it by choosing Simple
Object:

Program Executors

249

This new class, called CShowHook, should be derived from IShellExecuteHook. As already
mentioned, this interface requires us to include shlobj.h. However, rather than deriving from
IShellExecuteHook directly, we can define a generic implementation of the class, named (in the
conventional ATL manner) IShellExecuteHookImpl:

// IShellExecuteHookImpl.h
//
//
#include <AtlCom.h>
#include <ShlObj.h>
class ATL_NO_VTABLE IShellExecuteHookImpl : public IShellExecuteHook
{
public:

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IShellExecuteHookImpl)

 // IShellExecuteHook
 STDMETHOD(Execute)(LPSHELLEXECUTEINFO lpsei)
 {
 return S_FALSE;
 }
};

The real CShowHook class is then declared like this:

#include "resource.h"
#include "comdef.h"
#include "IShellExecuteHookImpl.h"

///
// CShowHook
class ATL_NO_VTABLE CShowHook :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CShowHook, &CLSID_ShowHook>,
 public IShellExecuteHookImpl,
 public IDispatchImpl<IShowHook, &IID_IShowHook, &LIBID_SHOWLib>
{
public:
 CShowHook()
 {
 }

 STDMETHOD(Execute)(LPSHELLEXECUTEINFO lpsei);

DECLARE_REGISTRY_RESOURCEID(IDR_SHOWHOOK)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CShowHook)
 COM_INTERFACE_ENTRY(IShowHook)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(IShellExecuteHook)
END_COM_MAP()

// IShowHook
public:
};

Chapter 8

250

Now all that's missing is the implementation of the hook. Earlier, I outlined three possible
applications of such hooks: tracing, authorization, and naming. Let's see the code necessary for all
three of these.

HRESULT CShowHook::Execute(LPSHELLEXECUTEINFO lpsei)
{
 // Trace the program/file opened
 TCHAR szTime[50] = {0};
 GetTimeFormat(LOCALE_SYSTEM_DEFAULT, 0, NULL, NULL, szTime, 50);
 TCHAR szText[1024] = {0};
 wsprintf(szText, __TEXT("%s: %s at %s"),
 lpsei->lpVerb, lpsei->lpFile, szTime);

 FILE *f;
 f = fopen(__TEXT("c:\\ShowHook.txt"), __TEXT("a+t"));
 fseek(f, 0, SEEK_END);
 fprintf(f, __TEXT("%s: %s at %s\n\r"),
 lpsei->lpVerb, lpsei->lpFile, szTime);
 fclose(f);

 // Check the shortcuts list and run programs
 TCHAR szFileName[MAX_PATH] = {0};
 GetPrivateProfileString(__TEXT("GoldList"), lpsei->lpFile,
 "", szFileName, MAX_PATH, __TEXT("c:\\showhook.ini"));
 if(lstrlen(szFileName))
 {
 lpsei->hInstApp =
 reinterpret_cast<HINSTANCE>(WinExec(szFileName, SW_SHOW));
 return S_OK;
 }

 // Prevent from doing anything if the name contains DEBUG
 strlwr(const_cast<LPTSTR>(lpsei->lpFile));
 if(strstr(lpsei->lpFile, __TEXT("debug")))
 {
 lpsei->hInstApp = reinterpret_cast<HINSTANCE>(42);
 return S_OK;
 }

 // Let it continue...
 return S_FALSE;
}

Editing the Registry Script
Before we analyze the code that's been added above, we need to do one more thing to make the
server completely self-registering. This involves supplementing the registry script code that's
provided by the Wizard, in order to add information specific to the shell execute hook.

Program Executors

251

Place this at the end of the file:

HKLM
{
 SOFTWARE
 {
 Microsoft
 {
 Windows
 {
 CurrentVersion
 {
 Explorer
 {
 ShellExecuteHooks
 {
 val {4F43D133-2951-11D2-BC00-7CA506C10000} = s ''
 }
 }
 }
 }
 }
 }
}

The hook is contained in ShowHook.dll, and registration of the server is mostly automatic, thanks to
the Wizard code. What we've done here is to arrange that the hook's CLSID be correctly registered
under the ShellExecuteHooks key.

How the Hook Works
Tracing is done by writing to disk
the verb used, the name of the file
acted upon, and the time of the call.
The following picture shows the
results. Notice that the log also
includes traces of the activity during
a reboot (SysTray.exe, for
instance).

The code above also deals with naming — it attempts to recognize a list of key names, and then
translate them into applications. The list is kept in a .ini file that's located in the root directory.
Typical content of the file would be something like:

[GoldList]
reg=regedit.exe
tt=notepad.exe
AddNewHardware=control.exe sysdm.cpl,Add New Hardware

Chapter 8

252

The words on the left are recognized by the hook and translated into the command lines on the right.
This allows us to type AddNewHardware into the Run... box, for example, and the Wizard will start!
I'll say more about the syntax for the Wizard in Chapter 11.

Finally, authorization is covered by the last part of the Execute() function, which prevents any
folder or any file whose name contains the string "debug" from being opened. Note though that if we
had forgotten to return a value greater than 32, we'd also have been presented with a nasty error
message box. This is just a demonstration, but consider the fact that ShellExecute() is called very
often throughout Explorer, and you should take great care over the size and duration of any custom
code that you hook to it.

Summary
As usual, I've covered a lot of ground in this chapter and revealed several pitfalls along the way. I
began with a discussion of WinExec(), moved on to CreateProcess(), and then dealt with
ShellExecute(). After discussing the features and bugs of that function, I talked about
FindExecutable(), which also has a few flaws.

Overall, ShellExecuteEx() seems to combine the silent power of CreateProcess() with the
flexibility of ShellExecute(). Support for PIDLs and policies, and the possibility of hooking,
makes ShellExecuteEx() my candidate for the title of "Best Windows Program Executor"!

As my argument developed, I covered:

! The features and bugs of ShellExecute() and FindExecutable()
! Why the Windows 98 Logo documentation recommends

ShellExecute()/ShellExecuteEx() over CreateProcess()
! Where ShellExecuteEx() extends the functionality of ShellExecute()
! How to extend ShellExecuteEx() with hooking

Further Reading
A chapter with a wealth of information is the prelude to a wealth of further reading! If you want to
know more about the new Logo Requirements for Windows 98 applications, you can check out the
Platform SDK area of the MSDN Library. In particular, you might be interested in the Windows
Programming Guidelines section.

For more information concerning the shell functions that we have examined in this chapter, here's a
selection of Knowledge Base articles that may prove to be useful:

! Article ID: Q94956: WinExec() Error Codes in Windows 3.0/3.1
! Article ID: Q67673: How to Determine When Another Application Has Finished
! Article ID: Q137572: How to Restart the Windows Shell Programmatically
! Article ID: Q145701: How to Close a Shelled Process When Finished under Windows 95
! Article ID: Q84456: TERMWAIT Spawns Task and Waits for its Termination
! Article ID: Q174156: Programmatically Launch the Default Internet Browser
! Article ID: Q140724: FindExecutable() Truncates Result at First Space in LFN
! Article ID: Q182807: Problems Using SEE_MASK_INVOKEIDLIST with ShellExecuteEx()

Program Executors

253

If you're looking for an idea on how to write your own function to connect to the Internet, then you
should take a look at Stuart Patterson's article A GotoURL Function using ShellExecute(), which
appeared in the August 97 issue of WDJ.

If you're planning to experience the thrill of multi-monitor output, you would do well to begin by
reading David Campbell's How to exploit multi-monitor support in Memphis and Windows NT5.0, MSJ,
June 97.

Jeff Prosise explains how to get the context menu (and find out about the dynamic verbs of a file or a
PIDL) in his Wicked Code column in the April 1997 issue of MSJ.

Finally, for the registry and policies, I recommend Managing the Windows NT Registry, by Paul
Robichaux (O'Reilly). Despite the title, which implies that the book is specifically for NT, it turns out
that the book is also relevant to Windows 9x. A quick and dirty example of policy management can
also be found in an old article of mine, Testing the Autoplay via the Floppy Drive which appeared in
WDJ, December 1996.

Icons and the Windows Taskbar

If you ask non-programming people to point out the best features of Windows, you can be sure that
sooner or later they will mention the clarity of the icons as one of the most attractive aspects of the
system. No matter that Windows 98 now supports esoteric things like the Universal Serial Bus and
WDM (which looks more like the acronym of a new software conference than a common architecture
for device drivers); icons still remain dear to people's hearts. You have to admit that Microsoft always
gets the most out of its graphics people.

You need neither a passion for drawing nor an appreciation of fine art to realize that representing the
simple (and not-so-simple) concepts that lie behind menu commands, using just a block of 32 x 32
pixels and 16 colors, is a great achievement. What I like most about Microsoft's icons is that even at
the lowest resolution (16 x 16 pixels) they are clear and easily understood.

With the release of Windows 95, icons consolidated their already strong position in the Windows
jigsaw. They multiplied too — this was the time when 16 x 16 and even 48 x 48 resolutions were
introduced, with better support from the system for a larger number of colors. Icons that use 256
colors are now a common feature of many commercial products.

On a related theme, we should also consider the taskbar. It's certainly not the case that the taskbar is
only concerned with icons, but it makes very good use of them, from program buttons, through the
more recent quick-launch toolbars (introduced in shell version 4.71), to the tray area.

From the software writer's point of view, the best news from Microsoft has been the introduction of
the SHGetFileInfo() function, the behavior of which we examined thoroughly in Chapter 4.
Despite its name, this function is at its best when working with icons. Furthermore, with the
introduction first of the Active Desktop and then Windows 98, a brand new interface has been
introduced for working with the taskbar. The structure of the taskbar window (and of the desktop
itself) has also altered considerably as a result of these changes.

Chapter 9

256

In this chapter, I intend to:

! Provide an annotated overview of the functions you need to work with icons
! Demonstrate how to extract icons from modules
! Show the way to put and, above all, manage icons in the tray area
! Examine the new layout of the taskbar
! Explain the undocumented aspects of the new taskbar COM interfaces

Also in this chapter I'll write a function for browsing the icons contained in any executable file, and a
piece of code that can automatically restart the shell and, more importantly, detect when the shell
restarts. This latter point is directly related to a possible bug in the code of shell32.dll that
manages tray icons.

What You Should Know About Icons
An icon can be used to identify any object that appears in the shell's namespace; it differs from a
bitmap mainly due to the presence of a bitmask. When combined with the pixel layer, this mask gives
the icon a kind of 'transparency' with respect to the underlying background. An icon can be a single
resource or a group of related pictures that reproduce the same subject at different resolutions and
color depths.

Throughout the Windows shell, icons are managed by the means of a COM interface called
IExtractIcon, which we met in Chapter 5. IExtractIcon is implemented by the code that
wraps namespace extensions, and for a file folder this code is in shell32.dll. However, you can
provide your own IExtractIcon through a shell extension module in order that you may
customize the shell's icons, and I'll show you how to do that in Chapter 15.

Windows provides a collection of standard icons that applications can load and use without the need
to unload them again afterwards. These icons are identified by symbols with the prefix IDI_ that are
defined in winuser.h — typical examples are IDI_ICONQUESTION and IDI_ICONSTOP, which
you may have come across when using MessageBox().

When created or loaded, an icon is assigned a unique handle whose type is HICON. Many of the
Win32 functions that work with icons require a handle of this kind. You have to release all the icons
that you create or extract explicitly from your modules, but that is not the case for system icons like
those mentioned above. Because they belong to the system, it frees them when it can.

Creating Icons
There are a variety of ways in which you can create icons. You can use an image editor and create a
.ico file, or you can use a resource editor and compile icons in a .res file, together with the
application's other resources. It's also possible to create icons programmatically, in which case the
functions you might be interested in are:

! CreateIcon()

! CreateIconFromResource()

! CreateIconIndirect()

Icons and the Windows Taskbar

257

The best way to create icons from within the code of a program, however, is by means of one of the
Windows 95 common controls: the image list.

Creating and Modifying Icons Programmatically
I showed you an example of how you could modify an existing icon programmatically by means of the
image list control in Chapter 5. Specifically, I demonstrated how to combine two icons dynamically.
The example produced the 'hand-held' folder icon that the system uses to denote that a given folder is
shared.

Creating new icons is easy too. Broadly speaking, what you should do is put an icon or a bitmap into
an image list control, and then read it back through ImageList_GetIcon(). For example, if you
have an HBITMAP, then you can convert it to an icon with the following code:

HICON HBitmapToHIcon(HBITMAP hbm, int cx, int cy)
{
 HIMAGELIST himl = ImageList_Create(cx, cy, ILC_COLOR, 1, 1);
 int i = ImageList_Add(himl, hbm, NULL);
 HICON hIcon = ImageList_GetIcon(himl, i, ILD_NORMAL);
 ImageList_Destroy(himl);
 return hIcon;
}

This is a quite simple implementation; there are many other ILC_ and ILD_ flags that you could
have exploited in the calls to ImageList_Create() and ImageList_GetIcon(), but I'll refer
you to the MSDN Library documentation of these functions for further details. An application that
obtains an icon this way must take care to free it when it is no longer needed.

Bitmaps and icons are much more alike than is commonly believed to be the case. You can extract a
structure called ICONINFO from an HICON using the GetIconInfo() function:

BOOL GetIconInfo(HICON hIcon, PICONINFO piconinfo);

The structure renders an icon and is defined as follows:

typedef struct _ICONINFO
{
 BOOL fIcon; // TRUE if the structure refers to an icon
 DWORD xHotspot; // x-coordinate of the hotspot (See below)
 DWORD yHotspot; // y-coordinate of the hotspot (See below)
 HBITMAP hbmMask; // Bitmask that makes the icon transparent
 HBITMAP hbmColor; // Icon color bitmap
} ICONINFO;

As you can see, there are HBITMAPs inside any icon. ICONINFO serves a dual purpose: it is used to
describe the internal structure of icons and cursors. The fIcon member distinguishes the actual type
of the resource — it's TRUE for icons, and FALSE for cursors.

Don't be confused by the 'hotspot' member. Like cursors, icons have hotspots, but for the latter the
hotspot is always at the center of its area. For cursors, the location of the hotspot may change. The
most interesting parts of the structure, however, are the two HBITMAP members, because they mean
that you have a system-provided means of converting an HICON to an HBITMAP. Here's a simple and
direct wrapper:

Chapter 9

258

HBITMAP HIconToHBitmap(HICON hIcon)
{
 ICONINFO ii;
 GetIconInfo(hIcon, &ii);
 return ii.hbmColor;
}

Drawing Icons
Despite the means available for creating icons programmatically, you will usually end up loading
them from external files. There are several functions for doing this, but the most widely known are
LoadIcon() and LoadImage(). I'll examine these and the others in a moment. Even when you're
drawing icons, there are several methods you can use to place the icon on the screen. As usual, the
best approach depends upon exactly what you need to do. The simplest solution is to call
DrawIcon():

BOOL DrawIcon(HDC hdc, int x, int y, HICON hIcon);

It's fast and easy to use, but it's not very flexible. Consider, though, that this function was introduced
back when icons only existed at a resolution of 32 x 32, and in 16 colors. Now, there are so many
types of icons that a simple function like this one just doesn't suffice. DrawIcon() can be used to
draw small and large icons, provided that you hold a valid handle to them, but that's the limit of its
versatility.

If you need to do more than DrawIcon() allows, a better approach is to use ImageList_Draw().
This function allows you to apply graphic filters, such as blending. The 'selected' or 'ghosted' icons
that populate the Windows shell are realized with this technique.

Animated Icons
Animated icons have largely been superseded by animated GIFs and simple AVI files, but if you do
come across a situation in which you need to use them, DrawIconEx() is the API function to
employ. It also gives you the ability to stretch the icon to a desired size.

Extracting Icons from Files
You have a range of choices for extracting icons from files. You can use ExtractIcon() or
ExtractIconEx(), as well as ExtractAssociatedIcon(), LoadImage() and
SHGetFileInfo(). Let's compare and contrast these possibilities.

Function Description

ExtractIcon() Extracts a given icon from a file by specifying a zero-based
index. The function always returns the large icon.

ExtractIconEx() Works like ExtractIcon(), but can extract both large
and small icons.

Icons and the Windows Taskbar

259

Function Description

ExtractAssociatedIcon() Returns the large icon associated with a given file or path

SHGetFileInfo() Returns the large or small icons for a given file, path or
PIDL, and can apply some graphic effects too, as described
in Chapter 4.

LoadImage() Extracts the icon from a given file at the desired resolution.
This is the only way to get at, say, 48 x 48 icons.

LoadIcon() Extracts the icon from the resources of a given executable
file. The source file is identified by instance and not by
name. The icon is identified by ID and not by index.

As you can see, in the descriptions I've differentiated between functions that return an icon, and
functions that extract an icon. Members of the first group take the name of a file, folder or PIDL as
input, and walk the registry for the default icon to load. They are SHGetFileInfo() and
ExtractAssociatedIcon(). Functions in the second set want the name of a file (EXE, DLL, ICO,
or similar) whose resources they will walk in order to find the specified icon, which is identified by a
zero-based index.

The distinction between returning and extracting is essentially academic, since all the functions give
you an HICON as a result, from slightly different input parameters. You decide to load and return or
extract an icon depending on the information that you can give to the function.

ExtractIcon() requires a legacy HINSTANCE argument that its sister function
ExtractIconEx() does not need. Consequently, the prototype of the latter seems more natural
today:

HICON ExtractIcon(HINSTANCE hInst,
 LPCTSTR szFile,
 UINT nIconIndex);

UINT ExtractIconEx(LPCTSTR lpszFile,
 int nIconIndex,
 HICON* phiconLarge,
 HICON* phiconSmall,
 UINT nIcons);

As you can see, ExtractIconEx() allows you to get both large and small icons. Furthermore, it is
also able to retrieve icons by their IDs. To do this, you should resort to a little trick and assign
nIconIndex the negative value of the ID. For example, to get the icon with an ID of 1001 you need
to pass –1001. Notice that this feature is a specific 32-bit enhancement, and isn't available for the 16-
bit version of the function.

Of course, this technique won't work with icons that don't have a numeric ID. In those cases, you must
refer to the icon by index.

ExtractAssociatedIcon() is an earlier (and simpler) version of SHGetFileInfo():

HICON ExtractAssociatedIcon(HINSTANCE hInst, LPTSTR lpIconPath, LPWORD lpiIcon);

Chapter 9

260

This searches for the indexed icon in the specified file (or in its associated executable file) and always
returns the large icon. The function checks whether lpIconPath addresses a file with embedded
icons, and if successful extracts the icon indexed by lpiIcon. This is nearly identical to what
ExtractIconEx() does. If lpIconPath doesn't contain icons, ExtractAssociatedIcon()
attempts to locate the icon on a per-class basis. It figures out the type of the file by looking at the
extension (BMP, DOC etc), and walks the registry for the default icon for that type.

WORD wID;
ExtractAssociatedIcon(hInst, __TEXT("c:\myfile.doc"), &wID);

The above code, for example, returns the icon associated with Word documents, provided that you
have installed Microsoft Word. Interestingly, lpiIcon is an input/output parameter that will be set
to the ID of the selected icon.

We carefully examined the features of SHGetFileInfo() in Chapter 4, but remember that it
doesn't allow you to pick an icon from a file by number.

What About LoadImage() and LoadIcon()?
It's worth taking a moment to discuss LoadImage() and LoadIcon(). For years, the latter was the
only way to access both application and system icons, and it has the advantage of a simple and easy-
to-remember prototype:

HICON LoadIcon(HINSTANCE hInst, LPCTSTR szIconName);

Unfortunately, it doesn't allow you to load icons from an ICO file and requires the executable (DLL,
EXE, OCX, DRV etc) to be loaded in memory to be able to extract icons. In fact, it locates the
resources through an HINSTANCE handle. In this respect (and several others), LoadImage() is a
great improvement. For example, it provides you with the ability to load an icon from a disk file, and
at a size you request. If such an icon exists, it is loaded. Otherwise, the nearest icon is stretched to the
required dimensions.

HICON hIcon = LoadImage(hInst, szIconName, IMAGE_ICON, 48, 48, LR_DEFAULTCOLOR);

The line of code above demonstrates how to load a 48 x 48 icon. Furthermore, the final parameter of
LoadImage() can be used to apply filters to the icon's colors.

Loading System Icons
To load a system icon, such as the Windows logo or the question mark, you just need to pass NULL as
the application instance:

HICON hIcon = LoadIcon(NULL, MAKEINTRESOURCE(IDI_WINLOGO));

You don't need to free this icon, because it belongs to the system and will be freed upon shutdown.

If you're not familiar with SDK programming, you should note that the MAKEINTRESOURCE() macro
serves the purpose of casting numeric IDs into strings, to fit the prototypes of the LoadXXX() functions
that load resources. MAKEINTRESOURCE() is also used inside MFC code, but this is hidden from the
programmer.

Icons and the Windows Taskbar

261

The System's Image List
As long as the shell or your applications are using icons, the system caches them in order to provide
quicker access and easier icon manipulation. This cache is implemented by means of an image list.
You can get the handle to this through SHGetFileInfo() by specifying the
SHGFI_SYSICONINDEX flag. If you want the list of small icons, just add the SHGFI_SMALLICON
flag. (See Chapter 4 for details about this function.)

Which is the Best Way?
So, what's the best way to extract icons? In the light of my experience, I would recommend that you
use ExtractIcon() if you just want to get icons from a file and provided that you don't need small
icons. If you do need small icons, then you absolutely must use ExtractIconEx().

Going further up the chain, any time you need to know the icon that the shell has associated with a
file object (a drive, a folder, a printer, an ordinary file, etc.), use SHGetFileInfo() instead.

LoadImage() is rather more complex than LoadIcon(), so I recommend that you resort to it only
if you need an icon at a specified resolution, say 48 x 48.

This has been a fairly rapid overview of ground-level icon programming. If you need to get further into the
details, you should refer to the MSDN Library.

Assigning Icons to Dialog Boxes
If you're creating top-level windows, or more generally, if you can control the classes of your
windows, then assigning icons is hardly an issue at all. You just have to set the appropriate member
of the WNDCLASS structure, and make a call to RegisterClass(). If you want to handle small
icons too, you should use WNDCLASSEX and RegisterClassEx() instead, but the idea is the same.

But what about dialog boxes? These have a system-defined class called WC_DIALOG (the value of this
symbol is #32770), over which you have no control. Moreover, were you to change the icon assigned
to this class, all the dialog boxes throughout the system would be affected. While this is not
recommended because of the impact it may have on the whole system, you could change the icon of
all dialogs by calling SetClassLong():

SetClassLong(hDlg, GCL_HICON, reinterpret_cast<LONG>(hIconNew));

The hDlg argument is a window handle that's used as an indirect reference to its class. In other
words, the function changes the icon for the class to which the window belongs.

Fortunately, if you just want to change the icon of a single dialog, there are a couple of messages that
allow you to do it: WM_SETICON and WM_GETICON. As the names suggest, the former lets you set the
icon assigned to a particular dialog, while the latter reads the current HICON. You can call the
following code at any time that suits your needs (but typically in response to the WM_INITDIALOG
message):

SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

Chapter 9

262

The lParam argument of the message is the HICON, large or small. The wParam tells the system how
to store and consider that icon — in practice, it denotes in which system image list the icon should be
stored. It should be FALSE for small icons, and TRUE for large icons. Conversely, the following code
shows how to get the icons (both large and small) from a dialog window:

HICON hIconSm = SendMessage(hDlg, WM_GETICON, ICON_SMALL, 0);
HICON hIconLg = SendMessage(hDlg, WM_GETICON, ICON_BIG, 0);

Browsing for Icons
The ability to browse for icons is a feature that could enrich many programs. Unfortunately, there's
no documented way of generating a dialog like the one in this figure programmatically:

In case you're wondering, this dialog is the one that appears when you open the Properties dialog of
a shortcut and click on Change Icon.... The figure shows all the icons contained in Explorer.exe.

How hard would it be, then, to write a function (let's call it SHBrowseForIcon()) that works like
the dialog in the picture? In fact, it's easier than it sounds, as I shall demonstrate in this Wrox
AppWizard-based DLL project that I called SHHelper.

A SHBrowseForIcon() Function
I chose this prototype for the function and added it to SHHelper.h:

int SHBrowseForIcon(LPTSTR szFile, HICON* lphIcon);

SHBrowseForIcon() takes the name of the file to browse, and a pointer to a handle where the
function will store the selected icon. On success, the function also returns the zero-based index of the
icon you picked up; on failure, it returns -1.

Icons and the Windows Taskbar

263

Of course, the function needs a dialog template, and the above screenshot shows what mine looks
like — I gave it the identifier IDD_BROWSEICON. The behavior of SHBrowseForIcon() is intuitive,
and can be summarized in the following steps:

! Create an image list to hold all the icons contained in the file
! Extract the icons and fill the image list
! Associate the image list with a list control, and fill the list control
! Get the currently selected icon, and go back to its index in the image list
! Extract the icon from the image list, and return

The code for the function looks like this:

int SHBrowseForIcon(LPTSTR szFile, HICON* lphIcon)
{
 // The function assumes default-sized icons (usually 32 x 32)
 int cx = GetSystemMetrics(SM_CXICON);
 int cy = GetSystemMetrics(SM_CYICON);

 lstrcpy(g_szFileName, szFile);
 g_himl = ImageList_Create(cx, cy, ILC_MASK, 1, 1);

 DialogBox(g_hThisDll,
 MAKEINTRESOURCE(IDD_BROWSEICON), GetFocus(), BrowseIconProc);

 // Free the image list
 ImageList_Destroy(g_himl);

 // Set the return values (the file might have changed)
 *lphIcon = g_hIcon;
 lstrcpy(szFile, g_szFileName);

 // This index has been set by the dialog procedure
 return g_iIconIndex;
}

Chapter 9

264

Firstly, we create a global image list, specifying that we're interested in default-sized pictures (usually
32 x 32 pixels). Then, we display the dialog. Once the dialog is closed, we destroy the image list and
set the return values — the selected icon (or NULL if the dialog has been canceled) and its index. In
both cases, we make use of global variables that are set by the dialog's window procedure.
Furthermore, since our dialog template provides a browsing button, the file from which the selected
icon comes may not be the same as we get initially from the caller application. We return the file
name too, using the same szFile buffer.

The code that follows comprises the dialog's window procedure, and some helper functions that it
uses internally.

BOOL CALLBACK BrowseIconProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg);
 break;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_BROWSE:
 OnBrowse(hDlg);
 break;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;

 case IDOK:
 DoGetIcon(hDlg);
 EndDialog(hDlg, TRUE);
 return FALSE;
 }
 }

 return FALSE;
}

void OnInitDialog(HWND hDlg)
{
 HWND hwndList = GetDlgItem(hDlg, IDC_LIST);
 SetDlgItemText(hDlg, IDC_FILENAME, g_szFileName);

 ListView_SetImageList(hwndList, g_himl, LVSIL_NORMAL);
 DoLoadIcons(hDlg, g_szFileName);
}

void OnBrowse(HWND hDlg)
{
 TCHAR szWinDir[MAX_PATH] = {0};
 TCHAR szFile[MAX_PATH] = {0};

 // Browse for files...
 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);

Icons and the Windows Taskbar

265

 ofn.lpstrFilter = __TEXT("Icons\0*.exe;*.dll;*.ico\0");
 ofn.nMaxFile = MAX_PATH;
 GetWindowsDirectory(szWinDir, MAX_PATH);
 ofn.lpstrInitialDir = szWinDir;
 ofn.lpstrFile = szFile;
 if(!GetOpenFileName(&ofn))
 return;

 SetDlgItemText(hDlg, IDC_FILENAME, ofn.lpstrFile);
 DoLoadIcons(hDlg, ofn.lpstrFile);
 lstrcpy(g_szFileName, ofn.lpstrFile);
}

The heart of SHBrowseForIcon() lies in the DoLoadIcons() and DoGetIcon() functions. They
extract the icons for filling the list control and get the selected icon when the user clicks the OK
button respectively.

int DoLoadIcons(HWND hDlg, LPTSTR szFileName)
{
 TCHAR szStatus[30] = {0};

 // Get the number of icons
 int iNumOfIcons = reinterpret_cast<int>(
 ExtractIcon(g_hThisDll, szFileName, -1));

 // Update user interface
 HWND hwndList = GetDlgItem(hDlg, IDC_LIST);
 ListView_DeleteAllItems(hwndList);
 wsprintf(szStatus, __TEXT("%d icon(s) found."), iNumOfIcons);
 SetDlgItemText(hDlg, IDC_ICONCOUNT, szStatus);

 // Fill the image list and the list view at the same time
 for(int i = 0 ; i < iNumOfIcons ; i++)
 {
 HICON hIcon = ExtractIcon(g_hThisDll, szFileName, i);
 int iIndex = ImageList_AddIcon(g_himl, hIcon);

 // Add to the list view
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_IMAGE;
 lvi.iItem = iIndex;
 lvi.iImage = iIndex;
 ListView_InsertItem(hwndList, &lvi);
 }

 return iNumOfIcons;
}

void DoGetIcon(HWND hDlg)
{
 HWND hwndList = GetDlgItem(hDlg, IDC_LIST);

 // Get the index of the list view's selected item
 g_iIconIndex = -1;
 int i = ListView_GetNextItem(hwndList, -1, LVNI_SELECTED);
 if(i == -1)
 return;

Chapter 9

266

 g_iIconIndex = i;

 // Get information about the selected item
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_IMAGE;
 lvi.iItem = i;
 ListView_GetItem(hwndList, &lvi);

 // Get the image list index of the icon and return the HICON
 g_hIcon = ImageList_GetIcon(g_himl, lvi.iImage, 0);
}

A quick (and bitter!) note about list views: I just don't understand the reason why they have such
a quirky and bewildering programming interface — I'm referring in particular to the algorithm
required to get the selected item. Of course, if you don't know the solution already (or who to
ask!), the chances are that you'll resort to... owner-drawn list boxes.

Once we know the index of the selected list view item, we could avoid passing through the list view
and the image list to get the HICON — we could re-call ExtractIcon() with the current filename
and icon index instead. I chose the approach you see here in the belief that it is more efficient
because we won't have to access a disk file again. If the system itself is dynamically maintaining an
image list, we can reasonably hope that it is the best solution.

To compile and make the DLL usable, you now need to add an entry for SHBrowseForIcon() to
the DEF file, and to complete the header and library file lists. The header files required for this
project are shlobj.h, resource.h, commdlg.h and shellapi.h, while the libraries you need to
link to are comctl32.lib and comdlg32.lib.

How to Call SHBrowseForIcon()
I shall use SHBrowseForIcon() in a real world example in Chapter 11, but to conclude this
section, let's have a quick look at how an external application might call it:

int iIconIndex = SHBrowseForIcon(szFileName, &hIcon);
if(iIconIndex >= 0)
{
 ...
}

Icons and the Windows Taskbar

267

The Tray Notification Area
The tray notification area (TNA) is a window of class
TrayNotifyWnd that lies at the right hand edge of the taskbar
(when the taskbar is placed horizontally).

By default, the system places a child window containing the clock (class TrayClockWClass) in the
TNA. Some of the icons that appear by default in your TNA are set during system startup by a
program called systray.exe, which may add icons depending upon your hardware. Typically, it
adds an icon if you have a sound card, or the machine is a laptop. If you want your own icons to
appear in the TNA at startup, you have to write your own program to manage the TNA and place it
in the Startup folder.

We met the TNA briefly in Chapter 7, when we discussed a tool to create folders through Explorer by
hitting a key. Here we'll delve deep into the details of how to manage icons in the TNA.

Of course, there's a function to add or remove icons in the tray area programmatically; its name is
Shell_NotifyIcon(). An icon placed in the tray area can have an ID, tooltip text, a context menu
and a window with which to communicate and notify it of mouse events. You probably won't be
surprised to discover that we'll run into a couple of nasty bugs too.

Putting Icons in the Tray Notification Area
The Shell_NotifyIcon() function has the following prototype:

BOOL WINAPI Shell_NotifyIcon(DWORD dwMessage, PNOTIFYICONDATA pnid);

NOTIFYICONDATA is a structure that gathers all the data we want to use to configure the icon in the
tray notification area. The dwMessage parameter specifies the action we want to accomplish:

Action Description

NIM_ADD Add a new icon to the tray area

NIM_DELETE Remove an existing icon from the tray area

NIM_MODIFY Modify an existing icon in the tray area

Each icon is fully described by the following structure:

typedef struct _NOTIFYICONDATA
{
 DWORD cbSize;
 HWND hWnd;
 UINT uID;
 UINT uFlags;
 UINT uCallbackMessage;
 HICON hIcon;
 char szTip[64];
} NOTIFYICONDATA, *PNOTIFYICONDATA;

Chapter 9

268

Member Description

cbSize Must contain the size of structure.

hWnd The handle of the window that will receive notification messages
from the icon.

uID The icon identifier — that is, a user-defined value that allows the
caller application to identify the icon uniquely.

uFlags Specifies what combination of the following members is used by the
function: uCallbackMessage, hIcon and szTip, represented by
the flags NIF_MESSAGE, NIF_ICON and NIF_TIP respectively. If
you're using any of these members, remember to turn on the
corresponding flag.

uCallbackMessage ID of the message the icon will use to communicate with the hWnd
window. Requires NIF_MESSAGE to be set in uFlags.

hIcon Handle of the icon to be shown. It should be a small icon (16 x 16),
but the system will automatically apply stretching, if needed.
Requires NIF_ICON to be set in uFlags.

szTip Text of up to 64 bytes in length for the icon's tooltip. Requires
NIF_TIP to be set in uFlags.

With this knowledge, putting an icon in the tray notification area is a fairly simple task that you can
accomplish like this:

NOTIFYICONDATA nid;
ZeroMemory(&nid, sizeof(NOTIFYICONDATA));
nid.cbSize = sizeof(NOTIFYICONDATA);
nid.hWnd = hWnd;
nid.uID = ICON_ID;
nid.uFlags = NIF_TIP | NIF_ICON | NIF_MESSAGE;
nid.uCallbackMessage = WM_MYMESSAGE;
nid.hIcon = hSmallIcon;
lstrcpyn(nid.szTip, __TEXT("This icon's been added by me!"), 64);
Shell_NotifyIcon(NIF_ADD, &nid);

Deleting an icon is much simpler, since you don't have to set any members other than uID and
cbSize. You can modify any of the previously set arguments at any time in order to reflect changes
in your applications. In this case, you would use NIM_MODIFY instead of NIM_ADD when calling
Shell_NotifyIcon().

Outlook Express, for example, uses NIF_MODIFY to show a little animation when sending or
receiving data. Similarly, the envelope icon that shows up when you have new unread e-mail is added
using a NIM_ADD message, and then removed through NIM_DELETE.

Icons and the Windows Taskbar

269

Notifying Mouse Events
When discussing tray icons, an incorrect (but commonly accepted and understood) expression that
you'll hear is, "The icon notifies the window of all the mouse events." In fact, all that's wrong is the
subject of this sentence; we should say, "The TrayNotifyWnd window notifies the specified window
of all the mouse-related events." The actual icons are drawn in the client area of the
TrayNotifyWnd window. The size of this window changes according to the number of icons it
contains, and the screen edge where the taskbar is docked.

If the TrayNotifyWnd window detects that the mouse is doing something that affects one of its
icons, then it lets the window associated with the icon (the hWnd member of the NOTIFYICONDATA
structure) know about it. In practice, when the mouse is moved, clicked or right-clicked over the
bounding rectangle of the icon, the messages produced by the system are forwarded to the window.

Referring to the sample above, the message sent has the following form:

SendMessage(nid.hWnd, nid.uCallbackMessage, nid.uID, lParam);

The wParam argument of SendMessage() is the identifier of the icon on which the event
originated, while lParam is the message code: WM_RBUTTONUP, WM_LBUTTONUP, WM_MOUSEMOVE
and so on. Note that because of this, no information related to the original message (the mouse
position, for example) is forwarded to the application's window. Here's how a window could handle
the notifications it gets from a tray icon:

 case WM_MYMESSAGE:
 if(wParam == ICON_ID)
 {
 switch(lParam)
 {
 case WM_RBUTTONUP:
 ShowContextMenu();
 break;
 case WM_LBUTTONUP:
 DoMainAction();
 break;
 }
 }

Normally, the window associated with a tray icon will do two things:

! Display a context menu in response to a right-click on the icon
! Execute a primary action when the user clicks on the icon. In most cases, this means displaying a

dialog box

Conversely, the window has nothing to do in order to display the tooltip. Tooltips are handled
transparently by the TrayNotifyWnd window.

Writing Tray Applications
A tray-based application has a slightly different layout from any other Windows program. It should
still have a main window, but in most cases this is invisible. This window will receive and process
events in the background, and possibly be displayed only after the user clicks or double-clicks the
icon.

Chapter 9

270

There's no rule that prevents an application from having a visible main window as well as a tray icon.
However, you should use a tray icon as an indication to the user that your program is up and running
behind the scenes — this is particularly applicable to programs that don't require a great deal of
interaction with the user. The idea is that when necessary, you click on the tray icon and the user
interface pops up for you to work with.

Tray applications might be seen as the Windows equivalent of the old MS-DOS TSR (Terminate and Stay
Resident) programs. If you haven't had the pleasure of dealing with MS DOS programming, TSRs were
applications that were idle from loading until you pressed a particular key combination. They then awoke
and a dialog popped up.

Over the next few pages, I'll outline the basic code necessary for a simple tray application. In the
WinMain() function, we first load the small icon to put into the tray area and then create the dialog
to receive messages. Once we've set the icon (a task accomplished by TrayIcon()), we enter the
loop that keeps our program alive and running. When we exit that loop, it's time to free the icon and
terminate the application.

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 // Copy the instance handle to a global
 g_hInstance = hInstance;

 // Load the 16x16 icon to go into the tray
 HICON hSmallIcon = reinterpret_cast<HICON>(LoadImage(hInstance,
 __TEXT("APP_ICON"), IMAGE_ICON, 16, 16, 0));

 // Create an invisible dialog to get messages from the icon
 HWND hDlg = CreateDialog(hInstance, __TEXT("DLG_MAIN"), NULL, APP_DlgProc);

 // Show the icon
 TrayIcon(hDlg, hSmallIcon, NIM_ADD);

 // Enter the loop to keep this program running
 MSG msg;
 while(GetMessage(&msg, NULL, 0, 0))
 {
 if(!IsDialogMessage(hDlg, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 // Remove the icon and exit
 TrayIcon(hDlg, hSmallIcon, NIM_DELETE);
 DestroyWindow(hDlg);
 DestroyIcon(hSmallIcon);
 return 1;
}

What's different from a traditional Windows program? The answer is that you don't make the main
window visible, and instead have to deal with the tray area. The next function shows how to do this.
The value set in the uFlags field means that we wish to support a callback message, an icon and a
tooltip.

Icons and the Windows Taskbar

271

The callback message is a user-defined message to be declared as an offset of WM_APP:

const int WM_EX_MESSAGE = (WM_APP + 1);

BOOL TrayIcon(HWND hWnd, HICON hIcon, DWORD msg)
{
 NOTIFYICONDATA nid;
 ZeroMemory(&nid, sizeof(NOTIFYICONDATA));
 nid.cbSize = sizeof(NOTIFYICONDATA);
 nid.hWnd = hWnd;
 nid.uID = ICON_ID;
 nid.uFlags = NIF_TIP | NIF_ICON | NIF_MESSAGE;
 nid.uCallbackMessage = WM_EX_MESSAGE;
 nid.hIcon = hIcon;
 lstrcpyn(nid.szTip, __TEXT("This icon's been added by me!"), 64);

 // Perform the specified operation on the icon
 return Shell_NotifyIcon(msg, &nid);
}

A typical example of a tray application is the
Volume Control that's present on almost all
Windows systems. When you click on the
icon, the configuration dialog appears:

Pay Attention to the Context Menu
A common feature of tray applications is the context menu that appears after you right click on the
icon. The following is a typical window procedure for the hidden window of a tray program.

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case IDCANCEL:
 PostQuitMessage(0);
 return FALSE;
 }
 break;

Chapter 9

272

 case WM_EX_MESSAGE:
 if(wParam == ICON_ID)
 {
 switch(lParam)
 {
 case WM_RBUTTONUP:
 ContextMenu(hDlg);
 break;
 }
 }
 break;
 }
 return FALSE;
}

When the specified message is received and the icon involved has been verified (this is important
because the same application might add more icons), you can display a context menu. The context
menu is managed entirely by the window associated with the icon and is not a feature of the system
tray.

Displaying a context menu is not a problem; here's some vanilla code to do it:

void ContextMenu(HWND hwnd)
{
 HMENU hmenu = LoadMenu(g_hInstance, MAKEINTRESOURCE(IDR_MENU));
 HMENU hmnuPopup = GetSubMenu(hmenu, 0);
 SetMenuDefaultItem(hmnuPopup, IDOK, FALSE);

 POINT pt;
 GetCursorPos(&pt);
 TrackPopupMenu(hmnuPopup, TPM_LEFTALIGN, pt.x, pt.y, 0, hwnd, NULL);

 DestroyMenu(hmnuPopup);
 DestroyMenu(hmenu);
}

The code loads a menu from the application's resources, extracts the first popup menu and declares
one default item to be drawn in bold with the call to SetMenuDefaultItem().

When you right click on the icon, the context menu appears, as you would expect it to. Great!
However, for this first run, you don't want to test any of the menu commands, so click outside the
menu to cause it to disappear. You will find that the menu stubbornly remains in place, but
disappears as soon as you move the mouse over its area. In other cases, you'll end up with a menu
that hides nervously behind the taskbar:

This is a known bug (see Further Reading), but you can solve it by enclosing calls to
TrackPopupMenu() or TrackPopupMenuEx() between a pair of calls to
SetForegroundWindow():

Icons and the Windows Taskbar

273

void ContextMenu(HWND hwnd)

{
 HMENU hmenu = LoadMenu(g_hInstance, MAKEINTRESOURCE(IDR_MENU));
 HMENU hmnuPopup = GetSubMenu(hmenu, 0);
 SetMenuDefaultItem(hmnuPopup, IDOK, FALSE);

 POINT pt;
 GetCursorPos(&pt);
 SetForegroundWindow(hwnd);
 TrackPopupMenu(hmnuPopup, TPM_LEFTALIGN, pt.x, pt.y, 0, hwnd, NULL);
 SetForegroundWindow(hwnd);

 DestroyMenu(hmnuPopup);
 DestroyMenu(hmenu);
}

This ensures that all the input gets redirected to our window, which can then dismiss the menu. The
bug is in the code of the TrayNotifyWnd window, not in TrackPopupMenu() or our application.

How Many Icons are in the Tray Notification Area?
I'm not sure whether it would ever become an issue, but there's no documented way to discover
programmatically how many icons are stored in the tray notification area. If it becomes important in
your application, then you could try to get a result by examining the size of the TrayNotifyWnd
window. This is not simple, though, because you have to take into account the different edges where
the taskbar can be docked, and whether the clock is being shown. If the taskbar is vertically aligned
then the icons are usually displayed below the clock, but if the taskbar is wide enough they will be
drawn next to it. Furthermore, the icons can sometimes be drawn in a single column. You get the
picture: the number of different possibilities is large, and overall it's a real mess.

Detecting When the Shell Restarts
If for any reason the shell is restarted, the icons in the tray notification area aren't restored. This is
clearly due to a bug in shell code and, depending on how many icons you have in the tray, it might
be rather bothersome. However, restarting the shell is not an operation we expect to do frequently. In
my experience there are a couple of circumstances where it may be necessary: to recover an Explorer
crash (a GPF), or to obtain a brand new instance of it during the test of a shell extension. In the
former case, it's the system that recreates a new instance of the shell objects. In the latter case it's
entirely down to us. We can do it either programmatically or manually.

If we need to restart the shell programmatically, we can employ the following (surprisingly simple)
code:

void SHShellRestart()
{
 HWND hwnd = FindWindow(__TEXT("Progman"), NULL);
 PostMessage(hwnd, WM_QUIT, 0, 0);
 ShellExecute(NULL, NULL, __TEXT("explorer.exe"), NULL, NULL, SW_SHOW);
}

We first quit the shell's main window, and then run it again. When you launch explorer.exe it first
verifies whether or not there's another running instance. If not, it creates the taskbar and initializes
the Windows shell, otherwise it simply pops up the traditional browser.

Chapter 9

274

Under Windows NT, the taskbar is created each time explorer.exe is launched in an empty
desktop. Even in Windows NT jargon, a desktop is exactly what you think it is: the on-screen
work area with menus, icons, windows, hooks and running programs. What's different is that
Windows NT lets you create multiple desktops and have them working at the same time.

However, only one such desktop is visible to the user at a time. The screensaver, for example, runs in a
separate desktop from the rest of your active programs. You can use API functions to create new desktops
and switch among them — CreateDesktop() and SwitchDesktop() are two of these. Windows
9x supports just one desktop.

Is there a way to detect when the shell restarts? If so, an application that relies heavily on tray icons
could restore them programmatically, simply by re-executing a piece of code. Happily, the Internet
Client SDK provides the answer: each time the shell restarts and recreates the taskbar, it registers and
broadcasts a message called TaskbarCreated.

Any application that is listening for this message, therefore, can restore its icons or do whatever else
it may need to do in response to the shell restarting. The code required is straightforward: the
program must register the same message, and store the value returned when it does so. This value is
guaranteed to be valid and unique throughout the system and the session.

UINT g_uShellRestart;
g_uShellRestart = RegisterWindowMessage(__TEXT("TaskbarCreated"));

When you register a message that's already been registered by another module, you're actually returned the
value assigned. In this way both modules know the message and can communicate through it.

A good time to do this registration is during the initialization of your application. Any action in
response to the shell restarting must then be coded in the window procedure:

if(uiMsg == g_uShellRestart)
{
 ...
}

Note that this feature is only available with shell version 4.71 or higher. In my opinion, the presence
of the TaskbarCreated message is an indirect confirmation (because a workaround is provided) of
the bug that causes the tray icons to disappear on shell restarts that I mentioned earlier.

Restarting the Windows Shell
Earlier in this section, I demonstrated a simple function that you could call from your programs in
order to restart the Windows shell. However it's also possible to do this 'manually' with the following
steps:

! Press Ctrl-Alt-Del.
! Select Explorer from the Task Manager and kill it
! When the typical shutdown window appears, cancel the operation
! A few seconds later, the system will warn you that Explorer is not responding — kill the task
! A few more seconds, and finally the shell restarts with a brand new taskbar

Icons and the Windows Taskbar

275

Knowing how to restart the shell (manually or programmatically) becomes an important issue when it
comes to developing shell extensions, because sometimes it's the only way to unload such a module
and make it possible to recompile it during the edit/compile/debug cycle.

The Layout of the Taskbar
As I pointed out in Chapter 2, the layout of the taskbar changed with the advent of shell version 4.71.
The main window is still Shell_TrayWnd, and it still has the Start button and the TrayNotifyWnd
as child windows, but the difference is that the tab control window that shows the active tasks is
contained in a coolbar window. This window shares the available space with a number of toolbar
windows.

The new layout is presented in the above diagram. The toolbars 1 to n may be added to the coolbar
using the taskbar's context menu, which you can obtain by right-clicking on the taskbar.

When a Window Goes in the Taskbar
The Windows taskbar is actually a tab control with a special TCS_BUTTONS style that gives each page
a button-like look. What you see in the taskbar aren't buttons at all, but just tabs of a
SysTabControl32 window. (SysTabControl32 is the official class name for a tab control.) To be
absolutely precise, this is not directly owned by the taskbar — there's an MSTaskSwWClass window
in the middle. This information can easily be verified through Spy++.

By default, the tabs of a tab control have no content — it's up to your code to fill them. The control
itself is limited to notifying selection changes to its parent. In the case of the taskbar, the tabs display
the icons and captions of some top-level windows.

What appears on the taskbar is not a list of all the processes running at a certain moment in time. To
get this information, you should not rely on the taskbar, or on the Windows 95 Task Manager.
Instead, you should resort to specialized tools like the Process Viewer that comes with Visual C++. In
Chapter 15 I'll create a shell extension that uses the same logic as the Process Viewer to enumerate
processes.

Not all processes have a window that goes in the taskbar, or put another way, not all windows are
eligible to go in the taskbar. The taskbar only accepts:

! Ownerless, visible windows
! Owned, visible windows with the WS_EX_APPWINDOW extended style

The taskbar always rejects:

! Invisible windows
! Owned, visible windows with the WS_EX_TOOLWINDOW extended style
! Visible windows owned by an invisible window

Chapter 9

276

Toggling the Visibility of the Taskbar
In Visual Basic, forms can have the ShowInTaskbar attribute. If you put Spy++ to work on a Visual
Basic form with this attribute set, you'll find that the value of ShowInTaskbar evaluates to the state
of the WS_EX_APPWINDOW bit. In other words,

Form1.ShowInTaskbar = True

means

DWORD dwStyle = GetWindowLong(Form1.hWnd, GWL_EXSTYLE);
dwStyle |= WS_EX_APPWINDOW;
SetWindowLong(Form1.hWnd, GWL_EXSTYLE, dwStyle);

On the other hand,

Form1.ShowInTaskbar = False

means

dwStyle = GetWindowLong(Form1.hWnd, GWL_EXSTYLE);
dwStyle &= ~WS_EX_APPWINDOW;
SetWindowLong(Form1.hWnd, GWL_EXSTYLE, dwStyle);

Flashing a Window
There are functions and techniques in the Windows SDK that survive for years in obscurity. Then,
someone makes use of one of them in some well-known application and the poor function or
technique has its moment of glory. This happened when owner-drawn menus were brought into the
spotlight by Visual Studio 97 and Office 97, and now it's happening again for FlashWindow(),
which is used to notify important but invisible messages in the Active Setup.

FlashWindow() is used to toggle the active/inactive color of a window's caption as if you were
manually activating/deactivating it. When the window is iconic and displayed in the taskbar, the
color of the button that renders the specified window changes.

BOOL FlashWindow(
 HWND hWnd, // Handle to window to flash
 BOOL bInvert // Flash status
);

The hWnd argument identifies the window to flash, while bInvert, if TRUE, denotes that you want to
invert the color of the caption (active to inactive, and vice versa). If FALSE, the window caption is
returned to its original status, be it active or inactive. FlashWindow() is used to inform the user that
there's an important message window in the background.

This function might be very helpful, but as it stands it has a significant flaw. FlashWindow() is
designed to flash only once, but you really need to do it repeatedly to capture the user's attention.
(Remember that the flashing window is not in the foreground, so the user may not notice it.)
Wouldn't it be nice to have a function that uses a timer to flash continuously for a few seconds?

Icons and the Windows Taskbar

277

A function to fulfil this role is unavailable on earlier platforms, but Windows 98 comes with a
FlashWindowEx() function that fills the gap, and which makes flashing a window on the taskbar as
easy as calling a single function:

BOOL FlashWindowEx(PFLASHWINFO pfwi);

The FLASHWINFO structure is declared as follows:

typedef struct
{
 UINT cbSize; // Size of the structure, in bytes
 HWND hwnd; // Window to flash
 DWORD dwFlags; // Flash status
 UINT uCount; // Number of times to flash
 DWORD dwTimeout; // Flash timeout
} FLASHWINFO, *PFLASHWINFO;

The Windows Taskbar
The Win32 API defines a few functions to create application desktop toolbars (appbars). These
objects are rather like 'custom taskbars', and have their official representative in the Office Shortcut
bar. It's useful for commercial products to be able to gather and make available their main
functionality in a single, desktop-based window, and this is particularly true for suites of applications.

To help programmers deal with these objects, Microsoft has defined a programming interface for
taskbars. Unfortunately, because the system taskbar is different from appbars, the use of the word
'taskbar' in this context seems a sure-fire way of bewildering people.

Attempts to differentiate taskbars from appbars are tricky, because the system taskbar and application
desktop toolbars share the SHAppBarMessage() function:

UINT APIENTRY SHAppBarMessage(DWORD dwMessage, PAPPBARDATA pData);

However, it's not as bad as it sounds, because only a couple of the messages this function deals with
are sent to the system taskbar, from which they simply retrieve information. One, ABM_GETSTATE,
can tell us whether the Windows taskbar is currently 'autohiding', or always on top. The other,
ABM_GETTASKBARPOS, retrieves the bounding area of the taskbar and the edge where it is aligned.
We used this feature in Chapter 7 when we subclassed the Start button.

None of the other messages that can be issued through SHAppBarMessage() has anything to do
with the system taskbar.

Getting the Taskbar's State Programmatically
Let's see exactly how to read the state of the system taskbar programmatically. As suggested above, to
know whether the taskbar is in the 'always on top' or 'auto hide' state, we need to call
SHAppBarMessage() specifying ABM_GETSTATE as the dwMessage argument. The return value is
then a combination of the following constants:

! ABS_ALWAYSONTOP

! ABS_AUTOHIDE

Chapter 9

278

To call SHAppBarMessage(), we need to know a bit about a structure called APPBARDATA, which
is declared as follows:

typedef struct _AppBarData
{
 DWORD cbSize;
 HWND hWnd;
 UINT uCallbackMessage;
 UINT uEdge;
 RECT rc;
 LPARAM lParam;
} APPBARDATA, *PAPPBARDATA;

In fact, though, the structure is not very important when it comes to reading the taskbar's 'autohide'
status, as the following code snippet demonstrates:

APPBARDATA abd;
ZeroMemory(&abd, sizeof(APPBARDATA));
abd.cbSize = sizeof(APPBARDATA);

rc = SHAppBarMessage(ABM_GETSTATE, &abd);
if(rc & ABS_ALWAYSONTOP)
{
 lstrcat(szText, __TEXT("always on top"));
}

if(rc & ABS_AUTOHIDE)
{
 lstrcat(szText, __TEXT("autohide"));
}

To get the current edge and the area occupied by the taskbar, we need the ABM_GETTASKBARPOS
message. This time, the SHAppBarMessage() function fills in an APPBARDATA structure with useful
information:

APPBARDATA abd;
ZeroMemory(&abd, sizeof(APPBARDATA));
abd.cbSize = sizeof(APPBARDATA);

SHAppBarMessage(ABM_GETTASKBARPOS, &abd);
switch(abd.uEdge)
{
case ABE_BOTTOM:
 lstrcat(szText, __TEXT("aligned at the bottom"));
 break;
case ABE_TOP:
 lstrcat(szText, __TEXT("aligned at the top"));
 break;
case ABE_LEFT:
 lstrcat(szText, __TEXT("aligned on the left"));
 break;
case ABE_RIGHT:
 lstrcat(szText, __TEXT("aligned on the right"));
 break;
}

Icons and the Windows Taskbar

279

The uEdge member will contain a constant that denotes the edge of the screen that the taskbar is
currently docked at, while the rc member will hold the coordinates of the taskbar rectangle. The
working area of the shell — that is, the screen minus all the docked taskbars and appbars — can be
obtained via SystemParametersInfo(), specifying the SPI_GETWORKAREA flag.

We can also get information about another of the settings that's dealt with by the Taskbar Properties
dialog: the clock. To determine whether the clock is displayed, you just need to get hold of the
handle of its window and check the WS_VISIBLE flag.

// Get the taskbar window handle
hwndTaskbar = FindWindow(__TEXT("Shell_TrayWnd"), NULL);

// Get the tray window handle
hwndTray = FindWindowEx(hwndTaskbar, NULL, __TEXT("TrayNotifyWnd"), NULL);

// Get the clock window handle
hwndClock = FindWindowEx(hwndTray, NULL, __TEXT("TrayClockWClass"), NULL);
if(hwndClock)
{
 if(IsWindowVisible(hwndClock))
 lstrcat(szText, __TEXT("clock visible"));
 else
 lstrcat(szText, __TEXT("clock not visible"));
}

For the remainder of this chapter, I'll be putting together a program that highlights some of the
theory we've discussed. To start it off, I'll use the Wrox AppWizard to create a dialog-based
application called Taskbar that reads the state of the taskbar, and is also aware of the shell
restarting. Here's its user interface:

The Retrieve button will execute the various snippets of code you've seen so far and display the
taskbar's position, its 'auto hide'/'always on top' status, and the clock settings. Restart the shell causes
the shell to restart.

Chapter 9

280

First of all, if we're going to detect when the shell is restarted, we need to register the
TaskbarCreated message in WinMain():

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{
 // Code omitted for brevity

 g_uShellRestart = RegisterWindowMessage(__TEXT("TaskbarCreated"));

 // Run main dialog
 BOOL b = DialogBox(hInstance, "DLG_MAIN", NULL, APP_DlgProc);

 // Exit
 DestroyIcon(g_hIconLarge);
 DestroyIcon(g_hIconSmall);
 return b;
}

Here, g_uShellRestart is just a global variable of type UINT, as shown earlier. Next, add code to
APP_DlgProc() to handle the Retrieve and Restart buttons being pressed, and to test for the shell
restarting:

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg);
 break;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_RETRIEVE:
 OnTaskbarSettings(hDlg);
 return FALSE;
 case IDC_RESTART:
 SHShellRestart();
 return FALSE;
 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;
 }

 // When the shell restarts...
 if(uiMsg == g_uShellRestart)
 {
 TCHAR szTime[50] = {0};
 TCHAR szMsg[MAX_PATH] = {0};
 GetTimeFormat(LOCALE_SYSTEM_DEFAULT, 0, NULL, NULL, szTime, 50);
 wsprintf(szMsg, __TEXT("The shell was last restarted at %s"), szTime);
 SetDlgItemText(hDlg, IDC_TASKBAR, szMsg);
 }

 return FALSE;
}

Icons and the Windows Taskbar

281

If the Restart button is pressed, the SHShellRestart() function that I defined earlier in the
chapter is called, and the resulting TaskbarCreated message fulfills the if condition. When
Retrieve is clicked, the OnTaskbarSettings() function is invoked:

void OnTaskbarSettings(HWND hDlg)
{
 TCHAR szText[MAX_PATH] = {0};

 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);

 // Retrieve the taskbar edge
 SHAppBarMessage(ABM_GETTASKBARPOS, &abd);
 switch(abd.uEdge)
 {
 case ABE_BOTTOM:
 lstrcat(szText, __TEXT("aligned at the bottom\r\n"));
 break;
 case ABE_TOP:
 lstrcat(szText, __TEXT("aligned at the top\r\n"));
 break;
 case ABE_LEFT:
 lstrcat(szText, __TEXT("aligned on the left\r\n"));
 break;
 case ABE_RIGHT:
 lstrcat(szText, __TEXT("aligned on the right\r\n"));
 break;
 }

 // Retrieve the taskbar state
 DWORD rc = SHAppBarMessage(ABM_GETSTATE, &abd);
 if(rc & ABS_ALWAYSONTOP)
 lstrcat(szText, __TEXT("always on top\r\n"));
 if(rc & ABS_AUTOHIDE)
 lstrcat(szText, __TEXT("autohide\r\n"));

 // Retrieve the Show Clock option
 HWND hwnd1 = FindWindow(__TEXT("Shell_TrayWnd"), NULL);
 HWND hwnd2 = FindWindowEx(hwnd1, NULL, __TEXT("TrayNotifyWnd"), NULL);
 HWND hwndClock = FindWindowEx(hwnd2, NULL, __TEXT("TrayClockWClass"), NULL);
 if(hwndClock)
 {
 if(IsWindowVisible(hwndClock))
 lstrcat(szText, __TEXT("clock visible\r\n"));
 else
 lstrcat(szText, __TEXT("clock not visible\r\n"));
 }

 // Show settings
 SetDlgItemText(hDlg, IDC_TEXT, szText);
}

Chapter 9

282

With these functions in place, and with a #include directive for resource.h, you should be able
to compile and execute the application, and achieve results something like this:

The other interesting setting of the system taskbar, the 'auto hide' attribute, appears to be impossible to set
programmatically. If this can be done, the method of doing so is completely undocumented.

Hiding the Taskbar
As I mentioned earlier, the taskbar is an ordinary window that belongs to the shell process. It can be
subclassed or hidden just like any other window throughout the system. I covered interprocess
subclassing in Chapter 7, and demonstrated how browser helper objects and SHLoadInProc() can
bring your code into the shell's address space.

If you try to subclass the taskbar without first injecting the code into the shell process, you won't be
successful. This happens not because you can't subclass the taskbar or the Start button (or indeed any
other system window), but because you haven't mapped your code into the shell's context.
Subclassing the taskbar is no harder than subclassing the Start button (see Chapter 7).

However, there are things you can do with the taskbar simply by using the window handle. In
general, you can safely send messages to another process window provided that you know its HWND,
and you aren't required to use pointers. Let's see an example that demonstrates this point.

I've already demonstrated how to use FindWindow() to get hold of the taskbar handle. Once you've
got it, hiding the taskbar is simply a matter of calling the right function:

void SHHideTaskbar(BOOL fHide)
{
 HWND hwndTaskbar = FindWindow(__TEXT("Shell_TrayWnd"), NULL);
 ShowWindow(hwndTaskbar, (fHide ? SW_HIDE : SW_SHOW));
}

SHHideTaskbar() hides or restores the taskbar window according to the Boolean value it receives.
Note that this code works despite the fact that the taskbar belongs to another process.

The ITaskbarList Interface
A new COM interface appeared on the scene with the introduction of version 4.71 of the shell; its
name is ITaskbarList. This is not an interface that you should implement in your own applications
(in fact, it's implemented by the shell), but simply a programming interface for modifying the system
taskbar.

Icons and the Windows Taskbar

283

There are two points to note about ITaskbarList. First, documentation for it does exist, but it's not
brilliant. Second, it seems that the header file that contains the interface definition is missing, which
means that if you want to use the interface, you'll have to write it yourself, which is exactly what I'll
do in a moment.

What ITaskbarList Promises to Do
In a nutshell, ITaskbarList gives you the means to modify slightly the contents of one of the
components of a Windows 9x taskbar: the task list. Through ITaskbarList, you can add new
custom buttons to, and delete them from, the taskbar. The methods of the interface are described as
follows:

Method Description

ActivateTab() The documentation says, "Activates an item on the taskbar. The window is
not actually activated; the window's item on the taskbar is merely displayed
as active." I was unable to reproduce this behavior.

AddTab() Add a new tab to the taskbar. The function requires an HWND,
preferably one with the WS_CAPTION style to avoid blank tabs.

DeleteTab() Deletes a tab that was previously added by AddTab(). The related
window is unaffected by this operation.

HrInit() Initializes some internal structures that will keep track of the tabs that
you create. This method must be invoked only once, and before any
other method in the interface.

SetActiveAlt() The documentation says, "Marks a taskbar item as active but does not
visually activate it." I was unable to reproduce this behavior.

An IDL Definition for the Interface
The latest shlguid.h file defines a CLSID and an IID, but the formal definition of the
ITaskbarList interface upon which your own implementation would be based is nowhere to be
found! Given this, there are just two options: we can give up and get on with our lives, or we can be a
bit more persistent and write an appropriate IDL file ourselves. By passing this through the MIDL
compiler, we'll get a ready-to-use header.

// Taskbar.idl

import "oaidl.idl";
import "oleidl.idl";

//--
// Interface: ITaskbarList
//--
[
 local,
 object,
 uuid(56FDF342-FD6D-11d0-958A-006097C9A090),
 pointer_default(unique)
]

Chapter 9

284

interface ITaskbarList : IUnknown
{
 HRESULT ActivateTab([in] HWND hWnd);
 HRESULT AddTab([in] HWND hWnd);
 HRESULT DeleteTab([in] HWND hWnd);
 HRESULT HrInit();
 HRESULT SetActiveAlt([in] HWND hWnd);
};

I added this file to my project and amended its settings to generate a header called
ITaskbarList.h. With this file in hand, we can turn our minds to starting to try some code:

#include <shlguid.h>

void OnAddTab(HWND hWnd)
{
 ITaskbarList* pTList = NULL;
 CoInitialize(NULL);

 CoCreateInstance(CLSID_TaskbarList, NULL, CLSCTX_SERVER,
 IID_ITaskbarList, reinterpret_cast<void**>(&pTList));
 pTList->AddTab(hWnd);
 pTList->Release();

 CoUninitialize();
}

This is the barest minimum code you'll need to add a tab to the taskbar (I shall use an extended
version in the sample program). The documentation recommends that you give the window at least
the WS_CAPTION style, but any valid window, visible or not, is accepted.

Earlier in the chapter, I said that the taskbar rejects invisible windows. How does that fit with what's
written here? It's simple: ITaskbarList is the low-level interface that lets you program the tabs of
the taskbar. All the logic that guides the taskbar when it comes to creating new buttons is built on the
top of ITaskbarList. For this interface, windows and tabs just exist to be created, activated and
deleted — it knows nothing about the 'business rules' of the taskbar.

For a better understanding of the role played by ITaskbarList, let's see how to make use of it.

ITaskbarList Sample Program
To save work, I decided to extend the sample program I developed earlier by adding a couple of new
buttons to the main dialog — I labeled them Add Tab and Delete Tab, with identifiers IDC_ADDTAB
and IDC_DELETETAB respectively.

What remains to be done, for now at least, is fairly simple. First, we need to modify APP_DlgProc()
to deal with the buttons:

 case WM_COMMAND:
 switch(wParam)
 {

 case IDC_ADDTAB:
 OnAddTab(hDlg);
 return FALSE;

Icons and the Windows Taskbar

285

 case IDC_DELETETAB:
 OnDeleteTab();
 return FALSE;

 case IDC_RETRIEVE:
 OnTaskbarSettings(hDlg);
 return FALSE;
 case IDC_RESTART:
 SHShellRestart();
 return FALSE;
 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

Then, the two new message handlers need to be implemented to add and delete the new tab
respectively. On the first occasion OnAddTab() is called, it creates the hidden window (I've
arbitrarily chosen a button) that the tab will represent.

void OnAddTab(HWND hWnd)
{
 static BOOL bFirstTime = TRUE;
 ITaskbarList* pTList = NULL;

 HRESULT hr = CoCreateInstance(CLSID_TaskbarList, NULL, CLSCTX_SERVER,
 IID_ITaskbarList, reinterpret_cast<void**>(&pTList));
 if(FAILED(hr))
 return;

 // Call the first time only
 if(bFirstTime)
 {
 bFirstTime = FALSE;
 pTList->HrInit();

 // Create a new button window (although any window class is fine)
 g_hwndButton = CreateWindow(__TEXT("Button"), __TEXT("Custom button..."),
 WS_CAPTION | WS_SYSMENU | WS_VISIBLE,
 -300, -300, 50, 50, hWnd, NULL, NULL, NULL);
 }

 pTList->AddTab(g_hwndButton);
 pTList->Release();
 ShowWindow(g_hwndButton, SW_HIDE);
}

void OnDeleteTab()
{
 ITaskbarList* pTList = NULL;

 HRESULT hr = CoCreateInstance(CLSID_TaskbarList, NULL, CLSCTX_SERVER,
 IID_ITaskbarList, reinterpret_cast<void**>(&pTList));
 if(FAILED(hr))
 return;

 pTList->DeleteTab(g_hwndButton);
 pTList->Release();
}

Chapter 9

286

To make this code work, you need to add a new global variable of type HWND to hold the handle of
the new window. The COM libraries should also be initialized (and uninitialized) in WinMain(), like
this:

 // Run main dialog
 CoInitialize(NULL);
 BOOL b = DialogBox(hInstance, "DLG_MAIN", NULL, APP_DlgProc);

 // Exit
 OnDeleteTab();
 CoUninitialize();
 DestroyWindow(g_hwndButton);
 DestroyIcon(g_hIconLarge);
 DestroyIcon(g_hIconSmall);
 return b;
}

Finally, you need #include directives for ITaskbarList.h and shlguid.h, and to link to
ole32.lib. With this in place, you'll be able to get behavior like that shown in the screenshot
below. A new button can be added and deleted, but it is lifeless. You can check and uncheck it
endlessly, but nothing more will happen.

Taskbar-Window Communication
If a taskbar button were a real button, it would be quite easy to intercept any related events. Sadly, a
taskbar button is actually just a page on a tab control, which makes things rather more difficult.

While puzzling over this problem, I found myself wondering exactly why the documentation for
ITaskbarList::AddTab() "recommends" that the windows you pass to it have the WS_CAPTION
style. Could it be that in certain circumstances, you can treat the taskbar button as if it's the caption
of your window? To find out, I tried subclassing the window whose HWND was passed to AddTab(),
and to my considerable relief it seems that my hunch was right.

It's true: some of the messages related to caption activity are forwarded to the window that the button
represents. In other words, the window passed through AddTab() receives a WM_ACTIVATE message
(and other non-client area related messages) when someone clicks on the corresponding taskbar
button.

Icons and the Windows Taskbar

287

We can subclass that window like this (where g_pfnOldProc is a global variable of type WNDPROC):
void OnAddTab(HWND hWnd)

{
 static BOOL bFirstTime = TRUE;
 ITaskbarList* pTList = NULL;

 HRESULT hr = CoCreateInstance(CLSID_TaskbarList, NULL, CLSCTX_SERVER,
 IID_ITaskbarList, reinterpret_cast<void**>(&pTList));
 if(FAILED(hr))
 return;

 // Call the first time only
 if(bFirstTime)
 {
 bFirstTime = FALSE;
 pTList->HrInit();

 // Create a new button window (although any window class is fine)
 g_hwndButton = CreateWindow(__TEXT("Button"), __TEXT("Custom button..."),
 WS_CAPTION | WS_SYSMENU | WS_VISIBLE,
 -300, -300, 50, 50, hWnd, NULL, NULL, NULL);
 g_pfnOldProc = SubclassWindow(g_hwndButton, ButtonProc);
 }

 pTList->AddTab(g_hwndButton);
 pTList->Release();
 ShowWindow(g_hwndButton, SW_HIDE);
}

Before we discuss the kinds of things it's possible to do once the button has been subclassed, I should
say that the arguments I passed to CreateWindow() were chosen as a result of experimentation that
revealed some very strange behavior. If the window you pass to AddTab() has a caption and the
WS_SYSMENU style, then the button on the taskbar will show the icon as well. If the window is also
visible, however, I ran into these problems:

! The application's main window loses the focus, with no way of regaining it
! The application's system menu is never displayed properly when its taskbar button is right-clicked

Another thing that happens when the window is visible on being added is that the new taskbar button
is unselected, which is more like what we want. To get the best of both worlds, therefore, I initially
placed the window off the screen. Then, once the new tab has been added, I hide it 'properly' with a
call to ShowWindow().

Setting up a Menu
Anyway, now that we know how communication between the taskbar and the window works, it's
quite easy to set up and display a pop-up menu on the fly. The following procedure is the one I'll use
to subclass the window (of class 'Button') that is associated with the new taskbar's button.

LRESULT CALLBACK ButtonProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_ACTIVATE:
 if(LOWORD(wParam) == TRUE)
 OnButtonActivation();
 }
 return CallWindowProc(g_pfnOldProc, hwnd, uiMsg, wParam, lParam);
}

Chapter 9

288

void OnButtonActivation()
{
 // Get the handle of the tab control
 HWND h0 = FindWindow(__TEXT("Shell_TrayWnd"), NULL);
 HWND h1 = FindWindowEx(h0, NULL, __TEXT("RebarWindow32"), NULL);
 HWND h2 = FindWindowEx(h1, NULL, __TEXT("MSTaskSwWClass"), NULL);
 HWND h3 = FindWindowEx(h2, NULL, __TEXT("SysTabControl32"), NULL);

 // Create a new popup menu
 HMENU hmenu = CreatePopupMenu();

 // Get the currently selected button in the tab control
 int i = TabCtrl_GetCurSel(h3);

 // If no tab is selected show a menu with a sole 'Close' item
 if(i == -1)
 AppendMenu(hmenu, MF_STRING, IDC_DELETETAB, __TEXT("&Close"));
 else
 {
 AppendMenu(hmenu, MF_STRING, IDC_RESTART, __TEXT("&Restart the shell"));
 AppendMenu(hmenu, MF_STRING, IDC_RETRIEVE,
 __TEXT("Re&trieve Taskbar Settings"));
 AppendMenu(hmenu, MF_SEPARATOR, 0, NULL);
 AppendMenu(hmenu, MF_STRING, IDC_DELETETAB, __TEXT("&Delete Me"));
 }

 // Find out the position for the menu. It depends upon the taskbar's edge
 STARTMENUPOS smp;
 if(i == -1)
 {
 POINT pt;
 GetCursorPos(&pt);
 smp.ix = pt.x;
 smp.iy = pt.y;
 smp.uFlags = TPM_BOTTOMALIGN;
 }
 else
 GetMenuPosition(h3, i, &smp);

 // Display and then destroy the menu
 TrackPopupMenu(hmenu, smp.uFlags, smp.ix, smp.iy, 0, g_hDlg, 0);
 DestroyMenu(hmenu);
}

A different menu is displayed if there's no longer a currently selected item when the button is
activated. As you can see, the menu items are given the same identifiers as other controls in the main
program, so that you can cause the shell to restart or retrieve taskbar settings from a context menu as
well as from the main dialog. For the call to TrackPopupMenu() to work properly, you'll need a
final global variable of type HWND that you can set to the handle of the main dialog in
OnInitDialog().

Icons and the Windows Taskbar

289

Determining the Menu Position
The final part of the application is concerned with the position of the pop-up menu (this is the
function performed by GetStartMenuPosition() in the above code). Ultimately, this depends on
the edge of the taskbar, and the relative position of the taskbar button. In practice, the algorithm to
determine the correct position is very similar to the one I created in Chapter 7 for the Start menu —
the ABM_TASKBARPOS message is relied upon to determine the edge of the taskbar. In this case,
however, there's an additional difficulty: the x coordinate, which is always 0 for the Start menu, now
depends on the position of the button.

struct STARTMENUPOS
{
 int ix;
 int iy;
 UINT uFlags;
};

typedef STARTMENUPOS* LPSTARTMENUPOS;

int GetMenuPosition(HWND hwndTab, int iItem, LPSTARTMENUPOS lpsmp)
{
 // Set and then reset the size to get current width and height of button
 long iItemSize = TabCtrl_SetItemSize(hwndTab, 0, 0);
 TabCtrl_SetItemSize(hwndTab, LOWORD(iItemSize), HIWORD(iItemSize));

 // Get the tab control rectangle
 RECT r;
 GetWindowRect(hwndTab, &r);

 // Retrieve the taskbar's edge
 APPBARDATA abd;
 abd.cbSize = sizeof(APPBARDATA);
 SHAppBarMessage(ABM_GETTASKBARPOS, &abd);
 switch(abd.uEdge)
 {
 case ABE_BOTTOM:
 lpsmp->ix = r.left + LOWORD(iItemSize) * iItem + 3;
 lpsmp->iy = abd.rc.top;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_BOTTOMALIGN;
 break;
 case ABE_TOP:
 lpsmp->ix = r.left + LOWORD(iItemSize) * iItem + 3;
 lpsmp->iy = abd.rc.bottom;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_TOPALIGN;
 break;
 case ABE_LEFT:
 lpsmp->ix = abd.rc.right;
 lpsmp->iy = r.top + HIWORD(iItemSize) * iItem + 3;
 lpsmp->uFlags = TPM_LEFTALIGN | TPM_TOPALIGN;
 break;
 case ABE_RIGHT:
 lpsmp->ix = abd.rc.left;
 lpsmp->iy = r.top + HIWORD(iItemSize) * iItem + 3;
 lpsmp->uFlags = TPM_RIGHTALIGN | TPM_TOPALIGN;
 break;
 }
 return 1;
}

Chapter 9

290

In these calculations, the x coordinate is given by the left edge of the tab control window, plus an
offset determined by the width of the buttons:

 lpsmp->ix = r.left + LOWORD(iItemSize) * iItem + 3;

The item size is the same for all items, and obtained using a trick. When you set a new size, the
current one is returned, so we can grab the width and height by setting and then immediately
restoring the size. Width and height are packed into a long value, the low order word being the
width.

We can't use TabCtrl_GetItemRect() for this purpose, because the code that's calling the tab
control is part of another process. Windows, on the other hand, are global objects and accessible from
any process. Everything works, and messages can be sent, provided that pointers aren't involved.
Unfortunately, TabCtrl_GetItemRect() requires a buffer to return the actual rectangle.

If the taskbar is aligned vertically, the coordinate that may vary is y:

 lpsmp->iy = r.top + HIWORD(iItemSize) * iItem + 3;

And to prove that it works, this final screenshot shows how the menu looks when the taskbar is right
aligned:

Icons and the Windows Taskbar

291

Summary
In this chapter, I began by looking at icons, and finished with a look at the new, but poorly
documented, COM interface for the taskbar. Along the way I covered many aspects of Windows
icons, in particular the functions that place icons in the tray notification area.

The code that handles tray icons has problems when the shell restarts, and while Microsoft hasn't
solved them as such, it has recently introduced a message that can inform applications of an
upcoming shell reboot. This sounds rather like a silent admission of guilt to me, but whether this is
true or not, all existing applications are still affected. Ours, on the other hand, should be fine from
now on!

I also tried to clarify some points about the system taskbar and application desktop toolbars (a.k.a.
appbars). Finally, I put the ITaskbarList interface into action to modify the content of the taskbar.

To summarize the summary, this chapter provided:

! An overview of icons under Win32
! Advanced details about programming tray icons
! A description of a semi-clandestine message that informs you of any shell restart
! A comparison between taskbars and appbars
! A report of real-world experiences with ITaskbarList

Further Reading
Useful tips about icons can be found in Bret Pehrson's article in the April 98 issue of WDJ, Rebuilding
the Internal Shell Icon Cache. In the same context, I can also point you to a more comprehensive
MSDN piece by John Hornick, entitled Icons in Win32, which you'll find in the MSDN Library under
Technical Articles | Windows Platform | User Interface.

Bitmaps and icons raise interesting issues if you look at them from the Visual Basic perspective as
well. I contributed an article to the December 1997 edition of WDJ that demonstrates how to convert
HICONs and HBITMAPs to Visual Basic pictures; it is called Converting Icon/Bitmap Handles to Pictures in
VB.

An interesting example of shell programming that also involves icons may be found in the August
1998 issue of MIND. The piece, which appears in the Cutting Edge column that I usually run,
concentrates mainly on Visual Basic code but does have a smattering of C++ as well.

Application desktop toolbars may be studied with the aid of Jeff Richter's article that appeared in the
March 1996 issue of MSJ.

Finally, here's a list of related Knowledge Base articles:

! Knowledge Base Article Q179363: Cover the Task Bar with a Window
! Knowledge Base Article Q142166: Taskbar Anomalies When Application Larger than the Screen
! Knowledge Base Article Q135788: Menus for Notification Icons Don't Work Correctly
! Knowledge Base Article Q97925: SetActiveWindow() and SetForegroundWindow() Clarification
! Knowledge Base Article Q149276: Use Icons with the Windows 95 System Tray
! Knowledge Base Article Q176085: Use the System Tray Directly from Visual Basic 5.0

Windows Helper Libraries

The aspect of Windows 98 that I appreciate most of all is that it has (hopefully) put a definitive end to
the long running saga of comctl32.lib and shell32.lib version numbers. The version of
Internet Explorer 4 and the status of your Active Desktop settings are no longer an issue — with
Windows 98, all libraries on all machines are aligned.

I fear, however, that this state of calm is only an illusion and that sooner or later we'll have to write
wrapper code for creating slightly enhanced controls that show up late-breaking tweaks to the user
interface. Still, let's enjoy the lull before that particular storm!

To enable us to appreciate the present, how about remembering the bad old days? In this chapter, I'll
recall briefly the major problem that tormented programmers during the transition from Windows 95
to Windows 98. I'll also demonstrate what's new in the latest libraries. After that, the chapter will
revolve around three groups of new helper functions that address the Recycle Bin, the registry and
string manipulation.

Finally, I'll talk about what could be considered to be an open secret: an unofficially documented but
officially unacknowledged function for formatting drives.

To summarize then, we're going to look at:

! Microsoft's answer to the shell versioning problem
! The Recycle Bin API
! An annotated overview of some new helper libraries for working with strings and the registry
! What's still undocumented in Windows 98

In particular, I'm aiming to show a useful and general technique for customizing and improving
system dialogs. I will then apply this to the still officially undocumented SHFormatDrive()
function, which is a helper routine that Explorer uses to format drives programmatically.

Chapter 10

294

The Versioning Epidemic
This story begins when the first betas of Internet Explorer 3.0 hit the Web. People immediately
noticed the flat and textured toolbars, and then more complicated (even resizable) objects with side
handles. It wasn't exactly clear how they worked, but they were certainly cool, and so they became
known as coolbars.

While preliminary copies wisely stopped short of installing new system DLLs, the final version of
Internet Explorer 3.0 threw caution to the wind and overwrote comctl32.dll. From that point on,
unwary programmers began to use the brand new Internet Explorer 3.0 controls (mostly coolbars), in
some cases creating applications that required IE 3.0 to be installed to work properly. Worse still,
Microsoft refused for a long time to authorize distribution of the new version of comctl32.dll, and
it's still only relatively recently that they provided a self-extracting module that installs the latest
control libraries on Windows 95 and Windows NT 4.0 machines.

So far, I've restricted the discussion to IE 3.0, but the problems have continued into later versions. In
fact, the coup de grâce came with the shell update release of Internet Explorer 4.0, because when the
Active Desktop starts getting involved, things become even more complicated. It's no longer a simple
matter of whether to use a more or less cool control for the user interface. Now, many new functions
have been added and documented as if they have always been part of Windows.

These problems are the reason why I've been making it very clear that this book assumes that you
have Windows 98 or Windows 95/Windows NT 4.0 with Internet Explorer 4.x and Active Desktop
installed. If you run some of the examples provided on a machine with different characteristics, the
chances are that you will get a polite error message from the system, informing you that a particular
function cannot be found in the shell library.

DLL Version Information
Many programmers have written utilities to determine which version of a given module a given
machine is hosting. Here's a code fragment that shows how this information can be obtained from the
VS_VERSIONINFO block stored in the module's resources:

DWORD dwLen = GetFileVersionInfoSize(szFile, &dwUseless);
LPVOID lpVI = malloc(dwLen);
GetFileVersionInfo(szFile, NULL, dwLen, lpVI);
VerQueryValue(lpVI, __TEXT("\\"), reinterpret_cast<LPVOID*>(&lpFFI), &iBufSize);
DWORD dwVer1 = lpFFI->dwFileVersionMS;
DWORD dwVer2 = lpFFI->dwFileVersionLS;

Here, lpFFI is a pointer to a previously initialized VS_FIXEDFILEINFO structure. Of course, a
module that doesn't expose a VS_VERSIONINFO resource doesn't expose any version information that an
external program can read and check.

In fact, Microsoft now provides this facility through a new DLL policy. Every system DLL is
supposed to export a function called DllGetVersion() that returns its version number —
internally, this function will execute code that is similar to the fragment shown above. Third-party
library vendors are being encouraged to do the same in their own products.

Windows Helper Libraries

295

Version Number of a System DLL
The idea of this policy is to provide a common and easy way for applications to know the version of
the DLLs they're using, or that they expect to find. Of course, a program that wants to perform such
checks can't attempt to import the function statically, because old DLLs won't support it. Instead, it
must rely on dynamic loading.

Here's an example of how a program could check for the Active Desktop update:

BOOL IsActiveDesktopInstalled()
{
 HINSTANCE hShell32 = LoadLibrary(__TEXT("shell32.dll"));
 if(!hShell32)
 return FALSE;
 else
 {
 DLLGETVERSIONPROC pFunc = reinterpret_cast<DLLGETVERSIONPROC>(
 GetProcAddress(hShell32, __TEXT("DllGetVersion")));
 if(!pFunc)
 {
 FreeLibrary(hShell32);
 return FALSE;
 }
 else
 {
 DLLVERSIONINFO dvi;
 ZeroMemory(&dvi, sizeof(dvi));
 dvi.cbSize = sizeof(dvi);
 (*pFunc)(&dvi);

 // Shell version < 4 means NT 3.51
 if(dvi.dwMajorVersion < 4)
 {
 FreeLibrary(hShell32);
 return FALSE;
 }

 if(dvi.dwMajorVersion == 4)
 {
 // Active Desktop installed
 if(dvi.dwMinorVersion >= 71)
 {
 FreeLibrary(hShell32);
 return TRUE;
 }
 }
 else
 {
 // Higher than Windows 9x and NT 4.0
 FreeLibrary(hShell32);
 return TRUE;
 }
 }
 }
 FreeLibrary(hShell32);
 return FALSE;
}

Chapter 10

296

The function loads shell32.dll and attempts to call a function called DllGetVersion(). If this
fails, it's clear that the DLL is far older than the one installed by Active Desktop. Otherwise, it issues
a call. The prototype of the function is:

HRESULT DllGetVersion(DLLVERSIONINFO* pdvi);

DLLVERSIONINFO is a structure defined in shlwapi.h like this:

typedef struct _DllVersionInfo
{
 DWORD cbSize;
 DWORD dwMajorVersion;
 DWORD dwMinorVersion;
 DWORD dwBuildNumber;
 DWORD dwPlatformID;
} DLLVERSIONINFO;

By using this structure, a program can even retrieve the build number and the target platform of a
DLL. The dwMajorVersion and dwMinorVersion members are the first two items that form a
version number; the build number is usually the third. To distinguish the target platform, you can
check dwPlatformID against the following constants:

! DLLVER_PLATFORM_WINDOWS (0x01) — DLL built for all Windows platforms
! DLLVER_PLATFORM_NT (0x02) — DLL built specifically for Windows NT

All the structure and constants that you need to call this function are declared in shlwapi.h, the
header file for the Shell Lightweight API that we'll be discussing further later in the chapter. To
reiterate, every shell DLL installed by Active Desktop exposes the DllGetVersion() function.

Exposing the Version Number in your Own Functions
Every time you develop an executable module — an EXE, a DLL, or whatever — I strongly
recommend that you incorporate some version information. This can be done either by defining the
already-mentioned VS_VERSIONINFO structure in the module's resources, or through the
DllGetVersion() function. Let's examine both cases.

Using VS_VERSIONINFO

The easiest way to provide applications and modules with version information is by defining a
VS_VERSION_INFO resource type in the .rc file of the project (in fact, the Wrox AppWizard does
exactly this). There's a resource editor screen for precisely this purpose, as the screenshot opposite
clearly demonstrates:

Windows Helper Libraries

297

The information above is ultimately stored in script form in the project's RC file, like this:

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "CompanyName", "\0"
 VALUE "FileDescription", "\0"
 VALUE "FileVersion", "1.00.001\0"
 VALUE "InternalName", "VERSION\0"
 VALUE "LegalCopyright", "\0"
 VALUE "LegalTrademarks", "\0"
 VALUE "OriginalFilename", "VERSION.exe\0"
 VALUE "ProductName", "Version Checker\0"
 VALUE "ProductVersion", "1, 0, 0, 1\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

Chapter 10

298

Using DllGetVersion()
In addition, you are encouraged to export a DllGetVersion() function from your own libraries. If
everyone follows this guidline, it should lead to a standard way of identifying the version number of a
module. Here's a typical implementation of DllGetVersion() that returns a version number of 1.0.

#include <shlwapi.h>

HRESULT DllGetVersion(DLLVERSIONINFO* pdvi)
{
 if(pdvi == NULL)
 return E_FAIL;

 ZeroMemory(pdvi, pdvi.cbSize);
 pdvi->dwMajorVersion = 1;
 pdvi->dwMinorVersion = 0;
 pdvi->dwPlatformID = DLLVER_PLATFORM_WINDOWS;

 return NOERROR;
}

A More General Function
As I've already mentioned, you can't expect to find DllGetVersion() implemented in every DLL
on every Windows platform. While the steps Microsoft is taking to encourage its adoption are
welcome, we need much more. Asking the DLL itself to disclose its version number sounds a bit
strange to me, but on the other hand I guess it's easy to code and test.

In an ideal world, I would have liked a new system API function that could be used to read version
information from any valid file. The low-level means to do this have been available since Windows
3.1, but attempting to cope with version functions can be bothersome, to say the least. However, I've
written a general function that's capable of returning the version information of any executable file
that exposes it, both as string and as an array of numbers. You can even use this function, which I've
called SHGetVersionOfFile(), to read version numbers of 16-bit programs and DLLs, regardless
of the vendor:

DWORD SHGetVersionOfFile(LPTSTR szFile,
 LPTSTR szBuf, LPINT lpiBuf, int iNumOfFields)
{
 DWORD dwUseless = 0;
 UINT iBufSize = 0;
 VS_FIXEDFILEINFO* lpFFI = NULL;
 TCHAR s[MAX_PATH] = {0};

 DWORD dwLen = GetFileVersionInfoSize(szFile, &dwUseless);
 if(dwLen == 0)
 {
 if(szBuf)
 lstrcpy(szBuf, __TEXT("<unknown>"));
 return 0;
 }

 LPVOID lpVI = GlobalAllocPtr(GHND, dwLen);
 GetFileVersionInfo(szFile, NULL, dwLen, lpVI);

Windows Helper Libraries

299

 VerQueryValue(lpVI, __TEXT("\\"),
 reinterpret_cast<LPVOID*>(&lpFFI), &iBufSize);
 DWORD dwVer1 = lpFFI->dwFileVersionMS;
 DWORD dwVer2 = lpFFI->dwFileVersionLS;
 GlobalFreePtr(lpVI);

 // Fill return buffers
 if(szBuf != NULL)
 {
 wsprintf(s, __TEXT("%d.%d.%d.%d"),
 HIWORD(dwVer1), LOWORD(dwVer1), HIWORD(dwVer2), LOWORD(dwVer2));
 lstrcpy(szBuf, s);
 }

 if(lpiBuf != NULL)
 {
 for(int i = 0 ; i < iNumOfFields ; i++)
 {
 if(i == 0)
 lpiBuf[i] = HIWORD(dwVer1);
 if(i == 1)
 lpiBuf[i] = LOWORD(dwVer1);
 if(i == 2)
 lpiBuf[i] = HIWORD(dwVer2);
 if(i == 3)
 lpiBuf[i] = LOWORD(dwVer2);
 }
 }

 return dwVer1;
}

A version number consists of 4 numbers that are usually separated by dots. A typical example of a
full version number would therefore be something like 4.71.2106.1. The first two numbers (4 and
71 in this case) are known as the major and minor version number respectively.

There's nothing to prevent you from using only a portion of the version number, if that is all you
require. I usually find that I need the version number in one of two formats — either as a string to
display in a dialog or as separate numbers in order to perform checks easily.

The programming interface of SHGetVersionOfFile() is very flexible and tries to meet both
requirements. The function's return value is the major version number, but the parameter list includes
a pointer to a string in which it will return the information in the format %d.%d.%d.%d. You can
pass NULL if you don't need a string.

SHGetVersionOfFile() accepts two additional arguments. The first one is a pointer to an array of
integers, while the second specifies its size — it can contain up to 4 elements. Through this buffer, the
caller can receive the various elements that make up the version number separately. This
undoubtedly makes any further processing that you might want to do on the numbers more
comfortable.

Chapter 10

300

The screenshot above shows the interface of a program generated by the Wrox AppWizard that uses
SHGetVersionOfFile(). Implementing it is largely a matter of writing handlers for the two
buttons, a process that you ought to be getting familiar with by now! Here's OnBrowse():

void OnBrowse(HWND hDlg, WPARAM wID)
{
 TCHAR szFile[MAX_PATH] = {0};
 TCHAR szWinDir[MAX_PATH] = {0};
 GetWindowsDirectory(szWinDir, MAX_PATH);

 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.lpstrFilter = __TEXT("Executable\0*.exe;*.dll;*.drv;*.vxd\0");
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrInitialDir = szWinDir;
 ofn.lpstrFile = szFile;

 if(!GetOpenFileName(&ofn))
 return;
 else
 SetDlgItemText(hDlg, wID, ofn.lpstrFile);
}

Once you've chosen the file to interrogate, clicking on the OK button will invoke a function called
DoGetVersionInfo(), which looks like this:

const int BUFSIZE = 1024;
const int MSGSIZE = 40;

void DoGetVersionInfo(HWND hDlg)
{
 TCHAR szTemp[MAX_PATH] = {0};
 HWND hwndList = GetDlgItem(hDlg, IDC_VIEW);
 GetDlgItemText(hDlg, IDC_FILENAME, szTemp, MAX_PATH);

 // Create the string for the list view
 TCHAR pszBuf[BUFSIZE] = {0};

Windows Helper Libraries

301

 LPTSTR psz = pszBuf;

 lstrcpy(psz, szTemp);
 lstrcat(psz, __TEXT("\0"));
 psz += lstrlen(psz) + 1;

 // Get the version info
 TCHAR szInfo[MSGSIZE] = {0};
 SHGetVersionOfFile(szTemp, szInfo, NULL, 0);
 lstrcpy(psz, szInfo);
 lstrcat(psz, __TEXT("\0"));
 psz += lstrlen(psz) + 1;

 // Add the two column text
 AddStringToReportView(hwndList, pszBuf, 2);
}

To do its work, DoGetVersionInfo() uses SHGetVersionOfFile(), which we defined earlier
in this chapter, and AddStringToReportView(), which you first saw back in Chapter 6. The
latter's sister function, MakeReportView(), is used in OnInitDialog() to set up the list view:

void OnInitDialog(HWND hDlg)
{
 // Initialize the report view with 2 columns: File and Version
 HWND hwndList = GetDlgItem(hDlg, IDC_VIEW);
 LPTSTR psz[] = { __TEXT("File"), reinterpret_cast<TCHAR*>(350),
 __TEXT("Version"), reinterpret_cast<TCHAR*>(95) };
 MakeReportView(hwndList, psz, 2);

 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));
}

Finally, you need to add #includes for resource.h and comdlg.h, link to version.lib and
comdlg32.lib, and add a couple of new cases to the switch in APP_DlgProc():

 case WM_COMMAND:
 switch(wParam)
 {

 case IDC_BROWSE:
 OnBrowse(hDlg, IDC_FILENAME);
 return FALSE;

 case IDOK:
 DoGetVersionInfo(hDlg);
 return FALSE;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

Chapter 10

302

Once the application is running, you can type the name of the file to check in the edit field, or select
it from the Open dialog that appears when you click on the … button. The code tied to the OK button
then attempts to read the version information from the specified file. The name of the file and the
version string are then written in the report view below unless the file doesn't contain version
information, in which case the string <unknown> is returned.

The Recycle Bin API
The Recycle Bin is a custom object that you find in the shell's namespace, right beneath the desktop.
It can be seen as a temporary container for all the file objects that have been deleted using shell
functions, from which files can be restored or definitively destroyed. It's important to keep in mind
that only those file objects that you delete manually through the shell, or programmatically by means
of the shell functions, go into the Recycle Bin. If you delete a file using DeleteFile(), or from the
MS-DOS prompt, the file will be removed from the file system directly, with no further intervention
required.

A specialized programming interface is needed for working with the Recycle Bin because deletion
requests must be processed differently. In Chapter 3 we discussed the SHFileOperation()
function, which was able to send deleted files to the bin. In the next section I'll examine two other,
more recent, functions that allow us to empty the Recycle Bin, and also to send it some queries.
These functions were introduced with version 4.71 of the shell.

Structure of the Recycle Bin
To elaborate on the definition of the last two paragraphs, the namespace extension through which the
Recycle Bin is implemented lies on the desktop. The actual containers for the deleted files are located
on each local drive, in a folder called Recycled.

Although you won't see it through the shell interface, each Recycled folder contains only the files
deleted in that drive. In fact, if you open any of the Recycled folders on your system you will
always see the same content, which is a list of all the deleted files from all your drives. If you look
around these folders with a DOS-based tool instead, you should be able to see the logic that the
Recycle Bin adopts.

Windows Helper Libraries

303

The figure above shows the real content of two Recycled directories, on my C and E drives.

In fact, any deletion that occurs within the shell is divided into two non-consecutive steps. Initially,
the shell just moves the file from its original location to the Recycled folder of the current drive.
Once there, the file is renamed according to a convention that I will cover in the next section. When
asked to list its contents, the Recycle Bin that you see on the desktop just collects the files from the
various Recycled folders located on each local drive.

Renaming Convention
As the screenshot suggests, all the files in the Recycle Bin have a name that begins with D. The
second character is the original drive letter, and what follows is a local, incremental number that is
assigned to the file at time of deletion. The file retains its original extension.

While the Recycled folders themselves are hidden, the files marked for deletion have only the
Archive attribute set. The link between the 'deleted' name and the original is stored on a drive-by-
drive basis in a hidden file called info2. (Open an MS-DOS prompt, then go to any Recycled
folder and type dir /AH.)

What if the info2 file gets lost or damaged? That's no problem, because the deletion of this file
doesn't affect the files to which it refers. Moreover, at each startup, Windows makes sure that an
info2 file exists if there are deleted files. If info2 doesn't exist, Windows will create it on the fly.

Restoring a file therefore means moving it back to its original location, and reverting to its original
name. If another file with the same name exists, a confirmation dialog box pops up. Deleting a file
from the Recycle Bin simply means that it will 'really' be deleted.

Chapter 10

304

The Recycle Bin View
The next picture illustrates what the Recycle Bin looks like through the Windows shell:

You can see that the shell view shows the real names of the deleted files — essentially, the shell is
interpreting the names on our behalf. The filename you actually work with is not the same as the one
displayed via the shell.

This behavior is an example of how a namespace extension can build a layer of abstraction over
the physical content of a directory.

Functions for Interacting with the Recycle Bin
Apart from SHFileOperation(), there are just two other shell functions for working with the
Recycle Bin. They are:

! SHEmptyRecycleBin()
! SHQueryRecycleBin()

As its name suggests, the first of these destroys all the files contained in the various Recycled
folders throughout the machine. The latter, on the other hand, retrieves the number of items in the
Recycled directory of a specified drive, and the amount of memory that they occupy. Let's see the
syntax in more detail, starting with SHEmptyRecycleBin().

HRESULT SHEmptyRecycleBin(HWND hwnd, LPCTSTR pszRootPath, DWORD dwFlags);

The hwnd argument denotes the parent window for any window or dialog box that the function
should create. Depending on the value of pszRootPath, the function can empty the Recycled
folder for a single disk, or all the disks — the argument is a path to the root directory of the drive on
which to empty the folder. If you pass a fully qualified path, only the drive part will be taken into
account. If the string is NULL, then the entire Recycle Bin is emptied, drive after drive.

The last argument can be used to specify some flags, as explained in the following table:

Windows Helper Libraries

305

Flag Description

SHERB_NOCONFIRMATION Usually, the system displays a confirmation dialog box
before proceeding with the operation. If this bit is set, the
dialog is suppressed.

SHERB_NOPROGRESSUI The shell also displays a dialog with a progress bar (shown
below). If this bit is set, no dialog will be displayed.

SHERB_NOSOUND If this bit is set, there will be no sound upon completion.

The SHQueryRecycleBin() function has the following prototype:

HRESULT SHQueryRecycleBin(LPCTSTR pszRootPath, LPSHQUERYRBINFO pSHQueryRBInfo);

The pszRootPath argument has the same features as it did for SHEmptyRecycleBin(): it should
indicate the root directory of the drive for which information is to be retrieved. However, it can also
be NULL or a fully qualified path. In the first case the system retrieves information for all the drives
available, while in the latter case only the drive portion of the string is used.

The information retrieved is stored in a structure called SHQUERYRBINFO, which is defined like this:

typedef struct _SHQUERYRBINFO
{
 DWORD cbSize;
 __int64 i64Size;
 __int64 i64NumItems;
} SHQUERYRBINFO, FAR* LPSHQUERYRBINFO;

As usual, the cbSize member must be filled with the structure's size prior to issuing the call. After
the call, i64Size will contain the total number of bytes occupied by the portion of the Recycle Bin
specified in pszRootPath, and i64NumItems will hold the number of items marked for deletion.
The latter two members are both 64-bit integers.

Helper Libraries
In semi-clandestine fashion, installing the Active Desktop stores a new, relatively small library on
your disk called shlwapi.dll (the Shell Lightweight API). This DLL contains many functions that
can (sometimes!) make a programmer's life much easier. Using this library is as easy as adding a
#include for the header file shlwapi.h, and linking to the import library shlwapi.lib.

Chapter 10

306

Let's see what this DLL can do for us. In the Internet Client SDK you will find quick descriptions of
its functions, with short examples. This is usually sufficient, because many of the functions are self-
explanatory. They are divided into three groups, which cover the following areas:

! The registry
! Strings
! Path string manipulation

I'll be using these functions in the following examples, but I won't provide exhaustive coverage of
them. They are incredibly numerous and surprisingly simple, so I will point out what's new and most
interesting about the functionality that you can expect from shlwapi.dll, rather than give an
endless list of names and arguments. From shell version 4.71 on, these routines may be considered to
be part of the Windows SDK.

The Registry Shell API
A great, and universally known, drawback of the Win32 Registry API is that you need to call three
functions in order to get even the world's most useless and insignificant value! You have to
open/create the key, do your reading or writing and then close the handle. To a greater or lesser
extent, they mimic file operations. The new functions in the Registry Shell API are a step forward,
because they save you the hassle of opening and closing the registry key each time you want a value.

Table of Functions in the Registry Shell API
The following table summarizes the most important of the new functions that you will find. They
simplify the development of registry-based code, and increase productivity.

Function Description

SHDeleteEmptyKey() Deletes the entire sub-tree of an empty key, like Windows NT's
RegDeleteKey()

SHDeleteKey() Deletes a key and all its sub-trees, like Windows 95's
RegDeleteKey()

SHDeleteValue() Deletes a value

SHEnumKeyEx() Enumerates the sub-keys of a given key

SHEnumValue() Enumerates the values of a given key

SHGetValue() Retrieves a value

SHOpenRegStream() Returns the IStream interface to a registry value

SHQueryInfoKey() Retrieves information about a given key

SHQueryValueEx() Queries a registry key for a specific value

SHSetValue() Sets a value

Windows Helper Libraries

307

Manipulating Strings
High-level development tools have certainly provided us with useful ways of manipulating strings. If
they choose, Windows programmers can rely on the facilities provided by the C runtime library,
which includes things like strstr() and strchr(), but if we can get rid of the runtime library, we
gain a smaller memory footprint. This is the reason why an increasing number of C runtime functions
have an alias in a Windows library, and this list now includes lstrcpy(), lstrcat(),
wsprintf() and lstrcmp(), to name just a few.

This trend is reinforced with shlwapi.dll, and we have new and interesting aliases such as
StrDup(), StrChr(), StrRChr() and StrStr(). In addition, the library provides some
timesaving and much-needed functions such as the two that convert a number into kilobytes, or into a
time interval. StrFormatByteSize() is capable of taking 24102 and returning "23.5 KB" — it's
even smart enough to convert to MB or GB, depending on the actual value that you pass.
StrTimeFromInterval() can take a length of time in milliseconds and convert it into a string of
minutes or hours.

To be critical for a moment, I'd say that we are still waiting for functions like Visual Basic's
Right$() and Mid$(), although to be fair similar functionality is available with MFC's CString
class, and with STL's string class.

Table of Functions for Manipulating Strings
The following table summarizes the most important of the new functions for manipulating strings.
Notice that some of the functions have two versions, one of which is case sensitive. The function
whose name ends with I is not case sensitive.

Function Description

ChrCmpI() Compares two characters (not case sensitive)

StrChr(), StrChrI() First occurrence of a character in a string

StrCmpN(), StrCmpNI() Compares the first n bytes of two strings

StrDup() Duplicates a string

StrFormatByteSize() Converts a numeric value in bytes to KB, MB or GB

StrFromTimeInterval() Converts a numeric value in ms to a time interval

StrNCat() Appends the specified number of characters

StrPBrk() First occurrence of any of the characters in a given
buffer

StrRChr(), StrRStrI() Last occurrence of a character in a string

StrSpn() Finds a substring entirely formed by a given set of
characters

Table Continued on Following Page

Chapter 10

308

Function Description

StrStr(), StrStrI() Searches for a substring

StrToInt(), StrToLong() String to number conversion

StrToIntEx() Decimal/Hexadecimal string to number conversion

StrTrim() Remove leading and trailing blanks

Manipulating Path Strings
Although all of us continue to define them as strings, a path is not just a string. There will be few
programs that you write where you won't have to reuse or rewrite a set of specialized functions for
handling paths. I think that a function to add a backslash conditionally must be one of the top-ten
most written functions in the history of modern computing! My own favorite macro for this purpose is
contained in a single line of code:

#define ADDBACKSLASH(p) lstrcat(p, (p[lstrlen(p) - 1] == 92 ? "\\" : ""))

The functions of shlwapi.dll sound really interesting, but sadly they won't help you to overcome
really difficult problems. Their main benefit is for dealing with repetitive tasks. In Chapter 8, for
example, we discussed the problems with spaces in long file names that cause FindExecutable()
to fail. The list of path functions in the next section includes one for extracting arguments that
appears to offer a solution, but unfortunately the function assumes that the first space is the end of the
file name, which (as we have seen) is not always the case.

Table of Functions for Manipulating Path Strings
The following table summarizes many of the new functions for manipulating path strings. My
favorites are PathCompactPathEx(), which provides you with a truncated path that fits in a given
number of pixels, and (even better) PathSetDlgItemPath(), which exploits this function and
automatically draws the path name to a child window identified by ID. Also useful are
PathQuoteSpaces() and PathUnquoteSpaces(), which add and remove delimiting quotes if a
path contains one or more spaces. This is just the kind of functionality that would prevent the bug in
FindExecutable() (See Chapter 8).

Function Description

PathAddBackslash() Makes sure the path has a final backslash

PathAddExtension() Makes sure the path has an extension

PathBuildRoot() Builds a drive path from the drive number (0 = A, etc.)

PathCanonicalize() Expands and properly replaces all the instances of ..
and . that a path may contain

PathCombine() Combine drive and directory path

PathCompactPath() Truncates a path to fit a certain number of pixels

Windows Helper Libraries

309

Function Description

PathCompactPathEx() Inserts ellipses to make a path fit a certain number of
characters

PathCommonPrefix() Compares two paths for a common prefix

PathFileExists() Verifies that a file exists

PathFindExtension() Gets the extension

PathFindFileName() Gets the file name

PathFindNextComponent() Gets the next item between two backslashes

PathGetArgs() Returns the command line of a path

PathGetCharType() Examines a given character with respect to the path. Is
it a valid long file name character, is it a wildcard or is
it a separator?

PathGetDriveNumber() Gets the drive number. (0 = A, etc.)

PathIsDirectory() Checks whether the given path is a directory

PathIsFileSpec() Checks whether the given path contains separators (\,
:)

PathIsRoot() Checks whether the given path contains a root

PathIsSameRoot() Checks whether two given paths share the same root

PathIsSystemFolder() Checks whether the given path has the System
attribute

PathIsUNC() Checks whether the given path follows UNC
conventions

PathIsURL() Checks whether the given path is an URL

PathQuoteSpaces() If a path contains a space, puts quotes around the path

PathRemoveArgs() Removes the arguments

PathRemoveBackslash() Makes sure there's no final backslash

PathRemoveExtension() Makes sure there's no extension

PathRemoveFileSpec() Makes sure there's no file or extension

PathRenameExtension() Replaces the extension

PathSearchAndQualify() Determines whether a path is correct and fully
qualified

PathSetDlgItemPath() Makes sure text of a control containing a path is
correctly displayed in a child window

Table Continued on Following Page

Chapter 10

310

Function Description

PathSkipRoot() Parses a path, starting from a directory

PathStripPath() Removes the drive and directory

PathStripToRoot() Leaves the drive only

PathUnquoteSpaces() Makes sure the path has no delimiting quotes

The Case for SHFormatDrive()
Despite the fact that Windows 98 has shipped and a large part of the shell has been affected by recent
changes, the documentation of a function called SHFormatDrive() is still poor. By combining the
information here with the quick note in the MSDN Library and some articles that have appeared (see
Further Reading), you can format disks programmatically.

What the Function Does
As its name suggests, SHFormatDrive() allows you to format a drive. In principle, you could try to
format your C drive, were it not for the fact that the function (or rather, the system) prevents you
from doing so! The official reason for this is that a drive with Windows or the swap file in use cannot
be formatted. Whatever the merits of the argument, I'll limit my discussion here to floppies. The
prototype (taken from the MSDN Library) is as follows:

DWORD WINAPI SHFormatDrive(HWND hwnd, UINT drive, UINT fmtID, UINT options);

Argument Description

hwnd Parent window of the dialog displayed

drive ID of the drive to be formatted (0 = A, 1 = B, 2 = C, etc.)

fmtID Should always be set to -1 at present

options Type of formatting

For the type of formatting, we can choose from:

Value Description

0 Quick format

1 Full format

2 Make system disk

Windows Helper Libraries

311

The return code of the function is one of the following:

Return Code Description

>0 Success

0 Wrong parameters passed

-1 Error while formatting

-2 Operation aborted

-3 Drive cannot be formatted

Now we have all that we need to call SHFormatDrive() and format our disks, like this:

irc = SHFormatDrive(hWnd, 0, -1, 0);

SHFormatDrive() is exported quite normally by shell32.dll, and shell32.lib contains its
definition. What's missing (apart from a few lines of documentation!) is a declaration in
shellapi.h. Since the function is defined in shell32.lib, you don't have to load it dynamically
through LoadLibrary() and GetProcAddress() — you can just use its regular name.

Remember, though, that you'll have to add a declaration for the function somewhere. The one I gave
above is fine, although using it from C++ will require you to declare it as having C linkage by using
the extern keyword. See the code at the end of the section for clarification of this point.

SHFormatDrive() and Windows NT
Although the MSDN article doesn't mention it, the behavior of SHFormatDrive() is slightly
different under Windows NT than it is under Windows 9x. In particular, the successful return code is
0 under NT, while it is greater than 0 under Windows 9x. In addition, the user interface is different,
and there's a further confirmation message box that appears when you press OK to start formatting.
See Further Reading for related articles.

The function is supported only on Windows NT 4.0 or higher. The version of the library that shipped
with NT 3.51 has an entry for it, but it just returns –1. Furthermore, a 16-bit version of the function
still exists in shell.dll.

A General Approach to Improving System Dialogs
Windows is still waiting for a well-documented function for formatting drives. Once we've figured out
how to use SHFormatDrive(), we might be satisfied and stop there, but there's so much more that
we can do! For example, I'm still wondering why the function doesn't allow us to set the disk label
programmatically — doing it though SetVolumeLabel() seems like unnecessary extra effort. And
what about a silent function that you can run without confirmation, and only stop when you need to?

Chapter 10

312

You know that I must be working towards something! Because SHFormatDrive() is a dialog-based
function, it offers us a place to hook onto and change anything we want about it. In fact, there's a
general technique for so doing, which is:

! Install a WH_CBT hook just before calling the dialog-based function that you want to hook, because
the first window of class WC_DIALOG created in that thread is the dialog in which we're interested

! Do whatever you want to do when intercepting the various events of the hook
! Uninstall the hook

The hook receives from the system a pointer to the CREATESTRUCT structure that contains
information about the window to be created. We can modify its template, subclass it, modify its
position or a combination of all three! The possibilities that the WH_CBT hook provides are numerous
indeed.

The example program we will develop later in the chapter, whose dialog is shown in the figure below,
exploits this technique to enable label setting and silent formatting in SHFormatDrive(). The
options that you select on this dialog will be communicated directly to the SHFormatDrive()
dialog by means of the hook.

The Drive combo box lets you choose the drive to format (floppies only), while the OK button starts
the operation. The various checkboxes allow the user to specify the behavior we're expecting the
function to provide. The label under the OK button displays the value the function returns, while the
No Label, Show Summary, and Copy system files checkboxes map some of the controls that
populate the SHFormatDrive() dialog under Windows 9x. As you'll see shortly, the situation is a
little different under Windows NT, and we'll be making a few runtime tweaks to the user interface.

Extending the Syntax of SHFormatDrive()
As a first step down the road to our sample application, I'll define a new function that will use
SHFormatDrive() for much of its internal operation. Imaginatively called FormatDrive(), the
function has the following prototype:

int FormatDrive(HWND hWnd, int iDrive, int iCapacity,
 int iType, LPFORMATDRIVESTRUCT lpfd);

Windows Helper Libraries

313

The additional parameters are gathered together in the FORMATDRIVESTRUCT structure:

struct FORMATDRIVESTRUCT
{
 BOOL bShowSummary; // Unused under Windows NT
 BOOL bNoLabel; // Unused under Windows NT
 BOOL bCopySystemFiles; // Unused under Windows NT
 BOOL bAutomatic; // Unused under Windows NT
 TCHAR szLabel[11];
};

typedef FORMATDRIVESTRUCT* LPFORMATDRIVESTRUCT;

Many of these parameters are modeled on the layout of the dialog produced by SHFormatDrive()
under Windows 9x, which looks like this:

The bShowSummary, bNoLabel and bCopySystemFiles members match the analogous
checkboxes in the system dialog box. szLabel will point to the new label required, while
bAutomatic indicates that a silent and somewhat automatic process is required. This last feature
doesn't have an analog in any of the dialog's controls, so its implementation is entirely my own.

The Windows NT Dialog Box
Unfortunately, the dialog produced by SHFormatDrive() under Windows NT is quite different, as
the next figure shows:

Chapter 10

314

Not only are there are fewer controls, rendering our bShowSummary, bNoLabel and
bCopySystemFiles structure members useless, but also the ID of the Label textbox is different.
Spy++ reveals that it's ID_DLG_TEXTLABEL under Windows 9x, and ID_NT_DLG_TEXTLABEL
under Windows NT. These inconsistencies will force us once again to detect on which platform we're
running and execute conditional code as appropriate.

An Automatic Function for Formatting Drives
We're now in a position where we know the things our FormatDrive() function must do. It needs
to establish what operating system it's running on, and to verify that the drive it has been called upon
to format is removable. Then it has to squirrel away the additional parameters in global memory so
that the hook can read them. After that it's just a matter of installing the hook, calling
SHFormatDrive(), and uninstalling the hook again:

HHOOK g_hHook = NULL; // CBT hook
BOOL g_bIsNT; // Are we on NT?
FORMATDRIVESTRUCT g_fd; // Other options

LRESULT CALLBACK CBTProc(int, WPARAM, LPARAM);

extern "C" DWORD WINAPI SHFormatDrive(
 HWND hwnd, UINT drive, UINT fmtID, UINT options);

// Format a drive calling the standard SHFormatDrive() function
int FormatDrive(HWND hWnd, int iDrive,
 int iCapacity, int iType, LPFORMATDRIVESTRUCT lpfd)
{
 // Read the platform for later use...
 OSVERSIONINFO os;
 os.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);

Windows Helper Libraries

315

 GetVersionEx(&os);
 g_bIsNT = (os.dwPlatformId == VER_PLATFORM_WIN32_NT);

 // Check the drive type
 TCHAR sz[5] = {0};
 wsprintf(sz, __TEXT("%c:\\"), 'A' + iDrive);
 BOOL bIsFloppy = (GetDriveType(sz) == DRIVE_REMOVABLE);
 if(!bIsFloppy)
 return -3;

 // Copy the additional parameters to global memory
 CopyMemory(&g_fd, lpfd, sizeof(FORMATDRIVESTRUCT));

 // Install the hook and call the function
 g_hHook = SetWindowsHookEx(WH_CBT, CBTProc, NULL, GetCurrentThreadId());
 int irc = SHFormatDrive(hWnd, iDrive, iCapacity, iType);
 UnhookWindowsHookEx(g_hHook);
 return irc;
}

This is obviously not the whole story, because, apart from a bit of elementary setup and checking,
most of the actual work gets pushed off to the CBTProc() callback function that's installed and
removed by the calls to SetWindowsHookEx() and UnhookWindowsHookEx() respectively. By
dint of this code, CBTProc() will be called when the SHFormatDrive() dialog is about to be
displayed, and that's the point at which we get to step in and make changes.

Setting Volume Labels
As you'll see when we get to the code, making the settings on the SHFormatDrive() dialog match
the ones we specify in our application is a relatively easy task, but there are some other issues that
CBTProc() needs to deal with.

For example, you might be thinking that to force the dialog to set a new disk label, it will be sufficient
simply to put the desired text into the appropriate edit box. Unfortunately, this won't suffice because
the contents of the box are actually read and utilized only if it has previously been edited. The dialog
procedure ignores the box completely until it detects an EN_CHANGE notification message from it.

When you change the text in the control manually, this message gets sent automatically, but doing it
from software doesn't have the same effect, so SetDlgItemText() alone isn't enough. In order to
make the dialog believe that the text has been changed, we need to add a call to
SendDlgItemMessage(), like this:

SetDlgItemText(hDlg, iLabelID, szLabel);
SendDlgItemMessage(hDlg, iLabelID, EM_SETMODIFY, TRUE, 0);

Here, the EM_SETMODIFY message serves the purpose of raising the EN_CHANGE notification.

Silent Formatting
Another problem with the SHFormatDrive() dialog (from the point of view of manipulating it
programmatically) is that it always requires the user to click to confirm the operation. Ideally, we'd
like to be able to skip this confirmation so that we can begin formatting the disk simply by clicking on
a button in our application.

Chapter 10

316

To do this, the software must simulate a click on the SHFormatDrive() dialog's OK button, and it
can do so by posting a WM_COMMAND message to the dialog:

PostMessage(hDlg, WM_COMMAND, IDOK, 0);

There's additional complexity here: we must make sure to post the message only on the first occasion
that the window is activated. Unfortunately, the HCBT_ACTIVATE event is also raised when the
progress window closes, and the format dialog returns to the foreground.

In order to close the progress window programmatically (by using another message), we also need a
way to detect when the formatting has been completed. The solution here is a timer that frequently
checks the state of the OK button to see whether it is enabled — it is always disabled for the entire
process of formatting. To know when to kill the timer, we just need to hook for the
HCBT_DESTROYWND notification.

Further NT Problems
Unfortunately, this trick won't work under Windows NT because there's a further confirmation
window before the format takes place. To try to work around this, we could consider hooking for the
additional window as well, but for now I'm going to add support for 'automatic' operation to the list
of things the application can't do under NT. Here, at last, is the code for CBTProc():

HWND g_hwndDlg; // Dialog HWND
UINT g_idTimer; // Timer ID

void CALLBACK TimerProc(HWND, UINT, UINT, DWORD);

// CBT hook callback
LRESULT CALLBACK CBTProc(int iCode, WPARAM wParam, LPARAM lParam)
{
 static BOOL bFirstTime = TRUE;

 if(iCode < 0)
 return CallNextHookEx(g_hHook, iCode, wParam, lParam);

 // About to activate the dialog
 if(iCode == HCBT_ACTIVATE)
 {
 // Get a handle to the dialog
 g_hwndDlg = reinterpret_cast<HWND>(wParam);

 // Set the label edit box
 int iLabelID = (g_bIsNT ? ID_NT_DLG_TEXTLABEL : ID_DLG_TEXTLABEL);
 SetDlgItemText(g_hwndDlg, iLabelID, g_fd.szLabel);
 SendDlgItemMessage(g_hwndDlg, iLabelID, EM_SETMODIFY, TRUE, 0);

 // Check the option buttons
 CHECK(GetDlgItem(g_hwndDlg, ID_DLG_SHOWSUMMARY), g_fd.bShowSummary);
 CHECK(GetDlgItem(g_hwndDlg, ID_DLG_NOLABEL), g_fd.bNoLabel);
 CHECK(GetDlgItem(g_hwndDlg, ID_DLG_BOOTABLE), g_fd.bCopySystemFiles);

 // If not the first time, then must skip
 if(g_fd.bAutomatic && bFirstTime)
 {
 // Simulate a click on the Start button
 bFirstTime = FALSE;

Windows Helper Libraries

317

 PostMessage(g_hwndDlg, WM_COMMAND, IDOK, 0);

 // Set the timer to detect when formatting ends
 g_idTimer = SetTimer(NULL, 1, 1000, TimerProc);
 }
 }

 // About to destroy the dialog
 if(iCode == HCBT_DESTROYWND)
 {
 // Reset first time flag and stop the timer
 bFirstTime = TRUE;
 if(g_fd.bAutomatic)
 KillTimer(NULL, g_idTimer);
 }

 return CallNextHookEx(g_hHook, iCode, wParam, lParam);
}

The wParam passed to the callback procedure is the handle of the window being activated, namely
the dialog. Once you've got hold of that, accessing and modifying the content of the dialog controls is
fairly straightforward. You need to know the IDs of the standard dialog controls (another job for
Spy++!):

// IDs of Windows 9x standard dialog controls
const int ID_DLG_TEXTLABEL = 0x26; // Edit box for label
const int ID_DLG_NOLABEL = 0x27; // "No Label" checkbox
const int ID_DLG_BOOTABLE = 0x28; // "System files" checkbox
const int ID_DLG_SHOWSUMMARY = 0x29; // "Show Summary" checkbox

// IDs of NT4 standard dialog controls
const int ID_NT_DLG_TEXTLABEL = 0x7007; // Edit box for label

Then there's my handy little macro, CHECK(), which makes light of some repetitive calls to
PostMessage():

// Macro to post check messages more quickly
#define CHECK(h,b) \
 PostMessage(h, BM_SETCHECK, (b ? BST_CHECKED : BST_UNCHECKED), 0)

And finally, we have the TimerProc() callback function:

// Timer callback
void CALLBACK TimerProc(HWND hwnd, UINT uMsg, UINT idEvent, DWORD dwTime)
{
 HWND hwndOK = GetDlgItem(g_hwndDlg, IDOK);

 // Simulate the Close button being pressed
 if(IsWindowEnabled(hwndOK))
 PostMessage(g_hwndDlg, WM_COMMAND, IDCANCEL, 0);
}

As you can see, it watches for the OK button becoming enabled and then dismisses the dialog.

Chapter 10

318

The Sample Program
All that remains now is to set up a Wrox AppWizard-generated application with the dialog that I
showed you earlier in the chapter, and so that it uses the FormatDrive() function. Once you've
added all the functions we've developed so far, you just need to add code to the OnInitDialog()
and OnOK() functions:

#include "resource.h"

void OnInitDialog(HWND hDlg)
{
 // Read the platform...
 OSVERSIONINFO os;
 os.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 GetVersionEx(&os);
 BOOL bIsNT = (os.dwPlatformId == VER_PLATFORM_WIN32_NT);

 // Disable some options if under NT
 if(bIsNT)
 {
 EnableWindow(GetDlgItem(hDlg, IDC_SUMMARY), FALSE);
 EnableWindow(GetDlgItem(hDlg, IDC_NOLABEL), FALSE);
 EnableWindow(GetDlgItem(hDlg, IDC_COPYSYSTEMFILES), FALSE);
 EnableWindow(GetDlgItem(hDlg, IDC_AUTOMATIC), FALSE);
 }

 // Fill the drive list
 HWND hwndCbo = GetDlgItem(hDlg, IDC_DRIVE);
 ComboBox_AddString(hwndCbo, __TEXT(" A:"));
 ComboBox_AddString(hwndCbo, __TEXT(" B:"));
 ComboBox_AddString(hwndCbo, __TEXT(" C:"));
 ComboBox_AddString(hwndCbo, __TEXT(" D:"));
 ComboBox_AddString(hwndCbo, __TEXT(" E:"));
 ComboBox_SetCurSel(hwndCbo, 0);

 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));
}

void OnOK(HWND hDlg)
{
 HWND hwndCbo = GetDlgItem(hDlg, IDC_DRIVE);
 int iDrive = ComboBox_GetCurSel(hwndCbo);

 FORMATDRIVESTRUCT fd;
 ZeroMemory(&fd, sizeof(FORMATDRIVESTRUCT));
 fd.bNoLabel = (IsDlgButtonChecked(hDlg, IDC_NOLABEL) == BST_CHECKED);
 fd.bShowSummary = (IsDlgButtonChecked(hDlg, IDC_SUMMARY) == BST_CHECKED);
 fd.bCopySystemFiles = (IsDlgButtonChecked(hDlg, IDC_ COPYSYSTEMFILES) ==
 BST_CHECKED);
 fd.bAutomatic = (IsDlgButtonChecked(hDlg, IDC_AUTOMATIC) == BST_CHECKED);
 GetDlgItemText(hDlg, IDC_EDIT, fd.szLabel, 11);
 int irc = FormatDrive(hDlg, iDrive, -1, 0, &fd);

 TCHAR szBuf[MAX_PATH] = {0};
 wsprintf(szBuf, __TEXT("%d"), irc);
 SetDlgItemText(hDlg, IDC_ERRCODE, szBuf);
}

Windows Helper Libraries

319

There's really very little to be said: OnOK() gets the values from the dialog, bundles them up into a
FORMATDRIVESTRUCT, calls FormatDrive() and outputs the return value. What could be easier
than that?

Summary
This chapter has presented some fairly new aspects of the Windows 9x shell. In fact, they're new not
because they are relatively recent additions, but also because they are not widely known. With the
usual well-documented provisos, everything you've seen in this chapter works under Windows 95 and
Windows NT 4.0, as long you have installed Internet Explorer 4.0 and Active Desktop.

In this chapter, we examined:

! How to get the version number of a generic executable file
! The Recycle Bin API
! The Shell Lightweight Utility API
! An poorly-documented function for formatting drives
! A general technique for hooking and customizing system dialogs

In the book so far, we've been examining specific parts of the shell API. In this chapter, we have
covered more minor aspects with a broader brush and completed the overview.

Starting with the next chapter, I'll begin to dig inside Explorer, its objects, its registry settings and its
customization levels. In particular, I'll examine traditional components such as Control Panel, My
Briefcase and Printers, as well as some new ones. Among these, the most noteworthy are Scriptable
Shell Objects and the Windows Scripting Host.

Further Reading
A programmer's perspective of Windows 98 may be found in an article of mine that appeared in the
July 98 edition of MIND, in the Cutting Edge column. A similar article by Matt Pietrek, entitled A
Programmer's Perspective on New System DLLs Features in Windows NT 5.0, was published in the
November and December 97 issues of MSJ.

I stated earlier that being able to leave the C runtime library out of the compiled code could improve
performance and memory demand. Doubtful? Then check out two of Matt Pietrek's articles that
appeared in the October 1996 issue of MSJ. One is in the Under The Hood column and specifically
covers runtime library functions, while the other is called Remove Fatty Deposits from Your Applications
Using Our 32-bit Liposuction Tools.

I wrote an article on SHFormatDrive() that appeared in the March 98 issue of WDJ, in which I
endeavored to provide a uniform interface for dealing with the function, both under Windows 95 and
Windows NT 4.0. Check it out; it's called An Undocumented Function for Formatting Drives.

Chapter 10

320

Finally, as usual, here's a list of related Knowledge Base articles:

Article ID: Q158439: Files with Long Extensions Bypass the Recycle Bin When Deleted
Article ID: Q168570: Files Do Not Show Up in Recycle Bin When Deleted
Article ID: Q17169: Differences Between the Recycle Bin and the Recycled Folder
Article ID: Q136517: How the Recycle Bin Stores Files
Article ID: Q173688: Call SHFormatDrive in Windows 95 and Windows NT

Exploring the Shell

We'll now turn our attention away from the API and to the Windows Shell itself. My goal for this
chapter and the rest of the book is to provide you with a clear and comprehensive understanding of
how Explorer works, what objects make up the shell's namespace, and finally how you can customize
and extend its characteristics and behavior.

The Windows Shell, also known as Explorer, is a collection of specialized modules that work together
to form the shell's namespace and give it the ability to perform a lot of specialized tasks. These
include such things as exploring a folder, showing a specific directory sub-tree, or loading an external
module and communicating with it. Although the end result may be different, whenever these objects
are invoked and displayed, it is always Explorer working away in the background.

In many cases, Explorer provides these services by communicating with a given program through its
command line. It's therefore important to understand what Explorer expects from your applications if
you want it to manage them effectively for you. (This topic will be covered in much more detail in
Chapter 14.)

In this chapter, we'll be covering the following topics:

! Explorer's command line
! The RunDll32 program that runs system dialogs
! The shell objects My Briefcase, Control Panel, Printers and Scheduled Tasks
! Scrap objects

The source code example for this chapter provides you with a tool that could well be useful to you in
your everyday work. It brings together many of the topics we have covered in recent chapters, such
as shortcuts and registry manipulation, and also addresses some new topics that we will be discussing
in detail in the next few chapters.

Chapter 11

324

This tool, called NewLink, provides an alternative and far more flexible way to create shortcuts, on
the desktop or elsewhere. If you really like it, you can even install it as your default shortcut handler,
replacing the standard Windows Wizard.

Explorer's Command Line
Explorer has a command line that can take four optional switches, and as a result there are several
possible combinations:

explorer.exe [/n [, <folder>]]
 [/e [, <folder>]]
 [, /root, <object>]
 [[, /select], <sub object>]

Notice the use of commas in the command line structure. This is certainly an unusual thing to see, but
it's not a mistake — that really is how it works! The following table explains what the switches mean:

Switch Description

/n Opens the specified folder in a new, single-paned view. A single-paned view
looks like the windows you get in My Computer, and is based on a list view.

/e Opens the specified folder in a new, double-paned view. This is the typical
Explorer view, with the namespace in the left pane as a tree view, and the
details in the right pane.

/root Makes the specified folder the root of the tree view. Requires an /e view.

/select Selects the specified item in the left pane (the tree view).

The simplest switch is the /select option, which is used to select a specific sub-item within the
opened folder. Here's an example of the syntax:

explorer /e, /select, c:\windows

You need to use this flag in conjunction with /e, because the /select flag requires a tree view.
There's no way to select an item in the right pane, or the folder in a single-pane view. When you use
the /n and /e switches, you specify the folder name following a comma:

explorer /e, c:\
explorer /n, c:\
explorer c:\

The second and third of the command lines listed above produce identical results (a single-paned
view) — in other words, /n is the default option.

Exploring the Shell

325

The /root Switch
You'll often come across views that look like Explorer views, but which have a particular folder as the
root node. You can open Explorer views like this by using the /e and /root switches together, thus:

explorer /e, /root, c:\windows

Note that when a view is opened with a root other than the Desktop, the user cannot navigate up the
tree. If you run Explorer using c:\windows as the root, then you won't be able to access c:\ or any
other directory at the same level in the tree as c:\windows.

Using Special Folders as the Root
Special folders, such as the Recycle Bin, don't have a one-to-one correspondence with file system
folders. As we've discussed before, these namespace extensions are in-process COM servers, and as
such are identified by a CLSID. The /root switch lets you specify a CLSID as the folder to be used,
although a couple of constraints must be satisfied:

! The COM server must implement all the interfaces required for a namespace extension.
! You have to prefix the CLSID with :: to refer to it on Explorer's command line. The syntax

::{clsid} is handled as if it's an ordinary directory name.

Take the following line as an example:

explorer ::{645FF040-5081-101B-9F08-00AA002F954E}

This will open a new window on the Recycle Bin, and you'll be able to do exactly the same with your
own custom folders. The following table contains the CLSIDs of a few of the folder objects you might
find on your desktop, but note that not all the objects on the desktop are folders — Inbox and My
Briefcase, for example, are applications.

CLSID Object

645FF040-5081-101B-9F08-00AA002F954E Recycle Bin

20D04FE0-3AEA-1069-A2D8-08002B30309D My Computer

208D2C60-3AEA-1069-A2D7-08002B30309D Network Neighborhood

871C5380-42A0-1069-A2EA-08002B30309D Internet Explorer

645FF040-5081-101B-9F08-00AA002F954E Recycle Bin

21EC2020-3AEA-1069-A2DD-08002B30309D Control Panel

992CFFA0-F557-101A-88EC-00DD010CCC48 Dial-Up Networking

2227A280-3AEA-1069-A2DE-08002B30309D Printers

Chapter 11

326

Note that in this context, you can treat CLSIDs like traditional folders and combine them using
slashes. For example, to access the Printers folder, which is a sub-folder of My Computer, you can
use the following syntax:

explorer ::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\
 ::{2227A280-3AEA-1069-A2DE-08002B30309D}

What is rundll32.exe?
As I said a little earlier, the command line plays a primary role in the organization of Explorer. Many
of the functions that you can execute on file objects are carried out through the command line. To
help with this, Windows 9x and Windows NT 4.0 (and higher) come with a helper program called
rundll32.exe that allows you to call a DLL-exported function directly from the command line.
This utility is a simple wrapper built around the few API calls that are necessary to execute a DLL
function dynamically.

The following pseudo-code shows you roughly what rundll32 is doing:

void DoRunDll32(LPCTSTR szDllName, LPCTSTR szFuncName, LPCTSTR szCmdLine)
{
 // Load the library into memory
 HANDLE hLib = LoadLibrary(szDllName);

 // Get the address of the function we've been asked to execute
 FARPROC pFunc = GetProcAddress(hLib, szFuncName);

 // Execute the function using the pointer
 pFunc(GetFocus(), hLib, szCmdLine, SW_SHOW);

 // Free the library
 FreeLibrary(hLib);
}

In real life, all rundll32 receives is a single string that it parses to extract the DLL and function
names, plus any optional arguments for the function. The command line looks like this:

rundll32 dllname,funcname [arguments]

The DLL name and the function name must be comma-separated, with no blanks between them. If you
call rundll32 without specifying a fully qualified name for the DLL, it is searched for in all the
standard paths, including the application's directory, the Windows directories, and the current
directory.

A flaw of this program is that it doesn't usually return enough information in the case of errors. If the
DLL function you're trying to call is missing (say, you mistyped its name), then it lets you know quite
precisely what happened. However, if the function can be called but fails during execution, the
chances are that you will have to guess the causes yourself!

The rundll32 interface is often used to call into some little known system dialogs, and you can also
use it to let other users call into your own DLLs. To be able to do so, all that matters is that the
callable functions have a predefined prototype.

Exploring the Shell

327

Functions Callable By rundll32.exe
In the pseudo-code above, look at the line that actually calls the DLL function. Rundll32 can only be
used to call functions with the following prototype — it is made up of four parameters, of which the
user sets only one:

void CALLBACK FuncName(HWND hwnd, // Window handle
 HINSTANCE hinst, // Instance handle
 LPTSTR lpszCmdLine, // Command line
 int nCmdShow); // ShowWindow() parameter

The first parameter, hwnd, is used to give a parent to any dialog box that may be created by the
function. In principle, this means that such dialogs will be modal with respect to the parent window.
In practice, though, this parameter always evaluates to the desktop window (that is, hwnd is NULL), so
any new window will be modeless with respect to all the other windows opened in the shell.

The second parameter is an HINSTANCE handle, which is the handle of the library, itself as returned
by LoadLibrary(). The fourth parameter, nCmdShow, determines how the window will be
displayed, and is always SW_SHOW when the function is called through rundll32.

The only 'controllable' parameter is the function command line lpszCmdLine, through which the
function will receive its argument data. As an example, suppose you have a function that takes two
numbers. Its definition might be:

void MyFunc(int iFirst, long lSecond)
{
 ...
}

To make this function callable through the rundll32 interface, it should be changed like this:

void MyFunc1(HWND hwnd, HINSTANCE hinst, LPTSTR lpszCmdLine, int nShow)
{
 int iFirst;
 long lSecond;

 // Parse the command line, and crack out the parameters
 ParseCommandLine(lpszCmdLine, &iFirst, &lSecond);

 // Call the function with the parameters we've extracted
 MyFunc(iFirst, lSecond);
}

Under Windows NT, the function to call is first searched with its Unicode name, then with the ANSI
name, and finally as it is written. This means that a call to MyFunc() will be converted to calls to
MyFuncW(), MyFuncA() and MyFunc(), in that order. Of course, in the case of Unicode calls the
string will be passed in wide characters and evaluates to a LPWSTR rather than a LPSTR.

What you can do with rundll32.exe
rundll32 (and its 16-bit ancestor, called simply rundll) is used mainly to display system dialog
boxes and to call DLL functions in situations where only a command line can be specified.
Originally, it was a tool designed by Microsoft for internal use only, and the limited set of practices
for which it was intended are obvious.

Chapter 11

328

The program can save you from having to load and unload DLLs explicitly when you're testing code,
and sometimes it can help you to check the dialogs exported from a DLL. On the other hand, it
forces you to adopt a fixed syntax for function calls, and there's no mechanism for returning data to
the caller. There is, however, one particular way in which you might want to use it.

You can use rundll32 to gain access to some of the system dialogs, including ones that aren't easily
accessible due to lack of documentation. In many cases, this is by design and the only recommended
(and documented) way to access such things is by using rundll32. As an example, let's consider the
Add New Printer Wizard:

This Wizard is implemented and invoked by the system through a function located in sysdm.cpl,
which by its extension we can identify as a Control Panel DLL. The documentation suggests that you
call it like this:

rundll32.exe sysdm.cpl,InstallDevice_Rundll printer

Instead of a more 'natural' straight call to InstallDevice_Rundll(). This function takes the four
parameters we've already discussed, and uses the word printer as an argument to decide what to
do. In fact, although it is undocumented, you can use the same syntax to install a new modem or a
monitor, simply by replacing the word printer with the modem or monitor.

A RunDll() Function
Many system dialogs and Wizards are only supposed to be invoked by using rundll32. This is
probably because things could change in the future, in which event using rundll32 would shield
you from the new details. It may also be that some aspects of these functions and dialogs are not
meant to be completely public, and again, using an interface like rundll32 hides many of them.

Exploring the Shell

329

The next listing shows a possible implementation of a C++ function that mimics what rundll32
does. As such it revisits our earlier pseudo-code example, adding error checking and a means of
specifying the parent window:

void RunDll(HWND hwnd, LPCTSTR szDllName, LPCTSTR szFunc, LPCTSTR szCmdLine)
{
 HANDLE hLib = NULL;
 hLib = LoadLibrary(szDllName);
 if(hLib == NULL)
 return;
 FARPROC pFunc = NULL;
 pFunc = GetProcAddress(hLib, szFunc);
 if(!pFunc == NULL)
 pFunc(hwnd, hLib, szCmdLine, SW_SHOW);

 FreeLibrary(hLib);
}

By writing our own wrapper function in this way, we can pass any window we like as the parent of
any child dialog, enabling us to display dialogs that really are modal. In the source code for this book
that you can download from the Wrox web site, there's a sample application called RunXXX that uses
a function just like this one.

Rundll32.exe Protection Faults
Of course, you can try to use rundll32 with functions not specifically designed to work with it, but
you do so at your own risk — there can be problems. For instance, if you try to run a dialog, you may
well find that a protection fault occurs when you close it. Try executing the following code from the
Run dialog box:

rundll32 appwiz.cpl,ConfigStartMenu

The command will display a window that allows you to modify the content of the Programs menu:

Chapter 11

330

When I close this dialog on my machine (which is running Internet Explorer 4.0), rundll32
produces this error:

However, I've found out that if you issue the same command from within your own code, using a
function like RunDll() above, it will work just fine!

This is just one example. If you search the MSDN Knowledge Base archive for 'rundll' or
'rundll32', you'll find a number of articles describing various faults caused by rundll32
when exiting from dialogs.

Commonly Used Commands
In some cases, these crashes stem from incorrect use of the function. If you ask rundll32 to execute
a function that has a prototype other than the recommended one, you'll probably get an error. It's not
possible to know exactly which exported functions are safely callable from rundll32, but you can
be sure that a function will work if its name includes a self-explanatory RunDll prefix or suffix.

By delving into Knowledge Base articles, newsgroups, and several other places, I've put together a
short list of calls that allow you to access otherwise undocumented system dialogs:

Dialog Command line

Internet Properties Rundll32 Inetcpl.cpl,LaunchInternetControlPanel

Remove Shortcuts/Folders Rundll32 appwiz.cpl,ConfigStartMenu

Open With Rundll32 shell32.dll,OpenAs_RunDLL file

Connect to My Connection Rundll32 rnaui.dll,RnaDial My Connection

Make New Connection Rundll32 RnaUI.dll,RnaWizard

Add Printer Wizard Rundll32 sysdm.cpl,InstallDevice_Rundll printer

Install New Modem Rundll32 sysdm.cpl,InstallDevice_Rundll modem

Install New Monitor Rundll32 sysdm.cpl,InstallDevice_Rundll monitor

Add New Hardware Wizard Control.exe sysdm.cpl,Add New Hardware

Exploring the Shell

331

Internet Properties is the well-known tabbed dialog that appears if you double-click on the Internet
applet from the Control Panel, or if you choose the View | Internet Options... menu of Internet
Explorer, or even if you select Properties from the context menu associated with the Internet
Explorer icon. Moving on, we saw the Remove Shortcuts/Folders dialog during our earlier
experimentation, while Open With is the dialog that pops up when you try to open a file that hasn't
got a default viewer.

Connect to is the dialog that lets you connect to the Internet through the specified dial-up networking
applet. Note that you don't have to place the string that represents the connection in quotes, even if
the name includes spaces. Make New Connection runs the system Wizard to add a new connection to
the Dial-Up Networking folder. As I've already mentioned, the remaining Add/Make dialogs
allow you to add a new modem, printer or monitor to the system's hardware configuration.

The last item in the table, Add New Hardware Wizard, is the default Wizard that scans your PC,
searching for new plug-and-play hardware. As you can see, however, it is not tied to rundll32 for
execution. Instead, it relies on control.exe, which is the executable behind the Control Panel; I've
included it here because it leads us on to a new topic: Explorer's constituent objects.

If you're running a non-English version of Windows, the Add New Hardware Wizard
command line won't work properly. You won't get an error message, but I can tell you that the
problem is due to localization — instead of the string Add New Hardware, you should use its
localized version. I'll say more about this topic later on.

The Explorer's Objects
The figure below shows a view of the shell's namespace. All the folders you can see below the
desktop are the objects that form the shell. My Computer and Network Neighborhood hold the
details of the PC and its connections to the network. The Internet Explorer node is a virtual
folder that represents the Internet. If a connection is present, you can expand it to see any web pages
currently displayed as if they are ordinary files. The Recycle Bin and My Briefcase complete the
desktop's list of objects.

Chapter 11

332

We talked about the Recycle Bin in Chapter 10: it's a virtual folder that collects the statuses of
multiple physical folders distributed across all the local fixed drives. Each of these folders contains
references to the files marked for deletion.

My Briefcase is an interesting but less well-known (and less frequently used!) feature that helps you
keep files and directories synchronized when you need to use them on more than one PC. I'll have
more to about this a little later on.

Under the node called My Computer there are some more special folders. From the programmer's
point of view, the most interesting are:

! Printers
! Control Panel
! Dial-Up Networking
! Scheduled Tasks (Windows 98 and higher only)

Other special folders located under the Windows directory hold details of subscriptions, downloaded
program files, and the history of visited sites.

The Control Panel
Control Panel is a sort of repository for dialogs that describe and configure hardware and software
components. The system provides a number of these dialogs automatically, and you can also add
your own. The Control Panel folder is a namespace extension that's filled by reading information
from all the .cpl files found in the System directory. There's also a little executable called
control.exe that simply asks the shell to open the folder, and then manages the activity of the
user, notifying the applets accordingly.

Of course, for an application you write to be a Control Panel item, you need rather more than just a
.cpl extension. First and foremost, the file must be a DLL, but it must also satisfy a number of
additional requirements:

! It must export a function called CPlApplet()
! It must respond properly to certain messages
! It must provide an icon and a dialog box

The behavior of a Control Panel applet is entirely built around the configuration dialog that it
displays — one applet, one dialog.

Despite the fact that today, the term applet is mostly used to describe little Java modules, it has
been used for a long time in the Microsoft documentation to denote the components of the Control
Panel.

Developing Control Panel Applets
A Control Panel applet DLL must export a function called CPlApplet() that has the following
prototype:

LONG CPlApplet(HWND hwndCPl, // Handle of the parent window for the dialog
 UINT uMsg, // Message received
 LONG lParam1, // First argument specific for the message
 LONG lParam2); // Second argument specific for the message

Exploring the Shell

333

This function is basically the window procedure for the applet — the controlling application
communicates with an applet by sending messages to this function. In particular, it may ask for the
number of applets the DLL implements, as well as information about the icon, name and description
of any given applet. Many .cpl files implement only a single applet, but there's nothing to prevent
them from implementing more than that. The following table shows all the possible messages:

Message Description

CPL_DBLCLK The applet icon has been double-clicked, so the associated dialog
should show up. The lParam1 argument is the 0-based number of
the applet in the DLL. This message is sent after CPL_INQUIRE and
CPL_NEWINQUIRE. The lParam2 argument contains the user data
defined in the lData member of the CPLINFO structure. (See later.)

CPL_EXIT This follows CPL_STOP and gets sent immediately before the applet
is unloaded. It takes no parameters.

CPL_GETCOUNT Asks the DLL to return the number of applets it implements. It is
sent after CPL_INIT and takes no parameters.

CPL_INIT Sent immediately after the applet is loaded. It takes no parameters.

CPL_INQUIRE Used to get information about the applet. It is called only once and
the information the applet returns is cached by the system. The
lParam1 argument is the 0-based number of the applet in the DLL.
lParam2 is a pointer to a CPLINFO structure that must be filled in.

CPL_NEWINQUIRE Used for the same purpose as CPL_INQUIRE, it makes use of a
different structure and can be sent more than once during the
session. The lParam1 argument is the 0-based number of the dialog
in the DLL; lParam2 is a pointer to a NEWCPLINFO structure that
must be filled in.

CPL_SELECT Obsolete and unsupported on all Win32 platforms.

CPL_STOP Sent only once to denote that the dialog is going to be closed. The
lParam1 argument is the 0-based number of the dialog in the DLL.
The lParam2 argument denotes the user-defined data defined in
the lData member of the CPLINFO structure.

As you can see, the lParam1 argument is always the index of the dialog in the DLL, except in the
case of messages that take no parameters. The lParam2 argument, on the other hand, can have two
meanings: it may represent a custom 32-bit buffer, or it might be a pointer to a data structure used to
gather information about the dialog.

There are two messages used by the controlling application to get information about the dialog
displayed by a given applet: CPL_INQUIRE and CPL_NEWINQUIRE. In these cases, lParam2 points
to one of two different structures — CPLINFO and NEWCPLINFO — which are defined as shown
overleaf:

Chapter 11

334

typedef struct tagCPLINFO
{
 int idIcon; // Resource ID of the applet's icon
 int idName; // Resource ID for the string with the dialog's short name
 int idInfo; // Resource ID for the string with the dialog's description
 LONG lData; // Data defined by the application
} CPLINFO;

typedef struct tagNEWCPLINFO
{
 DWORD dwSize; // Size of the structure
 DWORD dwFlags; // Currently ignored
 DWORD dwHelpContext; // Currently ignored
 LONG lData; // Data defined by the application
 HICON hIcon; // Handle of the applet's icon
 TCHAR szName[32]; // Short name of the dialog
 TCHAR szInfo[64]; // Description of the dialog
 TCHAR szHelpFile[128]; // Currently ignored
} NEWCPLINFO;

As you can see, despite different declarations, the structures contain the same information at this
time. A Control Panel applet should answer at least one of the associated messages, and in most cases
CPL_INQUIRE offers slightly better performance due to the caching of information. If any of the
returned information is subject to change during the session, though, then you need to support
CPL_NEWINQUIRE as well. In fact, the latter message is sent each time that the controller is about to
use any of the applet's information. Another subtle difference is that CPLINFO requires the
information to be stored in the applet's resources, whereas NEWCPLINFO returns them in ready-to-use
buffers.

There might be circumstances in which you want to associate global status information with the
applet — it's never necessary, but sometimes it can help, and this is where the lData member comes
into play. The following listing shows a sample CPlApplet() function:

LONG CPlApplet(HWND hwndCPl, UINT uMsg, LONG lParam1, LONG lParam2)
{
 // Save the index of the dialog to consider
 int iDlgIndex = lParam1;

 switch(uMsg)
 {
 // Do any initialization that might be required
 case CPL_INIT:
 return 1;

 // Return the number of applets in this DLL
 case CPL_GETCOUNT:
 return g_iNumOfApplets;

 // Fill in the fields in the CPLINFO structure
 case CPL_INQUIRE:
 LPCPLINFO pCPL = reinterpret_cast<LPCPLINFO>(lParam2);
 pCPL->idIcon = g_iIconIndex;
 pCPL->idName = g_pszAppName;
 pCPL->idInfo = g_pszDesc;
 break;

Exploring the Shell

335

 // Display the dialog on receipt of a double-click message
 case CPL_DBLCLK:
 DialogBox(GetModuleHandle(NULL),
 MAKEINTRESOURCE(g_iDlgID), hwndCPl, pfnDlgProc);
 break;
 }

 return 1;
}

Running Control Panel Applets
The control.exe application that I mentioned earlier in this chapter is not the program behind the
Control Panel folder, but simply a stub that invokes Explorer to display the contents of all the
.cpl files it can find. In fact, Control Panel isn't a physical folder at all — the representation and
all the work of managing it are dealt with by the namespace extension that implements the folder.

If you want to run a Control Panel applet from a program, the best approach is to use rundll32 to
execute a function called Control_RunDLL() that's exported by the shell32.dll library:

rundll32.exe shell32.dll,Control_RunDLL applet.cpl

The above line will execute the applet called applet.cpl by sending a CPL_DBLCLK message to
the CPlApplet() function exported by the DLL. You could also call Control_RunDLL() using
the RunDll() wrapper function that we put together earlier, for example:

RunDll(hDlg, "shell32.dll", "Control_RunDLL", "desk.cpl,,3");

The output from this command is shown in the figure below:

Chapter 11

336

The command calls the display applet (desk.cpl) and tells it to display its fourth tab (the 3 in the
command line above refers to the fourth element in a 0-based counting system). This works because
when you call a Control Panel applet through Control_RunDLL(), you can specify three
parameters of which two are optional. The first argument is the name of the .cpl file, while the
second argument is the 0-based number of the applet implemented in the DLL. This defaults to 0,
and must be prefixed by @. The third argument is the 0-based index of the tab you want to select
initially. Of course, this applies only to dialogs with multiple tabs, and once again defaults to 0.

With this explanation in mind, the above string desk.cpl,,3 must be read as, "Display the fourth
tab in the first applet found in desk.cpl". As a further example, let's consider the sysdm.cpl
module, which contains two applets: System and Add New Hardware. To display the second page of
the first applet, which lists the peripherals installed on your system, you'd use this command line:

RunDll(hDlg, "shell32.dll", "Control_RunDLL", "sysdm.cpl,,1");

Which is equivalent to:

RunDll(hDlg, "shell32.dll", "Control_RunDLL", "sysdm.cpl,@0,1");

To start the Add New Hardware Wizard, on the other hand, you'd say:

RunDll(hDlg, "shell32.dll", "Control_RunDLL", "sysdm.cpl,@1");

This call reflects the fact that we're invoking the second applet in the DLL, which is not a tabbed
dialog.

Control_RunDLL() vs. Control.exe
Earlier, I presented another way to run the Add New Hardware Wizard, using the control.exe
program:

control.exe sysdm.cpl,Add New Hardware

While this approach certainly works, it has the significant drawback that the command line will vary
according to localization, and this tends to make it inferior to the Control_RunDLL() solution. If
you're running, say, the Italian version of Windows, the string will be Nuovo Hardware instead of
Add New Hardware. This means that the command line must be changed to:

control.exe sysdm.cpl,Nuovo Hardware

The localized string has the ID 202 in the string list of the library sysdm.cpl and is also returned
through the CPlApplet() interface.

RunDll32.exe and RunDll() Trade-offs
rundll32.exe and our function RunDll() provide the same functionality, and there are points in
favor of both of them. The rundll32.exe program is a standard part of the operating system, and
you can expect it to be updated in newer versions of Windows. This means that even if Microsoft
changes rundll32's programming interface — the prototype required for functions to be called
correctly — the program will still continue to work properly.

Exploring the Shell

337

On the other hand, if you're developing 16-bit code under Windows NT, you don't have an
equivalent 16-bit version of rundll32. (There's one called rundll.exe under Windows 9x.) More
importantly, rundll32 is a program that you can't control directly, and it always starts a new
process. The RunDll() function, on the other hand, runs in the address space of the caller.

The Printers Folder
The Printers folder doesn't map to a real file system folder either — it's a virtual folder that
provides access to the printing devices available on the system, such as printers and fax machines.
When you install a new printer on your PC, a new file is created in a hidden subdirectory under
Windows. This subdirectory plays the same role as the Recycled folders of the Recycle Bin that we
examined in Chapter 10. The directory is called PrintHood, and its path can be retrieved using the
SHGetSpecialFolderPath() API function.

We examined how to browse the contents of the Printers folder in Chapter 5, and we'll
return to the subject in the next chapter, where we'll look at the new scriptable shell objects that
offer much of the navigational functionality we built earlier through Automation.

When talking about printers, we need to look at the SHInvokePrinterCommand() function, which
lets you send commands to printer objects. This function is supported only by shell versions 4.71 and
higher, and looks like this:

BOOL SHInvokePrinterCommand(HWND hwnd,
 UINT uAction,
 LPCTSTR lpBuf1,
 LPCTSTR lpBuf2,
 BOOL fModal);

Parameter Description

hwnd Parent window for any dialog or window to be displayed by the function

uAction Code that identifies the action to be performed on the printer. (See below)

lpBuf1 Buffer that contains additional information related to the action; this is
invariably the name of the printer

lpBuf2 Buffer that contains additional information related to the action

fModal If set to TRUE, the function must wait for the action to complete before
returning

Invoking Printer Commands
The uAction parameter can take the values shown overleaf:

Chapter 11

338

Command Description

PRINTACTION_OPEN Opens a window that displays the status of the
printer

PRINTACTION_PROPERTIES Displays the properties of the printer

PRINTACTION_TESTPAGE Prints a test page

PRINTACTION_OPENNETPRN The same as PRINTACTION_OPEN, but for network
printers

PRINTACTION_NETINSTALL Installs the specified network printer

PRINTACTION_NETINSTALLLINK Creates a shortcut to the specified network printer;
lpBuf2 points to the path for the shortcut

In all cases, lpBuf1 points to the name of the printer, be it local, network or shared. In the case of
network printers, the name must follow the UNC format (\\server\printer). The lpBuf2
parameter, on the other hand, is used only with the PRINTACTION_NETINSTALLLINK flag.

Under Windows NT, a couple of other flags are supported for network printers only:
PRINTACTION_SERVERPROPERTIES, which displays properties for the server, and
PRINTACTION_DOCUMENTDEFAULTS, which shows the properties of the default document on this
printer.

As usual, the Wrox AppWizard makes an excellent starting point for creating a quick application to
test aspects of SHInvokePrinterCommand() and the web site code contains a basic example. As
with its similarly named brethren, the header file that defines the function is shellapi.h.

What the Function Returns
The documentation states that the function returns non-zero values if successful, but try as I might, I
was unable to make it return a value of zero. The function stubbornly returned TRUE even when I
specified a non-existent printer. Depending upon the command you've executed, you may get an
error message that tells you what has happened.

Dial-Up Networking
Dial-Up Networking is a virtual folder that collects all the available Internet and network
connections. The associated functions are exported by rnaui.dll, and are called RnaDial() (for
dialing a connection) and RnaWizard() (for setting up a new connection). They both support the
rundll32 interface, and can therefore be run by the methods I described earlier in the chapter.

If you want to connect to the Internet without dealing with specific connections, you can resort to the
WinInet API. In particular, the InternetAutoDial() function lets you connect through the
default connection defined in the Dial-Up Networking folder.

Exploring the Shell

339

Offline Browsing
Internet Explorer 4.0 introduced offline browsing — that is, a browse mode that accesses pages
exclusively from a local cache. You can detect this state through the InternetQueryOption()
function in the WinInet API, while the InternetGoOnline() function presents a dialog box with
the options either to connect or to remain offline. All these topics are well covered in the Internet
Client SDK documentation, and for more information about the WinInet API you should refer to
Further Reading.

Scheduled Tasks
The Task Scheduler (or scheduling agent) is a module that was introduced under Windows 95 and
Windows NT 4.0 with the Active Desktop update, and was then included in Windows 98. Its main
purpose is to provide you with the ability to run specified tasks at particular times, or when
predefined criteria are satisfied.

From the programmer's perspective, the Task Scheduler is a COM server that exposes the
functionality to define a task and the trigger that causes it to execute. Basically, the Task Scheduler is
a simple monitor application that spends all its time watching for certain combinations of date, day of
week and time that have been marked as 'interesting', and then executes actions as required.

Windows NT Support for Scheduling
The scheduling agent introduced with shell version 4.71 is an application functionally similar to the
AT command provided with Windows NT. What's different is that the AT command employs the
NetSchedule API, while the agent exposes COM interfaces.

The Scheduling Agent
The scheduling agent under Windows 9x is the program mstask.exe, while under NT it is a service
called Schedule. The agent isn't started by default unless you're running Windows 98, which also
includes a special folder with which to keep track of the scheduled tasks. The Internet Client SDK
provides several code examples that illustrate how to start and drive the agent.

The objects that the agent manages are the tasks. A task is basically an executable file, and each task
can have one or more triggers that decide when it's time to execute.

The scheduling agent is a server application that manages all the defined tasks, launches them at the
right time, and returns information about the time of last execution, the total number of executions
and the like. The functionality of the scheduling agent is fully described by the ITaskScheduler
interface.

Tasks and Triggers
A task is described by the IScheduledWorkItem and ITask interfaces, and these expose methods
that are not very different from those you would find in a shortcut. You set up a task using
information such as application name, working directory, parameters, priority, maximum allowed
time of execution, and — most importantly — the trigger. ITask derives from
IScheduledWorkItem, and is a more specialized version of that interface. There may be many
different types of work items defined in the future, but at present only tasks are supported. A task can
be a Win32 or Win16 application, an OS/2 or MS-DOS application, a batch file (*.bat), a command
file (*.cmd), or indeed any file type properly registered with a handler application.

Chapter 11

340

Triggers are events used to identify the right moment to run a work item. In many cases, a trigger is a
unique time, such as "12:00:00 on December 3rd 1998". In other cases, it may be repeatable, such as
"6:00:00 on the third Monday of each month". Triggers are manipulated using the ITaskTrigger
interface and the TASK_TRIGGER structure, which defines the starting time of the task, its repetition
frequency, and its parameters.

All the related interfaces and the structures involved with task scheduling are fully documented in
the Internet Client SDK, and you should refer there for more detailed information and samples.

My Briefcase
My Briefcase is a Windows 95 utility designed to help users maintain multiple copies of the same
documents on different computers. Once you've put a document in the My Briefcase folder, the
software will take care of keeping the copy in the briefcase synchronized with the original.

This is useful when you are working between, say, a desktop PC and a laptop. You'll usually consider
the copy on the desktop machine as the 'original', and replace it with the modified version that comes
from the laptop. Then, just click on the file name in the My Briefcase folder to have it check and
synchronize the copies:

If one of the files has changed since
the last synchronization operation,
Windows automatically replaces the
unmodified files with the modified
copies. If both files appear to have
been changed, then a merge operation
will occur. The merge operation
involves some interfaces that you can
implement in order to handle merging
your own documents:

The objects that implement these interfaces are called reconcilers, and they are involved in
determining whether two versions of the same file are aligned or not. If both have changed, the
module can provide the means to merge the content to produce a new copy. This operation can be
interactive or not, as required, and may leave residue files. Precisely how the merge works will
depend upon the specific implementation of the reconciler.

Exploring the Shell

341

Details about reconcilers can be found in the Internet Client SDK documentation, as well as in
the Windows 95 Resource Kit.

Scrap Objects
Have you ever tried to select a piece of text from a Microsoft Word document and move or copy it
onto the Windows desktop? Surprisingly, the mouse cursor changes to an encouraging arrow instead
of a stop sign, meaning that you can drop that piece of Word document straight onto the desktop (or
any other Windows folder)! When you do so, you create a scrap object:

Basically, you're looking at a link to an object. Scraps are files with .shs extensions that are
automatically created when an object implementing IDataObject is dropped onto a folder or the
desktop. To read scraps, there's a rundll32-compliant function exported by shscrap.dll. This
library is located in the System directory and is not officially documented, because scrap support
should be provided automatically if you create a fully-fledged OLE application. However, if you're
interested in experimenting, shscrap.dll exports a function called OpenScrap_RunDLL() that
you can use to open any .shs file.

A New Shortcut Handler
In this book so far, we've discussed a number of individual topics and discussed the ways to integrate
particular features into your next application. In this chapter, however, we've started to explore the
components of the shell, focusing mainly on folders and command lines. Now I'm going to present a
significant example that uses many of the basic topics we've covered so far (shortcuts, icons, and
folders) and looks ahead towards shell customization. We're going to assemble a tool similar to (but
better than!) one of the standard Windows components, and then discover how to replace the
standard component with our own.

If you try to create a shortcut by right-
clicking on the desktop, or on any folder in
Explorer, or by selecting the File | New |
Shortcut menu, you'll be prompted with a
Wizard that allows you to specify the target
object and the name of the file you want to
create. The target folder for the .lnk file is
always assumed to be the folder from
which the process started. There's no way
to specify a description, or a hotkey, or
even an icon, and neither can you decide
where to create the shortcut.

Chapter 11

342

To work around all these limitations, we're going to build our own shortcut creator, and to make
things even better we're also going to substitute it for the standard Windows shortcut Wizard. In this
way, each time you right-click to create a new shortcut anywhere in the shell, our application will pop
up instead of the standard dialog.

The User Interface
This new Wizard for creating shortcuts will provide fields for entering the target file object, a
description, a hotkey and an icon. In addition, it will allow users to choose the path and name of the
final shortcut. The path can be expressed in terms of an absolute drive and directory, or in terms of a
special folder ID, such as Desktop, Send To, Programs, Start Menu, and a few others.

The above screenshot shows the user interface. The first edit box will contain the name of the target
file, which you can browse for if you choose. The second edit box is for the shortcut's description,
while the third specifies the key combination to be used to recall it.

The next area lets you choose an icon to associate with the shortcut. You can select both the source
file (with the Choose Icon Path button) and the index of the icon within that file. We'll be making
use of the SHBrowseForIcon() function that we defined back in Chapter 9 for this purpose.

In the Save As frame, you can type in the path name or pick up a predefined item in the combo box.
Predefined items will be special folders such as Desktop, Send To, and the like. The right hand edit
box will contain the file name for the shortcut without the .lnk extension and finally, to create the
shortcut, you'll need to press the Create button to invoke SHCreateShortcutEx(), one of our
functions from Chapter 6.

As ever, our starting point is a dialog-based application generated by the Wrox AppWizard — I called
mine NewLink. When the program is called from the shell (I'll demonstrate how to do that shortly) it
receives the name of a temporary file that the shell creates automatically before invoking the Wizard.
This name is passed in as WinMain()'s lpsz argument, and since we aren't interested in it, our first
action is to delete the file. We do, however, use its name for the output .lnk file.

The Old Functions
Once you have your dialog looking something like the one above, you can start coding with the
WinMain() function, deleting the temporary file but saving the name away for future use:

Exploring the Shell

343

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{

 // Delete any temporary file created by the shell
if(lstrlen(lpsz))
DeleteFile(lpsz);

 // Save global data
 g_hIconLarge = static_cast<HICON>(
 LoadImage(hInstance, "APP_ICON", IMAGE_ICON,
 GetSystemMetrics(SM_CXICON), GetSystemMetrics(SM_CXICON), 0));
 g_hIconSmall = static_cast<HICON>(
 LoadImage(hInstance, "APP_ICON", IMAGE_ICON,
 GetSystemMetrics(SM_CXSMICON), GetSystemMetrics(SM_CXSMICON), 0));
 lstrcpy(g_szNewLinkName, lpsz);

 // Enable common controls
 INITCOMMONCONTROLSEX iccex;
 iccex.dwSize = sizeof(INITCOMMONCONTROLSEX);
 iccex.dwICC = ICC_WIN95_CLASSES;
 InitCommonControlsEx(&iccex);

 // Initialize COM for the SHCreateShortcutEx() function
 CoInitialize(NULL);

 // Run main dialog
 BOOL b = DialogBox(hInstance, "DLG_MAIN", NULL, APP_DlgProc);

 CoUninitialize()

 // Exit
 DestroyIcon(g_hIconLarge);
 DestroyIcon(g_hIconSmall);
 return b;
}

The dialog procedure calls handlers for all the new buttons:

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_CREATE:
 DoCreateShortcut(hDlg);
 return FALSE;

 case IDC_BROWSEPATH:
 OnBrowse(hDlg, IDC_PATH);
 return FALSE;

 case IDC_CHOOSEICON:
 OnChooseIcon(hDlg);
 return FALSE;

 case IDC_BROWSETARGET:
 OnBrowse(hDlg, IDC_TARGET);
 return FALSE;

 case IDC_BROWSEICON:
 OnBrowse(hDlg, IDC_ICONPATH);
 return FALSE;

Chapter 11

344

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

The last of our three predefined functions, OnInitDialog(), initializes all the controls in ways that
are probably familiar to you by now:

void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 // Special folders available
 HWND hwndCbo = GetDlgItem(hDlg, IDC_PATH);
 int i = ComboBox_AddString(hwndCbo, "Desktop");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_DESKTOP);
 i = ComboBox_AddString(hwndCbo, "Favorites");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_FAVORITES);
 i = ComboBox_AddString(hwndCbo, "Programs");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_PROGRAMS);
 i = ComboBox_AddString(hwndCbo, "My Documents");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_PERSONAL);
 i = ComboBox_AddString(hwndCbo, "SendTo");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_SENDTO);
 i = ComboBox_AddString(hwndCbo, "Start Menu");
 ComboBox_SetItemData(hwndCbo, i, CSIDL_STARTMENU);
 ComboBox_SetCurSel(hwndCbo, 0);

 // Initialize the hotkey control to prefix everything with Ctrl-Alt
 SendDlgItemMessage(hDlg, IDC_HOTKEY, HKM_SETRULES,
 HKCOMB_NONE | HKCOMB_S | HKCOMB_A | HKCOMB_C,
 HOTKEYF_CONTROL | HOTKEYF_ALT);

 SetDlgItemText(hDlg, IDC_TARGET, "C:\\");
 SetDlgItemText(hDlg, IDC_ICONINDEX, "0");

 // Handle any file name received through the command line
 if(lstrlen(g_szNewLinkName))
 {
 LPTSTR pszBuf = g_szNewLinkName;
 LPTSTR psz = strrchr(g_szNewLinkName, '\\');
 SetDlgItemText(hDlg, IDC_LNKFILE, ++psz);
 pszBuf[psz - pszBuf] = 0;
 SetDlgItemText(hDlg, IDC_PATH, pszBuf);
 }
 else
 SetDlgItemText(hDlg, IDC_LNKFILE, "NewLink");
}

The first action is to fill the combo box in the Save As frame with the names of the special folders
where you might want to create shortcuts. We also associate some item data with each string, to make
future processing easier. The next job is to initialize the hotkey control so that it will prefix
everything with Ctrl-Alt, which is necessary for shortcuts. We then set the default values for the target
string and the icon index, and use the filename passed on the command line as the basis for the link
name.

Exploring the Shell

345

The New Functions
The second handler function, and the first new function we're adding to the application, is called
when any one of the three browse buttons that the dialog boasts is pressed. The second argument is
used to differentiate between them:

void OnBrowse(HWND hDlg, WPARAM wItemType)
{
 // Browse for directory only...
 if(wItemType == IDC_PATH)
 {
 LPMALLOC pMalloc = NULL;
 TCHAR szDir[MAX_PATH] = {0};
 LPITEMIDLIST pidl = NULL;

 BROWSEINFO bi;
 ZeroMemory(&bi, sizeof(BROWSEINFO));
 bi.hwndOwner = hDlg;
 bi.lpszTitle = "Choose a folder:";

 pidl = SHBrowseForFolder(&bi);
 SHGetPathFromIDList(pidl, szDir);
 SetDlgItemText(hDlg, IDC_PATH, szDir);

 SHGetMalloc(&pMalloc);
 pMalloc->Free(pidl);
 pMalloc->Release();
 return;
 }

 // Browse for files...
 TCHAR szFile[MAX_PATH] = {0};
 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 switch(wItemType)
 {
 case IDC_TARGET:
 ofn.lpstrFilter = "All files\0*.*\0";
 break;
 case IDC_ICONPATH:
 ofn.lpstrFilter = "Icons\0*.exe;*.dll;*.ico\0";
 break;
 }

 TCHAR szWinDir[MAX_PATH] = {0};
 ofn.nMaxFile = MAX_PATH;
 GetWindowsDirectory(szWinDir, MAX_PATH);
 ofn.lpstrInitialDir = szWinDir;
 ofn.lpstrFile = szFile;
 if(!GetOpenFileName(&ofn))
 return;

 SetDlgItemText(hDlg, wItemType, ofn.lpstrFile);

 // Show the first icon by default
 HICON hIcon = ExtractIcon(GetModuleHandle(NULL), ofn.lpstrFile, 0);
 SendDlgItemMessage(hDlg, IDI_ICON, STM_SETICON,
 reinterpret_cast<WPARAM>(hIcon), 0);
}

Chapter 11

346

If we're browsing for a path, we use the SHBrowseForFolder() API function to let the user find
the path, display it in the appropriate edit control, and then return after tidying up.

If we're browsing for files, we fill in a filter string appropriate to the type of files we're looking for,
and use this in a call to GetOpenFileName(). We display the filename in the appropriate edit
control, and also arrange to display the first icon in the file by default.

The handler for the Choose Icon Path button simply uses the SHBrowseForIcon() function from
Chapter 9 to select an icon from a file:

void OnChooseIcon(HWND hDlg)
{
 TCHAR szFileName[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_ICONPATH, szFileName, MAX_PATH);

 HICON hIcon;
 int iIconIndex = SHBrowseForIcon(szFileName, &hIcon);
 if(iIconIndex >= 0)
 {
 SetDlgItemText(hDlg, IDC_ICONPATH, szFileName);
 SetDlgItemInt(hDlg, IDC_ICONINDEX, iIconIndex, TRUE);
 SendDlgItemMessage(hDlg, IDI_ICON, STM_SETICON,
 reinterpret_cast<WPARAM>(hIcon), 0);
 }
}

Once we've got all the data, the main work of the application is done in the handler for the Create
button:

void DoCreateShortcut(HWND hDlg)
{
 TCHAR szTarget[MAX_PATH] = {0};
 TCHAR szDesc[MAX_PATH] = {0};

 // Get the hotkey
 SHORTCUTSTRUCT ss;
 ss.wHotKey = static_cast<WORD>(SendDlgItemMessage(
 hDlg, IDC_HOTKEY, HKM_GETHOTKEY, 0, 0));

 // Get target and description
 GetDlgItemText(hDlg, IDC_TARGET, szTarget, MAX_PATH);
 GetDlgItemText(hDlg, IDC_DESCRIPTION, szDesc, MAX_PATH);
 ss.pszTarget = szTarget;
 ss.pszDesc = szDesc;

 // Get the icon
 TCHAR szIcon[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_ICONPATH, szIcon, MAX_PATH);
 ss.pszIconPath = szIcon;
 ss.wIconIndex = 0;

 // Determine shortcut file name
 // Get the target folder & final backslash
 HWND hwndCbo = GetDlgItem(hDlg, IDC_PATH);
 int i = ComboBox_GetCurSel(hwndCbo);
 DWORD nFolder = ComboBox_GetItemData(hwndCbo, i);

 TCHAR szPath[MAX_PATH]= {0};

Exploring the Shell

347

 if(nFolder)
 SHGetSpecialFolderPath(hDlg, szPath, nFolder, FALSE);
 else
 GetDlgItemText(hDlg, IDC_PATH, szPath, MAX_PATH);

 if(szPath[lstrlen(szPath) - 1] != '\\')
 lstrcat(szPath, "\\");

 TCHAR szLnkFile[MAX_PATH] = {0};
 GetDlgItemText(hDlg, IDC_LNKFILE, szLnkFile, MAX_PATH);
 lstrcat(szPath, szLnkFile);
 lstrcat(szPath, ".lnk");

 // Create...
 SHCreateShortcutEx(szPath, &ss);
}

All we're doing here is gathering the information from the various controls on the screen and packing
them into a SHORTCUTSTRUCT, prior to calling SHCreateShortCutEx() to actually do the work
for us. (We defined the structure and function involved here in Chapter 6.) With this code in place,
you just need to add the usual list of header files and libraries. On this occasion, we require
#includes for resource.h, shlobj.h and commdlg.h, and links to ole32.lib and
comdlg32.lib.

How to Replace the Windows Wizard
Wouldn't it be nice if we were able to replace the standard Windows Wizard for creating shortcuts
with our own? In fact, it's not that hard to do, and as you might expect, the key to the enterprise lies
in the registry. A shortcut is a .lnk file, so the first place to look is under this key:

HKEY_CLASSES_ROOT
 \.lnk

Beneath it, you'll find a key called ShellNew. When it comes to creating a new file of a given type
from the shell — that is, through the New menu — Explorer always searches for a ShellNew key
within the file class sub-tree.

Inside this key, the Command value gives the command line, and you should find that it's set to:

runDLL32 AppWiz.Cpl,NewLinkHere %2

Note the use of rundll32.exe to run a DLL function as a command-line instruction. To replace the
standard Wizard, all we have to do is to change the Command value to execute our program, like this:

c:\Utility\NewLink\NewLink.exe %2

Chapter 11

348

Notice that the final %2 is fundamental for the command line to work properly — remove or replace it
and the dialog will never appear. When you next choose to create a new shortcut from the desktop,
you'll find that our new dialog will appear.

The NewLink.exe program detects and uses the file name passed by the shell as an argument —
before invoking the shortcut creator, the shell always creates an empty file and passes its name to the
program. However, handling this file name is not a problem for us.

Editing the Registry
Replacing the default shortcut Wizard requires some editing of the registry, which you can either do
manually through the Registry Editor, or programmatically with a script file. For example, you can
restore the original situation simply by reassigning the original value to the Command entry with the
following script:

; restore.reg
REGEDIT4

[HKEY_CLASSES_ROOT\.lnk\ShellNew]
"Command" = "RunDLL32 appwiz.cpl,NewLinkHere %2"

In just the same way, you could have used this script to install the handler in the first place:

; replace.reg
REGEDIT4

[HKEY_CLASSES_ROOT\.lnk\ShellNew]
"Command" = "c:\\utility\\newlink\\newlink.exe %2"

Make sure you always use double slashes when entering path names in .reg scripts, and remember
to replace the path in the example with the actual path where the newlink.exe file lives!

Exploring the Shell

349

Summary
Our first journey through the Windows shell ends here. We've looked at Explorer's command line
and discovered an interesting utility program called rundll32.exe, which allows you to use DLL
functions as command line instructions. While discussing the features of rundll32.exe, we also
discovered how to access programmatically some system dialogs whose programming interface isn't
documented, such as Add Printer Wizard, Add New Hardware, Make New Connection, and Open
With.

The second part of the chapter discussed some special virtual folders that implement shell objects,
such as Printers, Dial-up Networking, Scheduled Tasks, and My Briefcase. I provided an overview
of this subject, and mentioned some sites and documents where you could find further information.

Finally, we looked at an example that used many of the topics we've covered so far in the book. The
shortcut handler also provides a good introduction to the new topics we'll cover in Chapter 14, where
I'll explain how your documents should be integrated into the system's shell.

In summary, therefore, this chapter covered:

! Explorer's command line.
! The RunDLL32 programming interface
! Accessing undocumented functions to display system dialogs
! A review of some virtual folders such as Printers and My Briefcase
! Scrap objects
! How to write and install a new, custom module to create shortcuts

In the next two chapters, we'll continue our exploration and discover two really useful aspects of the
new Windows shell. The first involves the scriptable shell objects that give you programmatic access
to any shell feature, from dialogs to folders, and from windows to shortcuts. After that, we'll focus on
a very promising subsystem called Windows Scripting Host (WSH) that's supposed to bring the idea
of DOS batch files into Windows land.

Further Reading
I've found interesting ideas on using rundll32 in an article in Visual Basic Journal, the Italian
version of Visual Basic Programmer's Journal (VBPJ). The author was Marco Losavio, and the article
was published in the September 97 issue. (The article is in Italian with source code available at
ftp://ftp.infomedia.it/pub/VBJ/vbj17disk.zip.)

The Internet Client SDK contains introductory and detailed documentation about the development of
Control Panel applets. I also recommend the Internet Client SDK for getting more information about
WinInet, the Briefcase, and the Scheduling Agent. Further explanation of My Briefcase can also be
found in the Windows 95 Resource Kit.

ftp://ftp.infomedia.it/pub/VBJ/vbj17disk.zip

Chapter 11

350

I'd like also to mention a few articles about WinInet by Aaron Skonnard that appeared in MIND,
December 97, and MSJ, June 98. The titles are Dress your Applications for Success with WinInet and How
to design reusable HTTP components by exploiting WinInet and COM respectively. On the theme of
scheduling agents, let me point you towards a piece by Jomo Fisher in the March 1998 edition of
Windows Developer's Journal in March 98 called The Windows 98 Scheduling Agent.

The section in the Internet Client SDK about drag-and-drop also covers scrap objects, and provides
you with a wider overview and hints about the internal machinery that makes them work. Finally,
here's a list of useful Knowledge Base articles:

KB Article ID: Q130510: Command-Line Switches for Windows Explorer
KB Article ID: Q164787: The Windows 95 Rundll and Rundll32 Interface
KB Article ID: Q173039: RUNONCE Key Is Processed Immediately When RUNDLL32 Is Called
KB Article ID: Q166168: Use RUNDLL32 to Debug Control Panel Applets
KB Article ID: Q135068: Starting a Control Panel Applet in Windows 95 or WinNT
KB Article ID: Q177076: How to Start the Add Printer Wizard at a Command Prompt
KB Article ID: Q153383: How to Use/Replace Windows 95 Hardware Wizard in Custom Code

Scriptable Shell Objects

The new Windows shell has been enriched with a powerful new set of objects that provide you with
full access to all the shell's main features via Automation. Internet Explorer 4.0 introduced these new
COM objects in the latest version of shdocvw.dll, which is one of its core components.

These objects let you drive the shell and its folders from programs, and they are documented in the
Internet Client SDK (now integrated into the Platform SDK). Because they are Automation servers,
these objects can easily be used from programs written in Visual Basic, Delphi or C/C++. They can
also be called from script code, including code from the Windows Scripting Host (WSH)
environment, which we'll cover in the next chapter.

In this chapter, we'll look at the shell object model and rewrite one of samples that I presented back
in Chapter 5. This will give us the opportunity to examine the true purpose of scriptable shell objects:
they provide a way to simplify access to features of the shell, and the contents of shell folders. Along
the way, we'll be covering:

! The Shell object model
! The Folder and FolderItem objects
! Helper objects to manage verbs and favorites
! Code examples written in both C++ and Visual Basic

The objects that we'll be describing provide an easy way to access the Windows shell and all its
features programmatically. It has always been possible to enumerate the contents of a folder, but you
needed a fairly deep knowledge of C++ programming. With the introduction of shell objects, it has
become as easy as calling an Automation server. Unfortunately, the drawback to this is that in order
to make life easier for Visual Basic and script programmers, it has been made more difficult for C and
C++ programmers who now have to cope with VARIANT types and collections without the in-built
help provided by Visual Basic.

Chapter 12

354

The Best Language to Program the Shell
It seems that there's no middle path when it comes to accessing the shell's commands and properties
— it is either really easy, or really hard. We saw something of this in Chapter 5, when we tried to
enumerate the contents of a folder. We had to get the PIDL to the folder and the pointer to the right
IShellFolder interface, and then by combining these two items we finally obtained an
IEnumIDList interface that allowed us to enumerate the items in the folder. This isn't a very
satisfactory solution, though, because, while it gets the PIDL to each element, it's up to you to convert
that into a readable name.

This is the hard, low-level way to do the job, and of course it's a way only possible using languages
like C and C++ that support pointers. Scriptable shell objects solve this problem by providing a way
to program the shell with Visual Basic and scripting languages. If that was all they gave us, it would
still be a real boon, but these new objects offer more than just a set of Automation interfaces.

Undocumented Shell Features
What makes shell objects really interesting for C++ programmers is that they provide the only
documented way to access some shell features and dialogs. In addition, they provide a consistent
programming interface to all the features of the shell, documented or not.

Many of the methods exposed by the shell objects address functionality we already know about, but
which is accessible in several different ways. For example, to browse for folders you have a specific
API function, while you have to resort to ShellExecute() to run the Find dialog, and to hand-
coded routines to enumerate the content of a folder. These are all now available through shell objects.

Here's a list of the dialogs and functions that you can only access through the shell object model:

! The dialog that pops up when you click on Taskbar Settings from the Start menu
! The functions to minimize or restore all the open windows
! The functions to tile or cascade all the open windows
! The functions to suspend or 'undock' a PC
! The Run dialog
! The Find Computer dialog
! The system dialog to add folders or files to the Favorites list

Other functions exposed by the object model can also be accessed in other ways; these include:

! The dialog to browse for folders
! Opening or exploring a folder
! The date and time setup dialog
! Running a Control Panel applet
! The Find dialog
! Access to any system folder

Scriptable Shell Objects

355

The Shell Object Model
All the objects that actually form the shell's object model are implemented in shdocvw.dll. A quick
but somewhat incomplete source of documentation for these objects is the Visual Basic Object
Browser.

If you're using Visual Basic, the Object Browser can really help you to discover new features with
which to experiment. I found out about the shell's object model by casually snooping around
shdocvw.dll with the Object Browser. The next diagram shows this layout.

The easiest way to create an instance of the Shell object in Visual Basic is:

Dim o As Object
Set o = CreateObject("Shell.Application")

Chapter 12

356

In C++, the equivalent code would be:

#include <comdef.h>
#include <exdisp.h>

CoInitialize(NULL);

IShellDispatch* pShellDisp = NULL;
HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
if(SUCCEEDED(hr))
{
 ...
}

CoUninitialize();

However, before going any further with programming topics, let's have a look at the methods
exposed by the Shell object.

Method Description

BrowseForFolder() A simplified version of the SHBrowseForFolder() API
function. It displays a tree-based window that lets you choose a
folder. It differs from the API function in that it doesn't support
the callback mechanism.

CascadeWindows() Arranges all the top-level windows in cascading fashion.

ControlPanelItem() Launches a Control Panel applet. The method takes the name
of an existing CPL file and calls the Control_RunDLL()
function we saw in the previous chapter.

EjectPC() Undocks ('ejects') the computer from its docking station. This
method only works on those computers that have an Eject
command on the Start menu.

Explore() Opens an Explorer-like window based on the specified folder.

FileRun() Launches the Run dialog, as if you've clicked Run from the
Start menu.

FindComputer() Launches the Find Computer dialog, as if you've clicked Find |
Computer from the Start menu.

FindFiles() Launches the Find dialog, as if you've clicked Find | Files or
Folders from the Start menu.

Help() Displays a help window as if you've clicked Help from the Start
menu.

MinimizeAll() Clears the desktop and minimizes all the open windows (not
just top-level windows). This method has the same effect as
clicking the Show Desktop button on the taskbar (shell version
4.71 or higher), right-clicking on the taskbar and selecting
Minimize All Windows, or pressing Windows-M.

Scriptable Shell Objects

357

Method Description

NameSpace() This takes a path name or a constant as input, and creates a
folder object. We'll cover Folder objects later in this chapter.

Open() Opens the specified folder as a separate window without an
Explorer-like left-hand pane.

RefreshMenu() Refreshes the Start menu to reflect possible changes.

SetTime() Displays the dialog to set the current date and time. Calling this
method is the same as double clicking on the clock icon in the
tray area.

ShutdownWindows() Launches the procedure to exit Windows, as if you've clicked
on the Shut Down... command on the Start menu.

Suspend() Suspends the computer. This method only works on those
computers that have a Suspend command on the Start menu.

TileHorizontally() Horizontally tiles all the currently open top-level windows.

TileVertically() Vertically tiles all the currently open top-level windows.

TrayProperties() Launches the Taskbar Properties dialog, as if you've clicked on
Settings | Taskbar from the Start menu.

UndoMinimizeALL() Undo any changes carried out by a previous call to
MinimizeAll(), restoring the windows on the desktop. This
method has the same effect as clicking the desktop button on
the taskbar, right-clicking the taskbar and selecting Undo
Minimize All, or hitting Shift-Windows-M. Note the double
uppercase L in the name!

Windows() The documentation says that this, "Creates and returns a
ShellWindows object that represents a collection of all of the
open windows that belong to the shell". However, I have had
problems producing this behavior.

As you can see, many of the methods are just equivalents of the commands you find on the Start
menu and the taskbar's context menu, which just goes to show that the Shell object is providing the
functionality of the Windows shell. Many of the methods are extremely simple and require no
arguments at all; let's take a closer look at those that do.

Methods of the Shell Object
Before looking at the details of the methods that have input or output parameters, note that all the
strings used in these roles are BSTRs and not LPSTRs. You can find Visual Basic documentation in
the Internet Client SDK, but for the pure IDL-derived C++ header defining all the functions, look at
the exdisp.h header that's installed with the latest version of the Internet Client SDK.

Chapter 12

358

As usual for COM interface methods, all the functions return an HRESULT value that identifies the
error code. Visual Basic hides these from the programmer, so anything that the Visual Basic
documentation defines as a return value is actually an [out] parameter. In Visual Basic, any error
condition raises an exception that you can handle with the On Error Goto construct.

BrowseForFolder()
This function returns a Folder object, and takes the following arguments:

! The handle of the parent window
! A string to be used as the title of the dialog
! Some options, which are the same as those used in SHBrowseForFolder()
! An optional folder to be used as the root for the browse operation

The folder to be used as the root must be specified as a VARIANT type, and can include a string or
one of the CSIDL_XXX constants we met in Chapter 5. The prototype is:

HRESULT BrowseForFolder(
 long Hwnd, BSTR Title, long Options, VARIANT RootFolder, Folder** ppsdf);

The following code demonstrates how to call the method in C++ using both a CSIDL_XXX number
and a string to identify the root folder. By adding a #include for atlbase.h to the top of a source
file that contains this code, you get to use the ATL wrapper classes CComBSTR and CComVariant
that make using BSTRs and VARIANTs so much easier in C++.

If you want to test these listings, you can plug them straight into the code for creating an instance of
the Shell object that I presented earlier. Note that as always with COM, if you're not using the
CComPtr<> class, you must Release() any pointers you have acquired before calling
CoUninitialize().

#include <atlbase.h>

 // Set up pointer, VARIANT and BSTR
 Folder* pFolder = NULL;
 CComVariant vRoot(CSIDL_DRIVES); // My Computer
 CComBSTR bstrTitle(__TEXT("My Computer:")); // Dialog caption

 // Call the method
 HRESULT hr = pShellDisp->BrowseForFolder(
 reinterpret_cast<long>(hDlg), bstrTitle, 0, vRoot, &pFolder);

 // Release the pointer
 pFolder->Release();

Or...

 // Set up pointer, VARIANT and BSTR
 Folder* pFolder = NULL;
 CComVariant vRoot(__TEXT("c:\\")); // The C Drive
 CComBSTR bstrTitle(__TEXT("My Disk C:")); // Dialog caption

Scriptable Shell Objects

359

ControlPanelItem()
This function takes as input a string giving the name (file and extension) of the .cpl file to run, and
again the string must be a BSTR. The prototype is:

HRESULT ControlPanelItem(BSTR szDir);

Here's an example in C++ that again uses a BSTR created with one of the overloaded CComBSTR
class constructors:

 CComBSTR bstr(__TEXT("desk.cpl"));
 HRESULT hr = pShellDisp->ControlPanelItem(bstr);

Explore()
This method takes a VARIANT that specifies the folder to open. The VARIANT can contain a path
name as well as one of the CSIDL_XXX constants. The prototype is:

HRESULT Explore(VARIANT vDir);

Here's an example:

 // Set up the VARIANT
 CComVariant vDir(CSIDL_HISTORY); // History Folder

 // Call the method
 HRESULT hr = pShellDisp->Explore(vDir);

NameSpace()
This function takes two parameters, the first of which is a VARIANT that can be a path name or a
predefined constant identifying a special system folder. The second parameter is an output argument
that's filled by the method — a double pointer to a Folder object:

HRESULT NameSpace(VARIANT vDir, Folder** ppsdf);

Here's a code fragment to show it in action:

 Folder* pFolder = NULL;
 CComVariant vDir(CSIDL_STARTMENU); // Start menu
 pShellDisp->NameSpace(vDir, &pFolder);

 // Do something with pFolder...

 pFolder->Release();

Open()
As far as the syntax is concerned, this function is exactly the same as Explore(). The prototype is:

HRESULT Open(VARIANT vDir);

Chapter 12

360

Windows()
This function takes no input parameters, but provides a pointer to an IDispatch interface as its
output. This parameter will give you access to the collection of currently open windows. The
prototype is:

HRESULT Windows(IDispatch** ppid);

Attributes of the Shell Object
The Shell object has just two attributes: Parent and Application. They are implemented
through methods called get_Parent() and get_Application() respectively, which take a
double pointer to IDispatch and return an HRESULT.

Invoking the Shell Object
From the programmer's perspective, the Shell object is important because it offers, among other
things, a quick and easy way to access the contents of any folder. All the other functionality we listed
above provides an interesting set of commands, but they tend not to be essential in most real-world
applications. However, I'll now show you how to make calls to the Shell object, and in this context
there are four things we need to discuss:

! Getting a pointer to the right interface
! The use of the VARIANT type
! The use of Unicode strings
! Accessing and using collections

I'll start by showing you how things work in languages like Visual Basic and scripting languages, and
then we'll take a look at the C++ approach, which is a bit more complex. These examples show how
to call:

! BrowseForFolder()

! FindComputer()

! NameSpace()

Using these as examples, I can present a complete overview of the techniques required to call the
methods of the Shell object.

Using Visual Basic
In Visual Basic, you can use either early or late binding. That is, member names can be bound to
dispatch identifiers (DISPIDs) at runtime (late binding) or at compile time (early binding), the latter
of which makes calls into the interface faster. In early binding, you declare object variables with the
appropriate types early, thereby informing the compiler about which methods, properties and events
they support. For example:

Dim s As New Shell

Scriptable Shell Objects

361

By declaring s as a Shell and not as an Object, we've opted for early binding. This requires that
you add a reference to the library to your project, so that the compiler can easily check all calls to the
object. In the case of Shell objects, the library is shdocvw.dll. Here's how to store a reference to
a library, and a short example of code that illustrates early binding with Visual Basic.

Dim s As New Shell
s.FindComputer

Late binding, on the other hand, means that we bind to the library at runtime. In the source code, we
declare a generic Object variable that will be linked to the library of a specific object dynamically.
The code looks like this:

Dim o As Object
Set o = CreateObject("Shell.Application")
o.FindComputer

In this case, we don't need to
include references to anything.
The following picture shows a
demonstration application I put
together using Visual Basic:

Chapter 12

362

The form has three buttons to call the three functions I mentioned above. Find Computer is linked to
this code:

' Finds a computer
Private Sub btnFindComputer_Click()
 Dim s As New Shell
 s.FindComputer
End Sub

Which causes the following dialog to
appear:

BrowseForFolder, on the other hand, displays the dialog that we examined in detail in Chapter 5. In
this example, I arranged for it to browse the My Computer folder, like this:

' Navigates the History folder
Private Sub btnBrowseForFolder_Click()
On Error Resume Next
 Dim s As New Shell
 Dim f As Folder
 Dim fi As FolderItem

 Set f = s.BrowseForFolder(Me.hWnd, "My Computer:", 0, ssfDRIVES)
 Set fi = f.Items.Item

 ' Show the selected path in a textbox
 Text1.Text = fi.Path
End Sub

The method returns a reference to a Folder
object, but if you want the path of the selected
element, a Folder isn't sufficient. Instead, you
have to use a FolderItem object, which
exposes a Path property. (We'll talk more abou
Folder and FolderItem later on.)

Scriptable Shell Objects

363

The special ssfDRIVES constant that you can see in the above listing is taken from a predefined
enumeration type called ShellSpecialFolderConstants. The values of this enumeration are
identical to the CSIDL_XXX constants we met in Chapter 5, but the type under discussion doesn't
include all the constants that are defined in shlobj.h. The missing ones (not counting the 'COMMON'
constants) are:

! CSIDL_HISTORY
! CSIDL_COOKIES
! CSIDL_INTERNET
! CSIDL_INTERNET_CACHE
! CSIDL_APPDATA
! CSIDL_ALTSTARTUP
! CSIDL_PRINTHOOD

However, should you need it, adding support for these is simply a matter of adding the following
constant declarations:

Const ssfHISTORY = &H22
Const ssfCOOKIES = &H21
Const ssfINTERNET = &H1
Const ssfINTERNETCACHE = &H20
Const ssfAPPDATA = &H1A
Const ssfALTSTARTUP = &H1D
Const ssfPRINTHOOD = &H1B

Feel free to adopt any other names for the constants. The values come straight from the
shlobj.h header file.

The last of the three buttons, NameSpace, opens and returns a Folder object that is based on the
path name or the ID specified. Then, it enumerates the items in that folder, displaying them in the
left-hand list box:

' Enumerates the content of the Start Menu folder
Private Sub btnNameSpace_Click()
 Dim s As New Shell
 Dim f As Folder
 Dim i As Integer
 Dim Item As FolderItem

 Set f = s.NameSpace(ssfSTARTMENU)
 For Each Item In f.Items
 List1.AddItem Item.Path
 Next
End Sub

The above code makes use of the ssfSTARTMENU constant, thereby retrieving the Start Menu
folder. Notice how easy it is to walk the contents of a folder once you have a reference to a Folder
object — it's as easy as setting up a for loop!

Chapter 12

364

Here's the code for the remainder of the Visual Basic project, showing the handlers for the other
controls:

Option Explicit

 ' Add btnFindComputer_Click()

 ' Add btnBrowseForFolder_Click()

 ' Add btnNameSpace_Click()

' Displays the verbs for each folder item
Private Sub List1_Click()
 Dim s As New Shell
 Dim f As Folder
 Dim fi As FolderItem
 Dim fiv As FolderItemVerb
 Dim i As Integer

 Set f = s.NameSpace(ssfSTARTMENU)
 i = List1.ListIndex

 Set fi = f.Items.Item(i)

 List2.Clear
 For Each fiv In fi.Verbs
 List2.AddItem fiv.Name
 Next
End Sub

The final portion of the source code, which handles clicks on the left-hand list box, deals with using
verbs, which we'll cover a little later on.

Using C++
Doing the same thing with C++ requires a little more work and increased lines of code, but the
approach is basically the same. The first problem we encounter is making sure to include all the
header files we need so that the project compiles and the CLSIDs are properly declared, but that's not
usually too tricky provided that you keep your wits about you!

All the declarations needed for using the Shell object model can be found in exdisp.h. The
following lines are sufficient to compile correctly a piece of software that makes use of the Shell
object:

#include <windows.h>
#include <comdef.h>
#include <exdisp.h>

Make sure you have the most up-to-date versions, because the ones that come with compilers and
other tools might not contain everything you need. For instance, Visual C++ 5.0 installs a version of
exdisp.h in its include subdirectory that doesn't contain any of the required definitions for the
shell's object model. The "correct" version of exdisp.h is installed with the Internet Client SDK,
and is also distributed with Visual Studio 6.0.

Scriptable Shell Objects

365

The second problem is coping with the VARIANTs, which add a level of complexity to COM
programming in C++. In Visual Basic, you can use either strings or numbers to identify a folder —
this flexibility relies on the fact that VARIANTs can hold different data, but always expose the same
interface. However, using the ATL wrapper class CComVariant goes a long way to making
VARIANT use easier in C++.

The third difficulty you run into when doing low-level COM programming is enumerating
collections. Support for doing this is built into Visual Basic, as demonstrated by code like this:

Dim pF As Folder
Dim pFI As FolderItem

For i = 0 to pF.Items.Count - 1
 Set pFI = pF.Items.Item(i)
 ' Do something
Next

Generally in Visual Basic, a For...Each construct is faster than a For...Next because it
makes use of a hash algorithm to locate the ith item instead of scanning the items sequentially.
However, I've used For...Next here because it maps more closely to the programming
approach used in C++.

Doing this in C++ is more long-winded, but it isn't really more complex. In trying to convert the
fragment above to C++, we must consider three things:

! Getting the Items collection
! Getting the Count property
! Getting the ith element of the collection

To see how we can address these issues, let's consider a typical sample: enumerating the content of a
folder. The NameSpace() method provides us with a reference to a Folder object:

Folder* pFolder = NULL;
CComVariant vDir(CSIDL_STARTMENU);
pShellDisp->NameSpace(vDir, &pFolder);

We know from the Internet Client SDK documentation that the Folder object has an attribute called
Items whose type is FolderItems. Basically, FolderItems is a collection of elements of type
FolderItem. (I know that I still owe you complete coverage of the Folder and FolderItem
objects, but bear with me; we'll do that shortly.)

What we need to do, therefore, is to get a pointer to Items and then visit every item in the
collection, performing an action for each one, such as adding an icon to a list view control.

long nLength;
FolderItems* pFIColl = NULL;
pFolder->Items(&pFIColl); // Visual Basic: Folder.Items
pFIColl->get_Count(&nLength); // Visual Basic: Folder.Items.Count

Chapter 12

366

The lines above demonstrate how to get the pointer to the FolderItems collection, and its length.
At this point, we could arrange a loop:

for(int i = 0 ; i < nLength ; i++)
{
 // Get the ith element from pFIColl and
 // do something with it
}

The FolderItems object is a helper object; it exposes an interface that lets us browse a collection.
In particular, it has an Item() member function that takes two arguments: a VARIANT, and a pointer
to a FolderItem object.

for(int i = 0 ; i < nLength ; i++
{
 CComVariant varIndex(i);

 FolderItem* pFI = NULL;
 pFIColl->Item(varIndex, &pFI);

 // do something with it

 pFI->Release();
}

You might be wondering why a function like Item(), which is intended to return a reference to the
ith element of a given collection, needs a VARIANT argument instead of a simpler int, UINT or
long. The answer is that collections usually allow you to access their elements by name as well as by
index. Given this, it's clear that Item must be ready to accept both numbers and strings, hence the
decision to use a VARIANT.

Once we have a pointer to a FolderItem, we have a pointer to a logical object that can tell us about
a file contained in a folder. We can ask it for the path, the size or the date, like this:

CComBSTR bstr;
TCHAR szFile[MAX_PATH] = {0};
pFI->get_Path(&bstr);
wcstombs(szFile, bstr, MAX_PATH);

The filename can then be used to retrieve the icon for the document class and add an item to a list
view control, which is exactly what we'll do in the sample C++ program I'll be presenting shortly.
Before that, though, we need to take a closer look at Folder and FolderItem.

The Folder Object
A Folder object represents a shell folder that contains files or references to other types of objects.
Usually, you don't create folders directly but rely on the NameSpace() function, which creates them
starting from a path name or a virtual folder ID.

The Folder object exposes four properties, two of which are the well-known Application and
Parent. The other two are ParentFolder and Title, whose purposes are (I hope!) self-
explanatory.

Scriptable Shell Objects

367

This table lists the object's methods:

Method Description

CopyHere() Copies one or more file objects into the folder.

GetDetailsOf() Returns column-based information about the specified folder item,
the same way it would be displayed in a shell view.

Items() The collection of FolderItem elements in the folder. This
collection is of type FolderItems.

MoveHere() The same as CopyHere, but moves files.

NewFolder() Creates a new folder within the given folder.

ParseName() Creates a FolderItem object from a name.

As you can see, the Folder object gives you the same basic functionality that you get when
manipulating folders in Explorer.

More on Folder Object Methods
Let's look in more detail at the methods exposed by the Folder object. We've already mentioned
Items(), which returns a pointer to a collection of FolderItem objects, and explained how the
collection exports a property Count and a method Item() to help you enumerate the elements, but
what about the rest?

CopyHere()
The method may be considered as a sort of wrapper around the API function SHFileOperation().
It copies one or more files (or file objects) from their original location to the current folder. The
source files may be strings, a FolderItem object, or a collection of FolderItem objects. The
operation can be controlled through the same flags that control SHFileOperation() (see Chapter
3).

The prototype of the CopyHere() function is:

HRESULT CopyHere(VARIANT vItem, VARIANT vOptions);

GetDetailsOf()
This method is intended to give programmers the same information that users can get from the right-
hand pane in Explorer. Each folder may give you several columns of data; for file folders the columns
contain:

! Name
! Size
! Date last modified
! Type
! Attributes

Chapter 12

368

The function retrieves this information for a given folder item, based on the column index number.
The only exception to this is for the infotip (the text of the tooltip that appears for some elements in
the shell), which is assigned an ID number of –1. Column IDs are zero-based, so for ordinary file
folders, for example, column 1 is the size. The information is always returned in the form of strings,
so the prototype of the method is:

HRESULT GetDetailsOf(VARIANT vItem, int iColumn, BSTR* pbs);

Items()
Retrieves the collection containing all the folder items in the folder; the prototype is:

HRESULT Items(FolderItems** ppid);

The FolderItems collection has the following interface:

Method Description

Item() Allows you to walk the various elements of the collection. An
element is a FolderItem object.

The collection also has a _NewEnum() method that has a special meaning. In fact, every collection
object must expose a method named _NewEnum to let clients know that iteration capability is
provided. The _NewEnum method returns a pointer to an object that supports the IEnumVARIANT
interface.

MoveHere()
This method works the same way as CopyHere(), the only (and obvious) difference between them
being that MoveHere() moves files instead of copying them. The prototype is:

HRESULT MoveHere(VARIANT vItem, VARIANT vOptions);

NewFolder()
This method creates a new subfolder in the specified folder. It takes two arguments: the name of the
folder to be created, and a VARIANT that is currently unused. The prototype is:

HRESULT NewFolder(BSTR bName, VARIANT vUnused);

ParseName()
This method creates and returns a new FolderItem object using the name passed in as the first
argument. The prototype is:

HRESULT ParseName(BSTR bName, FolderItem** ppid);

Scriptable Shell Objects

369

The FolderItem Object
The FolderItem object represents an element in a shell folder. It exposes two methods and a
number of properties to let you know about the characteristics of the item. Let's start with a table of
the properties.

Property Description

Application Retrieves the IDispatch interface of the object.

GetFolder Retrieves the Folder object if the item is a folder.

IsBrowsable Returns a Boolean value denoting whether the folder item can be
browsed.

IsFileSystem Indicates whether the folder item is a file system object.

IsFolder Indicates whether the folder item is a subfolder.

IsLink Indicates whether the folder item is a shortcut.

ModifyDate Returns a DATE value with the date and time of the last update to the
item. A DATE is an 8-byte floating-point number.

Name Returns a string with the name of the item.

Parent Retrieves the IDispatch interface of the parent of the item.

Path Returns a string with the full path of the item.

Size Returns an unsigned long value denoting the size in bytes of the
item.

Type Returns a string with the type of the item.

All these properties are read-only and implemented through methods called get_XXX(), where XXX
is the name of the property. All these functions return HRESULTs and accept pointers to output
variables to be filled with the data to return.

The methods exposed by FolderItem are:

! InvokeVerb()

! Verbs()

Both of these are related to working with the verbs supported by the item.

Invoking an Item's Verbs
We talked about verbs in Chapter 8, and InvokeVerb() executes a verb on the folder item. The
method is declared this way:

HRESULT InvokeVerb(VARIANT vVerb);

Chapter 12

370

While Verbs() has the following prototype:

HRESULT Verbs(FolderItemVerbs** ppfic);

The VARIANT you can pass to InvokeVerb() should be one of the strings returned by the
FolderItemVerbs collection, which is accessible via the Verbs() method.

The FolderItemVerbs Collection
Here's the programming interface of the FolderItemVerbs collection:

Method Description

Item() Allows you to walk the collection, the elements of which are
FolderItemVerb objects

In addition to this, there are three properties: Application, Parent and Count. The last of these,
as you might expect, returns the number of items in the collection.

The FolderItemVerb Object
The interface of the FolderItemVerb object is extremely limited and contains just the method
DoIt() that takes no arguments.

Method Description

DoIt() Executes the verb on the folder item

Apart from this, the FolderItemVerb has the usual Application and Parent properties, plus an
attribute called Name that returns the actual verb name for the item:

HRESULT get_Name(BSTR* pbs);

The string returned here could contain an ampersand to indicate the menu item's accelerator key; the
string is exactly what appears on the context menu. It seems that this programming interface is not so
flexible after all! The FolderItemVerbs collection doesn't give you the real, absolute name of the
verb, but just the string that appears on the context menu. In other words, the FolderItemVerbs
collection provides you with a string like &Open instead of Open. Things get even worse with
localized versions of Windows, because the string you have to pass to InvokeVerb() to execute a
given command (say, Open) is what appears to the user, and not what is stored in the registry. In the
Italian version of Windows, for example, you should call this to open a document:

InvokeVerb("&Apri");

As we discussed back in Chapter 8, a verb is a name for a command that
applies to a certain class of files. It can be static (stored in the registry), or
dynamic (added by a shell extension). A verb is a universal string and
shouldn't be dependent upon localization, nor contain ampersands. So what
we're calling a 'verb' here is slightly different from what we originally
defined in Chapter 8.

Scriptable Shell Objects

371

Accessory Objects
So far, we've examined the main (that is, most commonly used) objects in the shell's object model.
However, there are secondary objects too. In particular, you might be interested in the
ShellUIHelper object, which implements the IShellUIHelper interface derived from
IDispatch. This interface lets you add directories or files to the Favorites folder.

I actually demonstrated this in Chapter 6 — after all, adding a new 'favorite' is just a matter of creating
a new shortcut in a specified path. What ShellUIHelper can also do is call the system dialog for
adding to Favorites:

In addition, it allows you to handle channels, subscriptions and desktop components. (See the Further
Reading section for more details.)

The ShellUIHelper Object
The ShellUIHelper object is also defined in the exdisp.h header file. The server is identified by
CLSID_ShellUIHelper, and implements the IShellUIHelper interface, which exposes four
methods:

Method Description

AddChannel() Adds a channel to the local list. It takes the URL to a
channel definition (.cdf) file as input.

AddFavorite() Adds a file or folder to the list of favorite folders. The two
arguments it takes are the URL to the folder or file, and a
VARIANT to describe the favorite.

AddDesktopComponent() Adds a new desktop item by specifying its URL, the type
(image or web site), and the initial position on the screen.

IsSubscribed() Verifies whether we're subscribed to a certain URL or not.

AddChannel() accepts a URL to the CDF file for a channel and stores it locally. Its prototype is:

HRESULT AddChannel(BSTR URL);

AddFavorite() shows the default dialog for adding a new file or folder to the list of your favorites.
It's declared this way, where the VARIANT argument is the descriptive name of the item:

Chapter 12

372

HRESULT AddFavorite(BSTR URL, VARIANT* Title);

AddDesktopComponent() registers a new desktop item. It takes the URL and a string denoting the
type of the component. This type can be the string 'image' or 'website', and is followed by four
VARIANTs that specify the initial position of the item:

HRESULT AddDesktopComponent(BSTR URL, BSTR Type,
 VARIANT* Left, VARIANT* Top, VARIANT* Width, VARIANT* Height);

A desktop item is not a file placed in the desktop folder. Instead, it is a web page hosted in a floating
frame or embedded in the HTML page that you can set as the desktop's background. The content of
this page is the content of the specified URL. Usually, these URLs are specialized pages that just
provide headlines and links to the actual data source. Each URL referred through a desktop item is
automatically subscribed to.

Finally, the IsSubscribed() method returns a Boolean value according to whether we are
subscribed to the specified URL or not.

HRESULT IsSubscribed(BSTR URL, VARIANT_BOOL* pBool);

See the Further Reading section for references on how to develop desktop items, understanding .cdf
files, and manage channels and subscriptions.

Adding to Favorites
The following code fragment shows how to invoke the Add to Favorites system dialog from C++
code. As a reminder and a point of reference, the equivalent Visual Basic code is:

Dim s As New ShellUIHelper
s.AddFavorite "c:\"

For C++ programmers, adding the root of disk C to the Favorites folder requires this code:

void AddDiskCToFavorites()
{
 IShellUIHelper* pShellUI = NULL;

 // Creates the Shell UI Helper object
 HRESULT hr = CoCreateInstance(CLSID_ShellUIHelper, NULL, CLSCTX_SERVER,
 IID_IShellUIHelper, reinterpret_cast<LPVOID*>(&pShellUI));
 if(FAILED(hr))
 return;

 // Sets the title of the item to add
 CComVariant vTitle(__TEXT("My C Drive"));

 // Causes the dialog to appear with the specified default settings
 CComBSTR bstrPath(__TEXT("c:\\"));
 pShellUI->AddFavorite(bstrPath, &vTitle);

 // Clean up
 pShellUI->Release();
}

Scriptable Shell Objects

373

Putting it all Together
We've now examined several objects implemented in the Internet Explorer 4.x DLL shdocvw.dll.
These objects let you drive the shell from programs in a way that you haven't been able to do before.
All the current examples that are around make use of Visual Basic as the programming environment,
and I introduced a Visual Basic example earlier in the chapter. Now I'd like to present a
demonstration application written in pure C++ code that shows how to deal with the shell's object
model at a lower level of abstraction.

Once again, it's time to start up the Wrox AppWizard and create a dialog-based project; I called mine
CppShell. Here's the dialog we're going to implement:

The following table describes what the six buttons on the dialog do:

Button Action

Find Computer Makes the Find Computer dialog appear.

Taskbar Properties Makes the Taskbar Properties dialog appear.

BrowseForFolder Browse the History folder. The selected item will be
displayed in the text box below.

NameSpace Gets a reference to the Start Menu folder and enumerates
its content to the list view below.

Minimize All /
Undo Minimize All

This button minimizes all the opened windows, as if we had
pressed the Windows-M key combination. Then, the caption
changes to Undo Minimize All, and the effect is identical to
pressing Shift-Windows-M — that is, restoring the windows.

Add to Favorites Causes the Add to Favorites dialog to appear.

Chapter 12

374

As usual, implementing the application involves little more than writing handlers for the buttons. The
following source code includes some of the fragments used in the discussion above, and portions of it
appeared in my Cutting Edge column in the August 1998 issue of Microsoft Interactive Developer
(MIND). The title of that article is The Windows 98 Shell.

First things first, we need to make sure that the COM libraries are initialized while our dialog is
running, so add a couple of lines to WinMain() to that effect:

 // Enable common controls
 INITCOMMONCONTROLSEX iccex;
 iccex.dwSize = sizeof(INITCOMMONCONTROLSEX);
 iccex.dwICC = ICC_WIN95_CLASSES;
 InitCommonControlsEx(&iccex);

 // Initialize the COM libraries
 CoInitialize(NULL);

 // Run main dialog
 BOOL b = DialogBox(hInstance, "DLG_MAIN", NULL, APP_DlgProc);

 // Uninitialize COM
 CoUninitialize();

Each of the buttons on the dialog will have its own handler function, so we can change
APP_DlgProc() to reflect that fact:

 case WM_COMMAND:
 switch(wParam)
 {
 case IDC_FINDCOMPUTER:
 OnFindComputer();
 return FALSE;

 case IDC_PROPERTIES:
 OnTaskbarProperties();
 return FALSE;

 case IDC_BROWSEFOLDER:
 OnBrowseForFolder(hDlg);
 return FALSE;

 case IDC_NAMESPACE:
 OnNameSpace(hDlg);
 return FALSE;

 case IDC_MINIMIZE:
 OnMinimizeAll(hDlg);
 return FALSE;

 case IDC_FAVORITES:
 OnAddFavorites();
 return FALSE;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

Scriptable Shell Objects

375

There's nothing else for it; we'll just have to go through the handlers one at a time. Here's the first
(and one of the simplest), OnFindComputer():

void OnFindComputer()
{
 IShellDispatch* pShellDisp = NULL;

 HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
 if(FAILED(hr))
 return;

 pShellDisp->FindComputer();
 pShellDisp->Release();
}

Equally easy is OnTaskbarProperties() — in fact, it just involves calling a different method of the
Shell object:

void OnTaskbarProperties()
{
 IShellDispatch* pShellDisp = NULL;

 HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
 if(FAILED(hr))
 return;

 pShellDisp->TrayProperties();
 pShellDisp->Release();
}

Gaining in complexity, OnBrowseForFolder() gets a pointer to the Shell object like the
previous functions, but then goes on to call BrowseForFolder(), which retrieves a pointer to a
Folder object:

void OnBrowseForFolder(HWND hDlg)
{
 TCHAR szTitle[MAX_PATH] = {0};
 IShellDispatch* pShellDisp = NULL;
 Folder* pFolder = NULL;

 HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
 if(FAILED(hr))
 return;

 // Set the root of the namespace displayed
 CComVariant vRoot(CSIDL_HISTORY);

 // Displays the dialog
 CComBSTR bstrFolder(__TEXT("History Folder:"));
 hr = pShellDisp->BrowseForFolder(
 reinterpret_cast<long>(hDlg), bstrFolder, 0, vRoot, &pFolder);

Chapter 12

376

 if(pFolder)
 {
 // Get the display name of the selected item
 CComBSTR bstr;
 pFolder->get_Title(&bstr);

 // Convert it to ANSI and display
 wcstombs(szTitle, bstr, MAX_PATH);
 SetDlgItemText(hDlg, IDC_FOLDER, szTitle);
 }

 // Clean up
 pFolder->Release();
 pShellDisp->Release();
}

If a valid Folder object is obtained, we call its get_Title() method and display the name of the
folder on the dialog.

OnNameSpace() is much bigger, but that's really more to do with the code necessary for outputting
icons to the list view than it is with the COM code. In operation, it's really quite straightforward, and
the pattern of calls should be familiar to you by now:

void OnNameSpace(HWND hDlg)
{
 IShellDispatch* pShellDisp = NULL;
 Folder* pFolder = NULL;

 HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
 if(FAILED(hr))
 return;

 // Set the folder to work with
 CComVariant vDir(CSIDL_STARTMENU);

 // Get the Folder object
 pShellDisp->NameSpace(vDir, &pFolder);

 // Prepare to enumerate the folder's content
 long nLength;
 FolderItems* pFIColl = NULL;
 pFolder->Items(&pFIColl);
 pFIColl->get_Count(&nLength);

 // Prepare the list view to fill
 HIMAGELIST himl = ImageList_Create(32, 32, ILC_MASK, 1, 1);
 HWND hwndList = GetDlgItem(hDlg, IDC_LIST);
 ListView_SetImageList(hwndList, himl, LVSIL_NORMAL);

 // Enumerate the folder items
 for(int i = 0 ; i < nLength ; i++)
 {
 // Get the ith folder item
 CComVariant varIndex(i);
 FolderItem* pFI;

Scriptable Shell Objects

377

 hr = pFIColl->Item(varIndex, &pFI);
 if(SUCCEEDED(hr))
 {
 CComBSTR bstr;
 TCHAR szFile[MAX_PATH] = {0};

 // Get the ANSI version of the ith item path
 pFI->get_Path(&bstr);
 wcstombs(szFile, bstr, MAX_PATH);

 // Add the item to the list view
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_TEXT | LVIF_IMAGE;
 lvi.pszText = szFile;
 lvi.cchTextMax = lstrlen(szFile);

 // Get the icon and add to the list view
 SHFILEINFO sfi;
 SHGetFileInfo(szFile, 0, &sfi, sizeof(SHFILEINFO), SHGFI_ICON);
 int iIconPos = ImageList_AddIcon(himl, sfi.hIcon);
 lvi.iImage = iIconPos;
 ListView_InsertItem(hwndList, &lvi);
 }
 pFI->Release();
 }

 pFIColl->Release();
 pFolder->Release();
 pShellDisp->Release();
}

We begin by creating a pointer to the Shell object, and then use that in a call to the NameSpace()
function to get hold of a pointer to the Start Menu special folder. From there we can use the
Items() method to obtain a pointer to the FolderItems object, and finally we acquire a
FolderItem pointer with which to obtain the icons and path names. It really is just a matter of
picking your way through the hierarchy of objects.

Just two functions to go now, and they're starting to get smaller again. Depending on a global,
Boolean flag, OnMinimizeAll() calls one of two methods of the Shell object, and amends the
caption on the button accordingly:

void OnMinimizeAll(HWND hDlg)
{
 IShellDispatch* pShellDisp = NULL;

 HRESULT hr = CoCreateInstance(CLSID_Shell, NULL, CLSCTX_SERVER,
 IID_IShellDispatch, reinterpret_cast<LPVOID*>(&pShellDisp));
 if(FAILED(hr))
 return;

Chapter 12

378

 // Use a global flag to remember the current status
 if(!g_bMinimized)
 {
 pShellDisp->MinimizeAll();

 // Change the button's caption
 SetDlgItemText(hDlg, IDC_MINIMIZE, "&Undo Minimize All");
 g_bMinimized = TRUE;
 }
 else
 {
 pShellDisp->UndoMinimizeALL();

 // Change the button's caption
 SetDlgItemText(hDlg, IDC_MINIMIZE, "&Minimize All");
 g_bMinimized = FALSE;
 }

 pShellDisp->Release();
}

Finally, OnAddFavorites() requires no new work at all, because we can just reuse the body of the
AddDiskCToFavorites() function that I developed earlier in the chapter!

void OnAddFavorites()
{
 IShellUIHelper* pShellUI = NULL;

 // Creates the Shell UI Helper object
 HRESULT hr = CoCreateInstance(CLSID_ShellUIHelper, NULL, CLSCTX_SERVER,
 IID_IShellUIHelper, reinterpret_cast<LPVOID*>(&pShellUI));
 if(FAILED(hr))
 return;

 // Sets the title of the item to add
 CComVariant vTitle(__TEXT("My C Drive"));

 // Causes the dialog to appear with the specified default settings
 CComBSTR bstrPath(__TEXT("c:\\"));
 pShellUI->AddFavorite(bstrPath, &vTitle);

 // Clean up
 pShellUI->Release();
}

That's all the code; but there's a whole slew of header files that you'll need to #include in order to
get the project to compile — the list is comdef.h, exdisp.h, atlbase.h, shlobj.h, and good old
resource.h. With these at the top of your file, the code will compile, link and run as described.

Scriptable Shell Objects

379

Summary
This chapter discussed scriptable shell objects from the points of view of both Visual Basic and C++.
You can exploit them if you have Internet Explorer 4.x and Active Desktop installed under Windows
95 or Windows NT 4.0, or if you're running Windows 98 or higher. These objects are documented
only in the Internet Client SDK (now part of the Platform SDK), and mainly for the benefit of the
Visual Basic programmer. I've tried to make up for the lack of documentation for C++ programmers,
particularly in the areas of:

! The functions of the Shell's object model
! The Folder and FolderItem objects
! VARIANTs and Unicode strings

Further Reading
For more detailed information on COM, you should consider some or all of:

! Essential COM, Don Box, Addison-Wesley, ISBN 0-201-63446-5
! Inside COM, Dale Rogerson, Microsoft Press, ISBN 1-57231-349-8
! Professional DCOM Programming, Richard Grimes, Wrox Press, ISBN 1-861000-60-X

At the time of writing, the scriptable shell objects were documented only in the Internet Client SDK.
If you're looking for books or articles that can provide a different point of view, you may find the
going rather tough.

The Windows 9x shell is covered in an article of mine that appeared in the Cutting Edge column of the
August 1998 issue of MIND. The article provides an overview of the objects involved, and then
builds an embeddable COM component (that is, an ActiveX control) that works as the Explorer's left-
pane tree view. This control, which lets you choose a directory by expanding the nodes of a tree
view, can be inserted in any ActiveX-compliant application. It is written in Visual Basic and has an
interesting plus: it allows you to filter the directory names to display. In other words, you can use this
filter to show your customers only a specified portion of the disk. This source code is available for
download from MIND's web site at http://www.microsoft.com/mind.

Two related articles appeared in the MIND edition of July 1998. The first one is Adding Internet
Explorer Favorites to Your Application by Scott Roberts, which discusses some undocumented functions
for handling favorites and, above all, subscriptions. The second, Michael Heydt's Incorporating the
WebBrowser Control Into Your Program touches on some advanced uses of the WebBrowser control.

In this chapter, we also had to consider some topics relating to the Internet and the Active Desktop.
Once again, further information on channels and the CDF format can be found in the November 97
edition of MIND, in the Cutting Edge column, written by John P. Grieb. A high-level overview of
subscriptions, channels, and Active Desktop components is in MSJ, October 1997, in an article
entitled A Preview of Active Channel and Active Desktop for Internet Explorer 4.0 by Nancy Cluts and
Michael Edwards.

A tutorial on how to write Active Desktop components (Creating an Active Desktop Component by Josh
Hochmann) appeared in MIND in May 98, and last but not least, many of these topics are covered in
a single book: Wrox Press' Professional IE4 Programming, ISBN 1-861000-70-7.

http://www.microsoft.com/mind

The Windows Scripting Host

Many of today's Windows developers have previously programmed in the MS-DOS environment.
Almost all have a soft spot for batch files, those text-based command files that allow you to combine
multiple instructions in a single executable command. Batch files are easy to write, and follow a fairly
simple syntax.

However, some people claim that the syntax of batch files is too simple. The interpreter of .bat files
is smart enough to recognize some basic control elements, like if, but it's a long way from providing
an up-to-date and powerful scripting environment.

Until now, though, Windows hasn't had a better mechanism — MS-DOS batch files are still
considered as executable files in Windows. With the introduction of the Windows Scripting Host
(WSH), though, things have finally changed. As I'll show in this chapter, the WSH provides support
for much more complicated operations than you could perform with .bat files, and this is mainly
due to the features of the embedded scripting engine.

In this chapter, I'll cover:

! The origins of Windows batch files
! The layout of the Scripting Host that provides a framework for shell scripting
! The WSH object model
! What you can do with the WSH
! How you can enhance the power of the WSH with new Automation objects

We will be using JScript and VBScript to write sample WSH applications, but provided that you have
(and distribute) an appropriate ActiveX-compliant scripting engine, you could use any other scripting
language.

Chapter 13

382

Windows Batch Files — At Last
The idea behind the Windows Scripting Host is quite simple. It is an environment that works as the
run-time engine for interpreting script files written in VBScript, JScript or any other script language.
The only proviso is that each language should have a parsing module that's compatible with the
Internet Explorer ActiveX scripting engine.

In practice, you write a single script file and the WSH runtime allows you to run it as if it were a
batch file or a typical Win32 binary. It's therefore quite reasonable to consider .vbs and .js files as
new kinds of executable files, where .vbs files are ASCII files that contain a piece of VBScript code,
and .js files are their JScript equivalent.

What Can the WSH do for You?
To grasp the importance of the WSH, consider it as a tool that allows you to describe a series of
operations programmatically, such as running external executables, or accessing Windows objects
like shortcuts, folders and even the registry. With WSH, any repetitive task can be saved to a .vbs or
.js file, and invoked with a simple double-click at a later time.

There are a number of advantages that WSH-based scripts have over batch files:

! They use more articulated and powerful programming languages that provide a variety of control
flow structures, variables, subroutines and arrays that you don't find in DOS batch files.

These features will be further enhanced with the release of version 5.0 of the
scripting engines, expected to ship with Internet Explorer 5.0. The major feature of
the new scripting engines is a built-in mechanism to catch errors and recover from
them in JScript, and a way to evaluate and execute code at runtime in VBScript.

! A second (but no less important) fact that makes the WSH incomparably more powerful than
batch files is the ability to access any registered COM server. First, this enables you to create
instances of any existing COM server in your WSH application and control it as you wish.
Second, you can design new COM servers specifically to extend the capabilities of the WSH run-
time environment. In the remainder of the chapter, I'll examine both of these approaches.

Running Scripts at Startup
In MS-DOS based systems, it's common to have a custom batch file that runs at the end of
autoexec.bat and performs some more specialized processing. In most cases, this consists of a
keyboard-based menu that uses goto statements to move control to the required block of code. Well,
the same effect can be obtained with the WSH. Once you've written the code to execute at startup,
you can store it in the Startup folder and have it run during each user's logon.

The Windows Scripting Host

383

Structure of the WSH Environment
The Windows Scripting Host environment is an integrated module that embeds an ActiveX scripting
engine in the Windows shell. By implementing a handful of COM interfaces, you can give any Win32
application the ability to be driven by scripts. The application should be an Automation server that
exposes its own objects to the outside world, and there are many examples in the literature of how to
accomplish this. (See the Further Reading section for more information.)

In the Windows shell, there exists a program that is capable of interpreting VBScript and JScript
source code. The underlying principle is the same as that which makes Internet Explorer able to run
scripts from within HTML pages. Internet Explorer, Internet Information Server and the WSH
manager embed a parsing module that is compatible with the ActiveX Scripting specifications.

The difference between these three applications is the object model that each imposes upon the
hosted module. In other words, from the script's point of view, Internet Explorer and the WSH differ
in the object model that they build around the same scripting engine.

Microsoft has released an ActiveX component called Script Control that works as an embeddable
object that provides a scripting engine for your applications. As a result, you can register your
own objects and have your program become scriptable automatically (assuming that your program
already exposes Automation objects). The Script Control is available from Microsoft's scripting
site: http://msdn.microsoft.com/scripting.

How to Get the Windows Scripting Host
The Windows Scripting Host module is a standard part of the Windows 98 operating system. It is also
available for Windows 95 and Windows NT 4.0, but it's not included with Internet Explorer 4.x and
the Active Desktop. Instead, you can get it from Microsoft's scripting site (as above).

Installation is as simple as indicating a path where files must be stored. Basically, the WSH package is
composed of a couple of executables, plus some COM modules that contain the objects that form the
WSH object model.

The setup also registers two new classes of files: .vbs and .js. These are associated with some shell
verbs, so that you can open (run) and edit such files.

What is the Host?
The Windows Scripting Host is composed of two files called wscript.exe and cscript.exe,
which are located in the Windows and the Windows\Command directories respectively. The latter is
a console application and runs inside a DOS window, while the former is a Windows program.

The Host Command Line
Both hosts share the same command line, which is:

wscript scriptfile [//options] [/arguments]
cscript scriptfile [//options] [/arguments]

http://msdn.microsoft.com/scripting

Chapter 13

384

The options here are listed in the table below; note that you need to use a double slash to prefix
each one. Arguments to script files, on the other hand, must be prefixed with a single slash. The
following command is an example of how to run a script file for a maximum of two seconds. Once
this time has elapsed, the script terminates, whether the operation has actually completed or not:

wscript myfile.js //T:2

The T switch is one of several accepted by both hosts; indeed, the lists are almost identical, as the
following table demonstrates:

Switch Description

B Runs the script in a non-interactive, batch mode. It suppresses all message boxes
and anything that requires the user's intervention.

I Runs the script in interactive mode and prompts the user if necessary. Execution
terminates at the end of the code, and there is no limit on its duration. This is the
default setting.

logo A banner is shown at startup. This option is only valid for cscript.exe (for
which it is the default setting), and is unsupported by wscript.exe.

nologo Doesn't show a banner at startup. This option is only valid for cscript.exe,
and is unsupported by wscript.exe.

T:nn The script can run only for the specified time, expressed in seconds. The
interruption is realized through a specific method of the ActiveX Scripting
engine, and may be considered absolutely thread-safe.

? Displays the program's usage.

From the command line standpoint, cscript and wscript are nearly the same and differ only in
the logo and nologo switches. A script file run through the cscript module will always make a
DOS window appear in the background.

Shell Support for Script Files
After the Windows Scripting Host has been installed, .vbs and .js files are recognized and
properly handled by the shell. This means that you can double-click these files and have them run
immediately from Explorer. This feature comes simply from having the open verb added to the
registry, an approach that we saw in Chapter 11. Under this path:

HKEY_CLASSES_ROOT
 \.js

and this one:

HKEY_CLASSES_ROOT
 \.vbs

The Windows Scripting Host

385

the Default value contains the name of the key that stores all the shell information — Jsfile and
Vbsfile respectively. Following on, this path:

HKEY_CLASSES_ROOT
 \jsfile
 \shell
 \open
 \command

points to the command line that executes when you click a .js file, which is the same as the one
specified for .vbs files:

Windows 9x: C:\WINDOWS\WScript.exe "%1" %*
Windows NT: C:\WINNT\System32\WScript.exe "%1" %*

The %1 stands for the file name, while the %* means that the program is also passed any command
line arguments in the call. If you simply double-click on a VBScript or JScript file in Explorer, the
actual command line will be:

C:\WINDOWS\WScript.exe filename

On the other hand, if you run the VBScript or
JScript programmatically with
ShellExecute() or ShellExecuteEx(), or
even via the Run dialog box, you can specify
additional parameters or options. For example,
the following picture shows a way to invoke a
JScript file passing arguments:

The context menus for JScript and VBScript files
have two 'open' commands: Open runs
wscript.exe, while Open with MS-DOS
Prompt (Open with Command Prompt in NT)
runs cscript.exe. Furthermore, JScript and
VBScript files both have a custom property
page, which is added to the Properties dialog:

Chapter 13

386

The page lets you set a fixed number of seconds as the maximum execution time. Any settings you
change are saved to a .wsh file, which has the following format:

[ScriptFile]
Path=c:\myfile.js

[Options]
Timeout=2
DisplayLogo=1
BatchMode=0

In some senses, a .wsh file is a like a shortcut for script files. When they're dealing with these files,
both cscript and wscript first try to extract the contents of the Path entry, and then run what
they find. The ScriptFile section defines the target, while Options describe the status of the
command line switches.

The Scripting Engine
The WSH uses the extension of the script filename to decide which parser to load. Logically, a .vbs
extension means that the script was written in VBScript, while .js indicates JScript. The WSH
natively supports only these two languages because they are the ones supported by the ActiveX
scripting engine that ships with Internet Explorer. Provided that you have a valid parser for another
scripting language at your disposal — Perl, for example — you can use it to write Windows batch files.

Registering New Scripting Engines
To register a new scripting engine, the following steps are required:

! Identify the extension of the files handled by the new engine. For example, .pl for Perl files.
! Create an entry for them in the registry similar to the format of those we discussed earlier.
! Add a ScriptEngine key whose Default value points to another key.
! This second key will contain the CLSID of the module implementing the ActiveX scripting parser

for the new language.

So, continuing with the Perl example I've been using, the registry will include a key like this:

HKEY_CLASSES_ROOT
 \.pl

The Default value of this key will point to another key called, say, plfile, which will have a
whole sub-tree of keys beneath it:

HKEY_CLASSES_ROOT
 \plfile
 \defaulticon
 \scriptengine
 \shell
 \open
 \edit
 \print

The Windows Scripting Host

387

This comprises all the verbs needed (open, edit, print), the default icon, and a scriptengine
key. The Default value of the latter should contain a reference to another key that will identify the
parser. In this case, that could be PScript:

HKEY_CLASSES_ROOT
 \pscript
 \clsid

Under this key will be stored the CLSID of the module that contains the ActiveX scripting compliant
parser for Perl.

Command Line Arguments
As I mentioned earlier, a WSH script can take command line arguments. You can specify these one
after another, making sure that they are separated by blanks, and that strings with spaces that should
be considered as a single parameter are enclosed in quotes. For example:

wscript ScriptFile.js First "Second Argument"

You can access the collection of command line arguments from within the script code by using a
specialized collection object called WshArguments. (See The WshArguments Object.)

The WSH Object Model
There are a number of predefined objects used by the Windows Scripting Host, and together they
form the WSH object model. They allow you to perform a range of actions anywhere in the Windows
shell.

The main objects are WScript, WshShell and WshNetwork. The first comprises the WSH engine,
while the other two represent the Windows shell and the network respectively. As you'll discover
later on, WshShell is quite different from the Shell object we saw in the previous chapter.

WshShell and WshNetwork must be instantiated before use, but this step is unnecessary for
WScript because it is an object that's implemented in both wscript and cscript. Consequently,
it is already running when it's needed, and there's no need to re-instantiate it.

All the remaining objects are coded into another component called wshom.ocx, and need to be
loaded each time you want to use them.

The WScript Object
This object is the root of the WSH's collection of objects. It provides properties and methods to get
information about the command line arguments of the invoked script. Moreover, it lets you create
new objects and terminate existing ones.

The following tables list the properties and methods supported by the WScript object.

Chapter 13

388

Property Description

Application Retrieves the IDispatch pointer for the WScript object.

Arguments Returns the collection of arguments for the scripts. The
collection is a WshArguments object.

FullName Retrieves the fully qualified name of the scripting host.

Interactive Specifies whether the execution mode is 'interactive' or 'batch'.
This is a read/write property, and undocumented. (See below.)

Name Retrieves the name of the scripting host.

Path Retrieves the path of the scripting host.

ScriptFullName Retrieves the fully qualified name of the current script file.

ScriptName Retrieves the file name of the current script file.

Version Returns a string with the current version of the scripting host.

Method Description

CreateObject() Creates a new object with the specified ProgID.

DisconnectObject() Releases the specified object.

GetObject() Retrieves an object with the specified ProgID.

Echo() Displays messages in a window (wscript) or a DOS box
(cscript). It is affected by the status of the Interactive
property. (See below.)

Quit() Stops execution of the script.

Interactive is an undocumented, read/write property that accepts and returns a Boolean value. It
is initially set with the value of the I command line switch, but you can change it programmatically.
Interestingly, when Interactive is set to False, WScript.Echo() won't work, but you can still
display messages through the methods of the WshShell object that we'll cover in a moment.

The method that's absolutely central to WScript is CreateObject(), which you can use to create
new object instances. The prototype is:

WScript.CreateObject(sProgID, [sPrefix])

The sPrefix argument is a string used to identify the names of event procedures that are relevant to
the object. We'll see this again in a later section dedicated to events.

GetObject() is defined like this:

WScript.GetObject(sPathname, [sProgID], [sPrefix])

The Windows Scripting Host

389

It retrieves an object that's specified using either a filename or a ProgID. The sPrefix argument
plays the same role as it did for CreateObject().

Because the WSH exposes a CreateObject() method, we're obviously supposed to use it to
create new objects. However, using the straight VBScript CreateObject() or the JScript
ActiveXObject() method works just as well. In fact, it turns out to be a bit faster because
WScript's CreateObject() method relies on its script counterpart.

The WshShell Object
This object represents the Windows shell, but it's very different from the Shell object we examined
in the previous chapter. It is missing quite a bit of functionality, but on the flip side it has a variety of
additional methods too. Despite the similarity in their names, they should be considered as two very
different components.

WshShell has just a couple of properties. One is called Environment and retrieves the collection
of system environment variables, and the other property is SpecialFolders, which returns a
collection of the shell's special folder names.

The methods span various functions: from shortcuts, through the registry and process spawning, to
special folders. An instance of WshShell can be created using WScript, as follows:

Set s = WScript.CreateObject("WScript.Shell")

Here's the complete list of WshShell methods:

Method Description

CreateShortcut() Creates an empty WshShortcut or
WshUrlShortcut object to be filled and saved as
a shortcut or a URL shortcut, respectively.

ExpandEnvironmentStrings() Expands variables enclosed by a pair of % symbols.

Popup() Shows a message box. You can use this to display
messages even if the WScript.Interactive
property is set to False.

RegDelete() Deletes a key or value from the registry.

RegRead() Reads a key or value from the registry.

RegWrite() Writes a key or value to the registry.

Run() Launches and synchronizes an executable.

I'll focus on the registry functions in Accessing the Registry; in the meantime, let's quickly look at the
Run() and ExpandEnvironmentStrings() methods. The prototype of Run() is as follows:

Run(sCommand, [iWindowType], [bWaitOnReturn])

Chapter 13

390

Beyond the command line, you can specify the type of the output window (minimized, maximized,
normal, hidden). Valid values are summarized below; as you can see, they are a subset of the SW_XXX
constants:

Constant Description

0 Hides the window (like SW_HIDE).

1 Displays the window and gives it the focus (like SW_SHOWNORMAL).

2 Minimizes the window and gives it the focus (like SW_SHOWMINIMIZED).

3 Maximizes the window and gives it the focus (like SW_MAXIMIZE).

4 Displays the window without giving it the focus (like
SW_SHOWNOACTIVATE).

6 Minimizes the window without giving it the focus (Like SW_MINIMIZE).

If the bWaitOnReturn flag is set to True, it blocks the calling script until the spawned program has
terminated. Any environment variable included in the command line string is automatically
expanded.

The Run() method is implemented through a call to ShellExecuteEx(). This means that we can
also pass it the name of a file that has a registered open verb. It also means that it silently supports
any object implementing IShellExecuteHook that is installed. I'll say more about this later on, in
the section called Hooking a Program's Execution.

The ExpandEnvironmentStrings() method takes and returns a string. The input string is text
with environment variables enclosed in % symbols, while the output contains the expanded string.

sWinDir = ExpandEnvironmentStrings("Windows is at %WINDIR%")

If the environment string doesn't exist, the method returns an undefined object. Consequently, you
should ensure that you get the outcome you require before proceeding.

Shortcuts and URL Shortcuts
The CreateShortcut()method receives a filename and returns objects whose type depends on the
filename's extension. If the extension is .lnk, then the returned object is a WshShortcut, whereas
if the extension is .url the returned object is a WshUrlShortcut. If any other extension is
specified, you'll get a run-time script error. The basic difference between a shortcut and a URL
shortcut is that the latter points to a remote URL. WshUrlShortcut is also a bit simpler than
WshShortcut. (More details in the Helper Objects section.)

The WshNetwork Object
Remote printers and network connections are the subjects of this object. An instance of WshNetwork
is created through WScript:

Set n = WScript.CreateObject("WScript.Network")

The Windows Scripting Host

391

The following table provides a list of the methods that it supports:

Methods Description

AddPrinterConnection() Runs the Wizard to add a new printer connection.

EnumNetworkDrives() Allows you to enumerate the network drives by
returning a collection. (See Helper Objects.)

EnumPrinterConnections() Allows you to enumerate all the printer connections
by returning a collection. (See Helper Objects.)

MapNetworkDrive() Establishes a connection with a network drive.

RemoveNetworkDrive() Removes a connection with a network drive.

RemovePrinterConnection() Removes a connection with a network printer.

SetDefaultPrinter() Defines the new default printer. If it's a remote
printer, you must specify its full UNC name (say,
\\server\Printer XYZ).

There are also three properties for this object, whose roles are self-explanatory:

! ComputerName

! UserDomain

! UserName

Helper Objects
The WSH object model also includes six other helper objects. The first point to note about these is
that you can't create any of them directly. They don't have a ProgID, and they can be used only when
returned by methods/properties of other objects. The objects are:

Object Returned by

WshArguments WScript.Arguments

WshCollection WshNetwork.EnumNetworkDrives(),
WshNetwork.EnumPrinterConnections()

WshEnvironment WshShell.Environment

WshShortcut WshShell.CreateShortcut()

WshUrlShortcut WshShell.CreateShortcut()

WshSpecialFolders WshShell.SpecialFolders

Apart from WshShortcut and WshUrlShortcut, the others are all special types of collection. Thus
their programming interfaces are pretty similar, at least syntactically.

Chapter 13

392

The WshArguments Object
This collection comprises all the command-line arguments for a running script, and you get access to
it through the Arguments property of the WScript object. The component has the usual properties
of a collection: Item and Count. Item allows you to get the value of the ith argument (the list is
zero-based), while Count returns the total number of arguments.

There's also a Length property that is maintained for compatibility purposes — it's equivalent to
Count. The following VBScript code snippet shows how a script can display its command line.

For Each item In WScript.Arguments
 ' Displays the various items on the command line
 WScript.Echo item
Next

The WshCollection Object
This object is a generic collection, and is returned mainly by methods of WshNetwork.

The WshEnvironment Object
A reference to this object, which has a method called Remove() is returned by the
WshShell.Environment property. Count, Length and Item let you walk the items of the
collection.

The items in this collection are environmental variables, like WINDIR or PATH. While you can pass
the Item member an index, it is particularly useful to call Item with strings that identify a variable
by name:

Set s = WScript.CreateObject("WScript.Shell")
Set e = s.Environment
WScript.Echo e.Item("PATH")
WScript.Echo e.Remove("PATH")

The WshShortcut Object
WshShortcut is a component that allows you to define and save a .lnk shortcut to disk. Shortcut
creation takes two steps: you first create a WshShortcut object, and then you must fill in its
properties and save it to disk. The first stage is accomplished by the
WshShell.CreateShortcut() function:

Set s = WScript.CreateObject("WScript.Shell")
Set lnk = s.CreateShortcut("mydiskc.lnk")
lnk.TargetPath = "c:\"
lnk.Save

When calling CreateShortcut(), you specify the name of the final .lnk file. Next, you fill in the
various attributes of the shortcut and save it by calling WshShortcut.Save(). If you want to create
a shortcut in a special folder, just get the path name and pass a fully-qualified name to
CreateShortcut(). To obtain the physical path of a special folder, you should make use of the
WshSpecialFolders object, which we'll see in a moment. Here's a full list of WshShortcut's
properties:

The Windows Scripting Host

393

Property Description

Arguments A string that contains the arguments of the shortcut's target.

Description The shortcut's description string.

FullName Retrieves the full path name of the .lnk file.

Hotkey A string that contains the representation of the hotkey that starts
the shortcut.

IconLocation A string that contains the path and index of the icon location.
Path and index are comma-separated. An example would be
c:\windows\system\shell32.dll,13

TargetPath This can be a folder, an executable, or a file to run using
ShellExecute().

WindowStyle Denotes the SW_XXX style of the window.

WorkingDirectory The directory from which to start the executable.

The WshUrlShortcut Object
This works in the same way as WshShortcut, but supports only the following two properties:

Property Description

FullName Retrieves the full path of the .url file that contains the shortcut.

TargetPath Retrieves the URL to which the shortcut points.

It also supports the Save() method to store the shortcut on disk.

The WshSpecialFolders Object
Finally, this object is a kind of wrapper built on top of the SHGetSpecialFolderPath() API
function that we saw in Chapter 5. It's a collection that includes the Item, Count and Length
members, with the same features we examined earlier. The following fragment demonstrates how to
create a shortcut in the Favorites folder:

Set s = WScript.CreateObject("WScript.Shell")
sPath = s.SpecialFolders("Favorites")
sPath = sPath & "\mydiskc.lnk"
Set lnk = s.CreateShortcut(sPath)
lnk.TargetPath = "c:\"
lnk.Save

As you can see, it is a slightly different version of the previous sample that created a shortcut to c:\.
A reference to WshSpecialFolders is returned by the WshShell.SpecialFolders property.

Chapter 13

394

Accessing the Registry
The Windows Scripting Host also gives you the ability to access the registry smoothly, for reading or
writing both keys and values. This is an important feature, because the ability to manipulate the
registry really boosts and empowers your applications. As I have pointed out in previous chapters,
the API for accessing the registry is cumbersome and designed at too low a level of abstraction,
although things have improved with the lightweight API, which I looked at in Chapter 10.

The WshShell object contains three methods for programmatically modifying the status of the
system registry. They are:

! RegDelete()

! RegRead()

! RegWrite()

The syntax of these methods is quite simple, and reminiscent of the syntax of the new SHxxx()
functions we met in Chapter 10, rather than the original registry API. Basically, you are required to
specify the key or the value on which to work, and the buffer from which to read or write.

Supported Types
The Win32 registry programming interface allows you to store and read a variety of different data
types — see the Win32 documentation for details. However, the WSH object supports only the five
most popular, which are:

! REG_SZ — strings
! REG_DWORD — 32-bit unsigned values
! REG_BINARY — binary data
! REG_EXPAND_SZ — strings that contain expandable macros such as %WINDIR%
! REG_MULTI_SZ — an array of null-terminated strings, doubly null-terminated (supported for

reading but not writing)

In script code, all variables are treated as VARIANTs, while the registry methods listed above
ultimately make use of the low-level registry API that requires a specific type. Consequently, some
type conversions are necessary, but the WshShell object performs them automatically.

Deleting a Registry Entry
The RegDelete() method has the following syntax:

WshShell.RegDelete sKeyOrValue

There's no need to mention explicitly that a given string is a key or a value — just pass a fully
qualified registry path to the function. If the path ends with a backslash, it is considered to be a key;
otherwise it is handled as a value.

These WSH methods and the Win32 registry API have fundamentally different programming
interfaces at this level. The Win32 registry API has different functions for dealing with keys and
values. Furthermore, WSH methods want the root node, say HKEY_LOCAL_MACHINE, specified
within the string and not as a separate parameter, as the Win32 API functions require.

The Windows Scripting Host

395

Differences between Windows NT and Windows 9x
The RegDelete() method ends up calling the registry functions RegDeleteKey() and
RegDeleteValue(), and while the latter works the same under Windows 9x and Windows NT,
RegDeleteKey() exhibits different behavior on each. When a key is deleted in Windows 9x, its
sub-tree is also removed. In NT, a key is deleted only if it is empty (that is, it has no child keys). This
behavior is upheld by the RegDelete() method.

The number of values a key holds is irrelevant to the question of whether it is considered empty —
a key can be deleted provided that it doesn't include sub-keys, even if it contains values.

Reading from the Registry
To read from the registry, just call RegRead(), passing a fully qualified name that refers to a key or
a value with the same logic as discussed above: a final backslash denotes a key, otherwise it's a value.

There's no need to specify the type of the data you want to read. It is sufficient that you declare a
valid variable to store the result. It's always the object's infrastructure that takes care of getting the
raw data and returning it, packaged as a VARIANT. The function works like this:

v = WshShell.RegRead(sKeyOrValue)

Getting System Information from the Registry
Here's a brief example (which I've called system.vbs) that reads version and registration
information about the installed copy of Windows.

' SYSTEM.VBS
' Reads version and registration information from the registry
'---

' Create the WshShell object
Set s = WScript.CreateObject("WScript.Shell")

' Registry Path constants
RP_SYSTEM = "HKLM\System\CurrentControlSet\Control\ProductOptions\"
RP_PRTYPE = "ProductType"
RP_NTVERS = "HKLM\Software\Microsoft\Windows NT\CurrentVersion\"
RP_WINVER = "HKLM\Software\Microsoft\Windows\CurrentVersion\"

' System name constants
WIN_NTWORK = "Windows NT Workstation"
WIN_NTSERV = "Windows NT Server"

' Read about the product type
On Error Resume Next ' Because the key doesn't exist under Win9x
sProdType = ""
sProdType = s.RegRead(RP_SYSTEM & RP_PRTYPE)

' Determine the OS version
select case sProdType
 case "WinNT"
 sRegPathVer = RP_NTVERS
 sBuf0 = WIN_NTWORK
 sBuf1 = s.RegRead(RP_NTVERS & "CurrentVersion") + "."
 sBuf2 = s.RegRead(RP_NTVERS & "CurrentBuildNumber")
 sBuf3 = s.RegRead(RP_NTVERS & "CSDVersion")

Chapter 13

396

 case "ServerNT", "LanManNT"
 sRegPathVer = RP_NTVERS
 sBuf0 = "Windows NT Server"
 sBuf1 = s.RegRead(RP_NTVERS & "CurrentVersion")
 sBuf2 = s.RegRead(RP_NTVERS & "CurrentBuildNumber")
 sBuf3 = s.RegRead(RP_NTVERS & "CSDVersion")
 case ""
 sRegPathVer = RP_WINVER
 sBuf0 = s.RegRead(RP_WINVER & "Version")
 sBuf2 = s.RegRead(RP_WINVER & "VersionNumber")
 sBuf3 = "-----------------------"
end select

' Read registration info
sBuf4 = s.RegRead(sRegPathVer & "RegisteredOwner")
sBuf5 = s.RegRead(sRegPathVer & "RegisteredOrganization")

' Display the result
WScript.Echo sBuf0 + " " + sBuf1 + sBuf2 + vbCrLf + _
 sBuf3 + vbCrLf + vbCrLf + _
 sBuf4 + vbCrLf + _
 sBuf5

' Close
WScript.Quit

The code relies only on registry information to ascertain the underlying platform. In Win32 code,
almost all of this information would be returned by the GetVersionEx() function. Interestingly,
however, there's an exception: that API function doesn't distinguish between the Workstation and
Server editions of Windows NT. For this information, you need to access the registry. Let's see how
the above code performs this trick.

Under Windows NT, the following registry path contains a value called ProductType:

HKEY_LOCAL_MACHINE
 \System
 \CurrentControlSet
 \Control
 \ProductOptions

If this key doesn't exist, then we're running Windows 95 or Windows 98. ProductType can contain
three possible strings:

Value Description

WinNT Windows NT Workstation

ServerNT Windows NT Server

LanManNT Windows NT Server working as a primary or backup domain controller

Once you know the operating system, you can easily manage the differences in the registry structure
between Windows and Windows NT. The most important is that version and registration information
is stored under

The Windows Scripting Host

397

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows NT
 \CurrentVersion

under Windows NT, and

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion

under Windows 9x. Other differences exist in the values each key provides. Both versions of the
registry support RegisteredOwner and RegisteredOrganization, but Windows NT stores
information about the installed service pack in the CSDVersion values, while
CurrentBuildNumber stores the build number. This information isn't available under Windows 9x,
where we have Version and VersionNumber values to store the actual operating system name and
its full version number.

The following picture shows the output of the system.vbs script on my Windows 95 and Windows
NT machines:

Note that you can use acronyms to refer to some of the registry root nodes. In the above example,
I've used HKLM instead of HKEY_LOCAL_MACHINE. The other valid acronyms are:

Acronym Equivalent Root Node

HKLM HKEY_LOCAL_MACHINE

HKCR HKEY_CLASSES_ROOT

HKCU HKEY_CURRENT_USER

Of course, it's perfectly possible to access other nodes like HKEY_USERS and
HKEY_CURRENT_CONFIG, but they don't have acronyms — you have to use their full names.

Writing to the Registry
You can write new content to the registry from within the WSH environment by using the
RegWrite() method. The syntax is shown overleaf:

Chapter 13

398

WshShell.RegWrite(sKeyOrValue, vValue, [iType])

The method automatically creates any missing keys that appear in the path. If you pass a key as the
sKeyOrValue argument, then the vValue content is written to the Default value of the key itself.

With iType, you can specify the type of the value you're about to write from one of the
aforementioned REG_Xxx types, with the exception of REG_MULTI_SZ. The default for this
parameter is REG_SZ, namely a string. This occurs even if you actually pass a number as the vValue
parameter.

Set s = WScript.CreateObject("WScript.Shell")
sRegPath = "HKLM\Software\Expoware Soft\"
s.RegWrite sRegPath & "Wsh\", "WSH examples"

Doing More with the Registry
If you need to extend the WSH programming interface for the registry, then you should consider
writing a new COM component that exposes the functionality you're missing. There are at least a
couple of things you might want to do with the registry that the current programming interface
doesn't allow.

Firstly, you may need to handle more data types. However, such a requirement would be quite
unusual, unless you need to handle little or big-endian numbers, or an array of strings.

Secondly, you might require your server to provide enumeration of keys and values. Further
possibilities are connecting to a remote registry, implementing a change notification mechanism, or a
save/restore key method. In general, by designing a COM server you can port to the WSH
everything that the Win32 API lets you do with the registry.

In the Adding New Objects to the WSH section of this chapter, I will write such a COM server, which
will provide key and value enumeration.

Scripting the Local File System
Scripts can't call into API functions, so they need specialized objects to provide access to the local file
system. Both VBScript and JScript come with some useful objects for working with files, folders and
drives. They are:

Scripting Object Description

FileSystemObject Manages file and folder operations, and creates text files

Folder Returns information on a file system folder

Drive Returns information on a drive

File Returns information on a file

Dictionary A high-performance collection object

TextStream Renders an I/O stream of text

The Windows Scripting Host

399

An updated version of these objects — the Microsoft Scripting Runtime — is available on Microsoft's
scripting web site.

For more information about these objects, you should refer to the documentation in the MSDN
Library.

Because the Windows Scripting Host environment is somewhat closed, and something that will be
used mostly on an intranet (or perhaps even on a standalone PC), concerns about unsafe access to the
disk diminish in their importance. In light of this, FileSystemObject can be a really useful and
quite powerful tool to use when programming the WSH.

Here's a short example showing what you can do with FileSystemObject. The following code
displays a message box with the status of each drive in the system:

Set fs = CreateObject("Scripting.FileSystemObject")
Set dc = fs.Drives
For Each d in dc
 s = s & d.DriveLetter & " - "
 If d.DriveType = Remote Then
 n = d.ShareName
 ElseIf d.IsReady Then
 n = d.VolumeName
 n = n + vbCrLf + "Free: " + FormatNumber(d.FreeSpace/1024, 0) + " KB"
 n = n + vbCrLf
 Else
 n = n + vbCrLf
 End If
 s = s & n & vbCrLf
Next

WScript.Echo s

Chapter 13

400

Accessing Existing Objects
The Windows Scripting Host is a fully COM-aware environment. This means that you can invoke and
use any correctly registered COM server from the host. What I have described so far are the objects
distributed with the WSH package, and in a certain sense, they form the WSH object model.
However, in my opinion, what constitutes the WSH object model is somewhat debatable. The two
viewpoints are:

! Everything that exposes an Automation interface can be called from the WSH, and may be
considered part of its object model.

! The WSH object model is just a handful of interfaces that set up communication with the ActiveX
scripting engine. Apart from the WScript object, everything else might be considered to be a
related COM server, but not necessarily a part of the object model.

You can access any existing Automation server by using the WScript.CreateObject() method
or, for more efficiency, VBScript's CreateObject() method. For example, you can drive the
Shell objects we discussed in the previous chapter from WSH scripts. The following example shows
how to display the taskbar property dialog from a WSH script:

Set s = WScript.CreateObject("Shell.Application")
s.TrayProperties

Of course, you can do exactly the same for your own COM servers (see Adding New Objects to the
WSH).

Handling Events with the WSH
The typical way of handling events on the client side is by defining a procedure whose name follows
a special convention. The name is composed of two elements: a prefix that identifies the object that
raised the event, and the name of the event. This scheme is common in visual environments, such as
Visual Basic, where the event that reveals a click on Button1 is handled through a procedure called
Button1_Click.

With the WSH, things work the same way. If the server fires an event named Collapse, and the
object that represents that server is called TreeViewNode1, then the client-side procedure that
handles it is called TreeViewNode1_Collapse.

Defining an Event Handler
Normally, the name of an object is assigned automatically and modified via the Property Editor or
some such tool. With the WSH, we can't rely on visual tools and need a programmatic way to assign
an object its internal name.

When you create a new object with the WScript.CreateObject() call, it's possible to specify an
optional parameter as well as the ProgID of the server:

WScript.CreateObject(sProgID, [sPrefix])

The Windows Scripting Host

401

The sPrefix parameter is a string like MyObj_ that will be used as the prefix for the procedure
name of any event that is raised by the object being created (it takes the place of TreeViewNode1_
in the example given in the previous section).

Steps to Creating an Event Handler
If you know that the server exposes events in which you might be interested, then it's necessary to
specify the second parameter in the WScript.CreateObject() call. Once you've assigned a prefix
to the object, you can handle any event with an appropriately named procedure. The prototype will
be exactly that required by the event's syntax. In practice, the WSH environment composes the name
of the procedure that might be the handler, and tries to locate it. If successful, the event is handled
executing code on the caller's side.

Note that the prefix must be unique for every possible copy of the same object. Also, it's
recommended that it end with an underscore character.

To support events in Windows Scripting Host sources, you must create your objects with
WScript.CreateObject().

Adding New Objects to the WSH
As we've seen, the Windows Scripting Host environment comes with a number of built-in objects,
and these are intended to provide WSH users with a significant subset of the functionality available
outside the WSH. For example, the network object allows you to know about remote printers and
shared disks, while the shell component provides shortcut capabilities, environment variables, process
launching and registry manipulation.

These objects are enough to get you started, but sooner or later you will need more objects. If the
COM component you need exists on the machine, you can simply instantiate and use it, provided of
course that you know its methods. Alternatively, you can write your own custom objects to extend the
WSH object model, and this is what I'll do in the remainder of the chapter.

In particular, I'll be building an Automation server to provide support for areas in which the WSH is
weak:

! Clipboard support
! Drive formatting
! Registry enumeration

In addition, I'll redesign and integrate into the WSH a couple of the examples we've built in previous
chapters:

! How to browse for icons (Chapter 9)
! Using custom names to run programs or files (Chapter 8)

Chapter 13

402

Arranging an ATL Automation Server
The WSH can call the methods of any COM Automation server, implemented in whatever language
you choose. In this case I chose C++ and ATL, so to start it off, use the ATL COM AppWizard to
create an in-process DLL project called WshMore.

Next, use the Object Wizard to add a simple ATL object called WshFun, ensuring that the interface is
called IWshFun and that it's a dual interface. All we need to do now is fill in the functions. It should
be a breeze!

Defining the Programming Interface
This interface is not going to be a model of good design — I just want to show you some of the things
that it's possible to do. Here's a list of the functions that we'll be adding to the IWshFun interface
over the next few sections:

Function Area Description

CopyText() Clipboard Copies a text string to the clipboard. Makes use
of the CF_TEXT format.

PasteText() Clipboard Reads text from the clipboard. Makes use of the
CF_TEXT format.

AddExecuteHook() Shell
Execute

Adds and removes entries from the .ini file
used by the IShellExecuteHook module (see
Chapter 8) to create new keyboard shortcuts for
launching executables.

BrowseForIcon() Icons Displays the dialog I created in Chapter 9 to let
you pick up an icon from a given file.

FormatDrive() Drive Opens up the system dialog for drive
formatting.

FindFirstKey() Registry Given a base path, enumerates the first key.

FindNextKey() Registry Continues enumerating the keys of the above
path.

FindFirstValue() Registry Given a base path, enumerates the first value.

FindNextValue() Registry Continues enumerating the values of the above
path.

In the forthcoming sections, I'll examine these methods more closely by discussing their syntax,
digging through their implementation details, and by providing examples of their use.

The Windows Scripting Host

403

Clipboard Support
The clipboard is a system tool that can be used for temporary data storage, but scripting languages
don't usually provide you with a means of handling it. As you know, the Windows clipboard is a kind
of repository for data in a variety of formats, including custom ones. However, the methods I'll be
writing make use only of the simplest format, CF_TEXT, which renders plain text.

The methods to be added are CopyText() and PasteText() and, as their names suggest, they let
you copy text to, and read it from, the clipboard. Because the function declarations utilize BSTR
strings, some string conversions inside the bodies of the methods need to be performed.

Copying Text
The syntax of IWshFun::CopyText() is:

HRESULT CopyText([in] BSTR bText);

This simply accepts the text to be copied, and always returns S_OK. The function takes a BSTR string
as its input parameter, creates a memory handle to contain the data, packages it, and stores it on the
clipboard.

STDMETHODIMP CWshFun::CopyText(BSTR bText)
{

 USES_CONVERSION;
 TCHAR pszText[MAXBUFSIZE] = {0};
 lstrcpy(pszText, OLE2T(bText));

 HANDLE hData = GlobalAlloc(GHND, MAXBUFSIZE);
 LPTSTR psz = static_cast<LPTSTR>(GlobalLock(hData));
 lstrcpyn(psz, pszText, MAXBUFSIZE);
 GlobalUnlock(hData);

 OpenClipboard(NULL);
 SetClipboardData(CF_TEXT, hData);
 CloseClipboard();

 return S_OK;
}

I defined MAXBUFSIZE as a constant equal to 32768, giving us a 32K buffer. I've also used ATL's
OLE2T() macro to convert strings from BSTR to LPTSTR. Using CopyText() from within VBScript
or JScript will mean writing code like this:

Dim o
Set o = WScript.CreateObject("WshMore.WshFun.1")
o.CopyText "I'm the IWshFun interface"

Reading Text
PasteText() is a method that retrieves any content in CF_TEXT format from the clipboard and
returns it as a string. The method declaration is:

HRESULT PasteText([out, retval] BSTR* pbRetVal);

Chapter 13

404

This method doesn't take any input parameters. Instead, the value placed in pbRetVal is passed to
the script as the return value of the method. The listing below shows the implementation.

STDMETHODIMP CWshFun::PasteText(BSTR* pbRetVal)
{

 USES_CONVERSION;

 // Get a memory handle from the clipboard
 OpenClipboard(NULL);
 HANDLE hData = GetClipboardData(CF_TEXT);
 CloseClipboard();

 // Extract the content
 LPTSTR psz = static_cast<LPTSTR>(GlobalLock(hData));
 TCHAR pszText[MAXBUFSIZE] = {0};
 lstrcpyn(pszText, psz, MAXBUFSIZE);
 GlobalUnlock(hData);

 // Returns a BSTR
 *pbRetVal = T2BSTR(pszText);

 return S_OK;
}

I've created a BSTR by using the ATL macro T2BSTR(), which takes an ANSI string as input. Unless
you're using ATL class wrappers like CComBSTR in your code, once you've called PasteText() you
should free the BSTR with a call to SysFreeString(). Here's an example in plain C++:

IWshFun* pWshFun = NULL;
hr = CoCreateInstance(CLSID_WshFun, NULL, CLSCTX_INPROC_SERVER,
 IID_IWshFun, reinterpret_cast<LPVOID*>(&pWshFun));
if(FAILED(hr))
 return;

BSTR bstr;
pWshFun->PasteText(&bstr);
MessageBox(GetFocus(), bstr, __TEXT("PasteText"), MB_OK);
pWshFun->Release();
SysFreeString(bstr);

And here's another example in VBScript:

Dim o, s
Set o = WScript.CreateObject("WshMore.WshFun.1")
s = o.PasteText
MsgBox s

Drive Formatting
Because the Windows Scripting Host is a scripting environment inside the Windows shell, and works
in much the same manner as DOS batch files, accessing the file system is sometimes necessary. I've
already introduced FileSystemObject as a good solution to this problem.

However, while FileSystemObject provides you with a huge collection of functions and
properties, it isn't a tool for formatting disks. However, in Chapter 10, I covered SHFormatDrive()
function in detail. As part of this example, I will provide access to it through a COM method. The
prototype is shown at the top of the next page:

The Windows Scripting Host

405

HRESULT FormatDrive([in] int iDrive);

For the sake of simplicity, I've discarded all the enhancements to the function that I made in Chapter
10, and as a consequence the source code for this method is pretty straightforward:

extern "C" int WINAPI SHFormatDrive(long, long, long, long);

STDMETHODIMP CWshFun::FormatDrive(int iDrive)
{

 int irc = SHFormatDrive(0, iDrive, 0, 0);
 return (irc < 0 ? S_OK : E_FAIL);
}

The function returns a Boolean value to denote the success or failure of the operation. In particular, it
has a non-zero value if the function actually formats the disk, and zero otherwise (including the case
where you cancel the dialog).

As we discussed in Chapter 10, SHFormatDrive() is included in the shell32.lib
import library, but there isn't a proper entry in shellapi.h or any other header file. I have
therefore added a declaration to the code, prefixing it with extern "C" to ensure
compatibility.

Here's an example of how to call the new method from within JScript code:

// Format drive A:
var o;
o = WScript.CreateObject("WshMore.WshFun.1");
o.FormatDrive(0);

To indicate the drive to format, you should use the common, zero-based notation: 0 is drive A, 1 is
drive B, 2 is drive C, and so on.

Browsing for Icons
Creating shortcuts is a typical application of the WSH. An interesting function would be a system-
provided dialog to let you visually choose the icon to assign to the shortcut. We've already discussed
the source code necessary for such a dialog — see Chapter 9 for the details, and Chapter 11 for a
concrete example of its use.

In this example, I'm going to show you how to make this functionality available to Windows Scripting
Host applications. The method is:

HRESULT BrowseForIcon([in] BSTR bFile, [out, retval] BSTR* pbRetVal);

Chapter 13

406

The bFile argument denotes the file to
browse for icons, which may be changed at
runtime by clicking the dialog's browse
button.

When you select an icon, the method returns a string with the name of the file and the index of the
selected icon, separated by a comma:

The source code of the method calls into SHHelper.dll (see code for Chapter 11), a helper library
that collects many of the functions we have built so far. This DLL contains the
SHBrowseForIcon() function, whose source code was developed in Chapter 9.

#include "shhelper.h"

STDMETHODIMP CWshFun::BrowseForIcon(BSTR bFile, BSTR* pbRetVal)
{

 USES_CONVERSION;
 TCHAR pszFile[MAX_PATH] = {0};
 lstrcpy(pszFile, OLE2T(bFile));

 HICON hIcon;
 int iIndex = SHBrowseForIcon(pszFile, &hIcon);
 if(iIndex >= 0)
 {
 TCHAR szBuf[MAX_PATH + 10] = {0};
 wsprintf(szBuf, __TEXT("%s,%d"), pszFile, iIndex);

 *pbRetVal = T2BSTR(szBuf);
 return S_OK;
 }
 return S_FALSE;

}

The Windows Scripting Host

407

In this case, the ANSI-Unicode conversion is necessary because the SHBrowseForIcon() function
requires an ANSI string. The following snippet shows how to call the BrowseForIcon() method
from within VBScript code.

Dim o, s
Set o = WScript.CreateObject("WshMore.WshFun.1")
s = o.BrowseForIcon("shell32.dll")
MsgBox s

Registry Key Enumeration
As I mentioned earlier, the built-in registry support in the WSH doesn't include key and value
enumeration. However, if you need to do something to a certain registry sub-tree, such methods can
be really useful. I'll provide two different enumerators, one for keys and one for values.

The low-level Win32 API functions and the new shell utility API (see Chapter 10) have a similar
approach to this issue. You need to specify an incrementing variable to identify the nth item, be that a
key or a value. The RegEnumValue() and SHEnumKeyEx() functions are generic loops driven by a
Boolean guard that interrupts at the end of the list of keys or values.

For my implementation, I shall take a slightly different approach by defining a couple of methods
called FindFirstXxx() and FindNextXxx(). The prototypes are:

HRESULT FindFirstKey([in] long hk, [in] BSTR bRegPath,
 [out, retval] BSTR* pbRetVal);
HRESULT FindNextKey([out, retval] BSTR* pbRetVal);

HRESULT FindFirstValue([in] long hk, [in] BSTR bRegPath,
 [out, retval] BSTR* pbRetVal);
HRESULT FindNextValue([out, retval] BSTR* pbRetVal);

I've maintained the same syntax as the Win32 API, so registry paths are identified by root node and
path in separate parameters. Note that the WshShell methods use a fully qualified path, which is
parsed to get the root node. This technique makes it easier to use acronyms like HKLM.

The IWshFun interface requires you to pass an HKEY value (namely a long) and the remaining path
as a string. Each pair of functions works together; the FindNextXxx() function continues on where
FindFirstXxx() stops. In practice, all that changes is the index of the enumeration, which is set to
0 during the call to FindFirstXxx(), and increases by one for each call to FindNextXxx(). To
keep the programming interface simple, the registry arguments are cached so they don't need to be
specified each time.

Both enumerations have the same internal structure and are built on the top of two helper functions:
GetNthKey() and GetNthValue().

Enumerating Keys
The GetNthKey() function opens the specified key and extracts the nth child key, if any. This name
is returned through the pbRetVal output argument. SHEnumKeyEx() (which is implemented in
shlwapi.lib) is used simply because it uses fewer arguments than RegEnumKeyEx().

Chapter 13

408

DWORD CWshFun::GetNthKey(long hk, BSTR bRegPath, int iIndex, BSTR* pbRetVal)
{
USES_CONVERSION;
 TCHAR szRegPath[MAX_PATH] = {0};
 lstrcpy(szRegPath, OLE2T(bRegPath));

 HKEY hkey;
 RegOpenKeyEx(reinterpret_cast<HKEY>(hk),
 szRegPath, 0, KEY_ALL_ACCESS, &hkey);

 TCHAR szKey[MAX_PATH] = {0};
 DWORD dwSize = MAX_PATH;
 DWORD rc = SHEnumKeyEx(hkey, iIndex, szKey, &dwSize);
 if(rc == ERROR_SUCCESS)
 *pbRetVal = T2BSTR(szKey);
 RegCloseKey(hkey);
 return rc;
}

The skeleton of the FindFirstKey()/FindNextKey() enumeration is in a pseudo-loop that spans
two functions and maintains state with a few global variables.

DWORD g_dwIndex = 0;
BSTR g_bRegPath;
LONG g_hk;

STDMETHODIMP CWshFun::FindFirstKey(long hk, BSTR bRegPath, BSTR* pbRetVal)
{
 g_dwIndex = 0;
 g_bRegPath = bRegPath;
 g_hk = hk;

 DWORD rc = GetNthKey(hk, bRegPath, g_dwIndex, pbRetVal);
 return (rc == ERROR_SUCCESS ? S_OK : S_FALSE);
}

STDMETHODIMP CWshFun::FindNextKey(BSTR* pbRetVal)
{
 g_dwIndex++;
 DWORD rc = GetNthKey(g_hk, g_bRegPath, g_dwIndex, pbRetVal);
 return (rc == ERROR_SUCCESS ? S_OK : S_FALSE);
}

GetNthKey() is called with an index of 0 during FindFirstKey(), and with an incremented
value inside FindNextKey(). The registry path is saved for further use in FindNextKey().

Enumerating Values
Enumerating values is an almost identical process. The GetNthValue() function relies on
SHEnumValue() to list all the leaves of a specified key:

The Windows Scripting Host

409

DWORD CWshFun::GetNthValue(long hk, BSTR bRegPath, int iIndex, BSTR* pbRetVal)
{
 USES_CONVERSION;
 TCHAR szRegPath[MAX_PATH] = {0};
 lstrcpy(szRegPath, OLE2T(bRegPath));

 HKEY hkey;
 RegOpenKeyEx(reinterpret_cast<HKEY>(hk),
 szRegPath, 0, KEY_ALL_ACCESS, &hkey);

 DWORD dwType = 0;
 TCHAR szKey[MAX_PATH] = {0};
 DWORD dwSize = MAX_PATH;
 DWORD rc = SHEnumValue(hkey, iIndex, szKey, &dwSize, &dwType, NULL, 0);
 if(rc == ERROR_SUCCESS)
 *pbRetVal = T2BSTR(szKey);
 RegCloseKey(hkey);
 return rc;
}

Note that SHEnumValue() can return the type of a given value, as well as the current content and its
size. Pass NULL instead of &dwType if you aren't interested in this information.

The skeletons of FindFirstValue() and FindNextValue() are similar to the analogous
functions for keys:

STDMETHODIMP CWshFun::FindFirstValue(long hk, BSTR bRegPath, BSTR* pbRetVal)
{
 g_dwIndex = 0;
 g_bRegPath = bRegPath;
 g_hk = hk;

 DWORD rc = GetNthValue(hk, bRegPath, g_dwIndex, pbRetVal);
 return (rc == ERROR_SUCCESS ? S_OK : S_FALSE);
}

STDMETHODIMP CWshFun::FindNextValue(BSTR* pbRetVal)
{
 g_dwIndex++;
 DWORD rc = GetNthValue(g_hk, g_bRegPath, g_dwIndex, pbRetVal);
 return (rc == ERROR_SUCCESS ? S_OK : S_FALSE);
}

Don't forget that to use the SHEnumKeyEx() and SHEnumValue() functions, you will need to link
to shlwapi.lib to compile this code successfully.

Using Enumerators
Let's see how to make use of these enumerators in WSH applications. This sample is in VBScript, and
demonstrates how to list the keys under

HKEY_LOCAL_MACHINE
 \Software

Chapter 13

410

And the values of:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion

The script first enumerates the keys, and then incrementally composes a string to be displayed. Each
string is separated by a couple of carriage return and linefeed characters (ASCII 13 + ASCII 10),
which cause each key to appear on a different row. The same logic is then applied to the values of a
given path.

' Some constants for Root Nodes
Const HKCR = &H80000000 ' HKEY_CLASSES_ROOT
Const HKCU = &H80000001 ' HKEY_CURRENT_USER
Const HKLM = &H80000002 ' HKEY_LOCAL_MACHINE
Const HKU = &H80000003 ' HKEY_USERS
Const HKPD = &H80000004 ' HKEY_PERFORMANCE_DATA

Dim o, s, b
Dim sValues, sKeys
Set o = CreateObject("WshMore.WshFun.1")

' Enumerates keys
s = o.FindFirstKey(HKLM, "Software")
if Len(s) > 0 then
 b = True
 while b
 sKeys = sKeys + s + vbCrLf
 s = o.FindNextKey
 if Len(s) = 0 then
 b = False
 end if
 wend
end if
MsgBox sKeys

' Enumerates values
s = o.FindFirstValue(HKLM, "Software\Microsoft\Windows\CurrentVersion")
if Len(s) > 0 then
 b = True
 while b
 sValues = sValues + s + vbCrLf
 s = o.FindNextValue
 if Len(s) = 0 then
 b = False
 end if
 wend
end if
MsgBox sValues

To simplify things, I've defined some constants that map to the actual values of the registry root
nodes. As you know, HKEY values are nothing more than longs, and the constants used here
reproduce the exact values of some of them. These values have been taken from winreg.h, a file
that you will find in the include directory of any Win32 compiler.

The Windows Scripting Host

411

The following picture shows the two messages produced by the
above code. The first window refers to keys, the second to values.
Of course, the output depends upon the actual content of the
registry, and upon the operating system. This screenshot was
taken under Windows 95.

Hooking a Program's Execution
The final method that we'll add to the IWshFun interface provides a direct and programmatic way to
add a keyboard shortcut to the IShellExecuteHook handler that I built in Chapter 8. By defining
and properly installing a COM module that implements the IShellExecuteHook interface, you
have the ability to hook on each command line that passes through the ShellExecute() and
ShellExecuteEx() API functions. In particular, this means that you can gain control over each
program launched via the system's Run dialog, or the WshShell.Run() method of the Windows
Scripting Host.

In Chapter 8, I exploited this feature to add 'keyboard shortcuts' — to run notepad.exe, for
example, you could type in n instead of the full path. Then, to launch Notepad, you simply call:

Set s = WScript.CreateObject("WScript.Shell")
s.Run "n"

It is the IShellExecuteHook handler that retrieves the list of mappings and resolves the specific
command. My handler looks for the command in a file called showhook.ini located in the c: root
directory. This file is a typical .ini file, with content like this:

[goldlist]
n=c:\windows\notepad.exe

The IWshFun method, AddExecuteHook(), just adds an entry to, or removes an entry from, this
file:

Chapter 13

412

HRESULT AddExecuteHook([in] BSTR bShortcut, [in] BSTR bExeFile)

Its source code is straightforward; it just calls WritePrivateProfileString():

const LPTSTR EXECUTEHOOK = __TEXT("c:\\showhook.ini");

STDMETHODIMP CWshFun::AddExecuteHook(BSTR bShortcut, BSTR bExeFile)
{
 USES_CONVERSION;
 TCHAR szEntry[MAX_PATH] = {0};
 lstrcpy(szEntry, OLE2T(bShortcut));
 TCHAR szFile[MAX_PATH] = {0};
 lstrcpy(szFile, OLE2T(bExeFile));

 WritePrivateProfileString(__TEXT("goldlist"), szEntry,
 (lstrlen(szFile) ? szFile : NULL), EXECUTEHOOK);
 return S_OK;
}

By specifying an empty string as the name of the file (the bExeFile argument), you cause the entry
identified by bShortcut to be completely removed. Here's how to use the method:

Dim o
Set o = CreateObject("WshMore.WshFun.1")
o.AddExecuteHook "r", "regedit.exe"

The lines above add a new entry that launches the Registry Editor if you ask to run a program called
r:

r=regedit.exe

The above example concludes our trip around the Windows Scripting Host environment.

Hints for Improving the WSH
The WSH is a system module that provides considerable assistance to both programmers and system
administrators, but it is by no means perfect. In particular, there are a couple of areas where it is
noticeably lacking. They are:

! User interface
! Code reusability

To build really useful and powerful scripts, you need a way to set up complex and articulate dialogs,
and to have some kind of reusability mechanism. In this final section of the chapter, I'll discuss some
ways to accomplish this. However, I'm not going to provide explicit solutions here, simply because
such solutions (and the technologies involved) are a bit beyond the scope of this book (though I will,
of course, provide exhaustive references).

The Windows Scripting Host

413

Adding User Interface Support
Any serious development environment allows you to create and design dialogs. Without dialogs, it's
difficult to get input from users and to make your applications more friendly and usable. WSH scripts
are an improvement upon dear old MS-DOS batch files, but we also definitely need a replacement for
old-fashioned, keyboard-based menus.

Creating dialogs
There are no facilities built into the WSH for creating a generic dialog, so you have to rely on
features of the scripting language, or external objects. VBScript provides a function called
InputBox() that lets you accept a string interactively. It's used like this:

strResult = InputBox(strMessage, strTitle, strDefault)

This function allows you to define the
message that you wish to appear, the
dialog's title in the caption bar, and the
default value.

The above figure, for example, is produced by the following call:

InputBox "Enter some text", "Dialog", "Hello, world"

Unfortunately, this function is seldom enough. What's needed is an object that works as a generic
dialog provider, and lets you specify a template for the interface. Furthermore, it should be so clever
that it allows you to embed code to coordinate the various interface components, and to drive them.
In other words, this object should be capable of interpreting the following pseudo-code:

dlg = CreateObject("Dialog.Provider");
dlg.SetDlgItemText("object1", text1);
dlg.SetDlgItemInt("object2", num1);
dlg.Show();
MessageBox(dlg.GetDlgItemText("object1"));
dlg.Close();

In addition, the dialog template must be easy to draw. A potential answer to this demand is Dynamic
HTML, by using which you:

! Can use an attractive, HTML-based user interface
! Don't force people to learn a new scripting language to describe dialogs
! Can mix interface components and code
! Can design the dialog template with maximum ease and power
! Have a straightforward way to identify objects on the template
! Can update the content at any time

Chapter 13

414

An example of such a component is given in my Cutting Edge article in the December 1998 issue
of MIND.

To reinforce the idea, consider that the Internet Explorer 4.x Dynamic HTML object model presents
a method called showModalDialog() that takes the name of an HTML page and displays it in a
modal dialog. The About window of Internet Explorer 4.0 is built with the same logic. This dialog is
based on the ShowHTMLDialog() function exported by mshtml.dll — the core of Dynamic
HTML.

The alert() Dialog Box
Beware of a possible pitfall when using JScript with WSH applications. A common misconception is
that JScript has a few functions for displaying standard dialogs, namely alert(), prompt(), and
confirm(). Unfortunately, this is incorrect, since all these are actually methods of the Internet
Explorer 4.0 window object. They aren't implemented in the JScript runtime engine, and
consequently aren't available in the WSH. If you need to display some information, then use the
WScript.Echo() or WshShell.Popup() methods.

Even though alert() is always associated with JSscript, it is just a window method that is every bit
as accessible from VBScript:

<html>
<script language="VBScript" for="window" event="onload">
window.alert "Hello, world!"
</script>
</html>

Drag-and-Drop on WSH Files
A WSH file, be it a .vbs or a .js document, is often an application that takes its own set of
parameters. Wouldn't it be nice if we could drop data onto the files and set the parameters that way?
To enable drag-and-drop over files throughout the shell, a shell extension is required. I'll look at this
in Chapter 15.

Reusability within the WSH
Another evident weakness of the WSH is its limited support for reusability. What is needed is the
ability to write script code that is reusable and 'componentized'. The solution is a mix of COM and
script, and goes under the name of XML Scriptlets.

An XML Scriptlet is a text file that follows the XML syntax. It describes a COM object, and embeds
pieces of script code (VBScript or JScript). This code is interpreted and presented to the outside
world as if it was binary COM code. In other words, the XML Scriptlet (which is made up of
<script> tags) appears to be a regular Automation object to any COM-aware client, including the
WSH! Thus, you can write Automation servers in pure VBScript or JScript, and solve the reusable
script code problem.

Scriptlets and XML Scriptlets are covered in detail in my book Instant DHTML Scriptlets,
also published by Wrox Press, ISBN 1-861001-38X.

The Windows Scripting Host

415

Summary
The WSH is a desktop-level scripting engine that you can use to automate repetitive actions,
following the logic of DOS batch files. By combining the power of today's scripting languages with
the use of COM components, the WSH is ideally suited to making your applications richer and more
user-friendly.

I haven't provided a full and detailed explanation of all the properties and methods of all the
Windows Scripting Host objects — the Internet Client SDK already does a good job of that. Instead,
I've tried to focus on the technology and the way in which you can use it.

At present, I see two main fields of application for the WSH: as an administration tool on Windows
NT platforms, and as a user-development platform for both Windows 9x and Windows NT. This
means that system administrators and end users could both take advantage of the built-in scriptable
objects that the system provides, as well as those of third-party vendors. If you're selling a suite of
related and integrated programs, you should think of providing objects to let your users automate
tasks like putting together features that come from different programs.

In this chapter, I've covered:

! What the Windows Scripting Host is
! How to get it, and how it works
! The WSH object model
! How to access generic COM components
! How to write COM components to extend the WSH object model
! Hints on how to improve the WSH

Chapter 13

416

Further Reading
Related articles and documentation about the Windows Scripting Host can be found in the MSDN
library and in an article of mine called Windows Scripting Host that appeared in the June 1998 issue of
MIND. In the printed version of the July/August 1998 issue of MSDN News, there is a centerfold
with a diagram of the complete WSH object model.

There are a number of useful sources of information about script languages other than VBScript and
JScript. For Perl, there's an article by Jeff Zado entitled Active Scripting with Perl in MIND, August
1997. Other references are available at http://www.mks.com. If you're interested in REXX support,
look at http://service.software.ibm.com/dl/rexx/orexx-d, while late-breaking news about the ActiveX
engine for Python is at http://www.python.org/windows. Because the WSH requires a good
knowledge of scripting languages, you will find Instant VBScript by Alex Homer and Darren Gill, and
Instant Javascript by Nigel McFarlane to be of use.

For XML Scriptlets, you can refer to an article entitled Server Scriptlets in MIND, May 1998. More
recently I wrote an article for MSDN News called Writing COM Objects with Scripting Languages. It
appeared in the November/December 1998 issue.

For information on hosting an ActiveX scripting module in your applications, read Don Box's Say
Goodbye to Macro Envy with the ActiveX Scripting Engine in MIND, February 1997. It provides you with
all the details and explanations you need. Steve Zimmerman covered the same topic from a different
angle in the August 1997 issue of MIND, and I also recommend that you take a look at the
SPRUUIDS sample available with the Internet Client SDK.

This chapter also included some ATL code, and to learn more about that I recommend Beginning ATL
COM Programming (Wrox Press, ISBN 1-861000-11-1). A good overview of COM development with
ATL, by Don Box, appeared in MSJ, May 97. Both show the joy that can be yours when you write
your COM servers using ATL.

Finally, ATL necessarily points to IDL. If you are having problems with the various attributes of that
language, then you may want to read Understanding Interface Definition Language: A Developer's Survival
Guide by Bill Hludzinski, published in MSJ, July 1998.

http://www.mks.com
http://service.software.ibm.com/dl/rexx/orexx-d
http://www.python.org/windows

Designing a Shell-Integrated
Application

There are a number of facilities an application can provide to make it more integrated with the shell
and the underlying system. In this way, the users can treat your documents and programs as they
would the rest of the system. For instance, right clicking on a file to display a list of available
functions is common nowadays. Windows provides each file with a default collection of functionality,
such as Open With..., Properties, Copy and the like. Why not add more specific functions that are
peculiar to specific documents? In order to do this, you have to customize the context menu of the
document class.

Another example of an application that is well integrated with the shell might be the following:
suppose that your program has the ability to create empty documents. Your users would appreciate
an item in the system New menu to let them create a new document on the fly, in any folder. To do
this, you have to enter some information in the system registry.

Of course, these are particular cases, and there are many other usability features that you, as a
developer or an application designer, should take into account. In this chapter, we'll cover all those
aspects of application design and development that help to integrate your software with the system's
shell seamlessly, making your product that bit more professional. This includes:

! How to customize the context menu
! How to register a new file type
! How to design and programmatically handle a command line
! How to program customized Open dialogs

We'll design a document-based, fully-featured application that you might just find useful. The
application will display and print all the kinds of metafiles that Windows supports, from the
traditional (*.wmf), through placeable metafiles, right up to enhanced metafiles (*.emf). We'll apply
all the theory we've previously discussed, and end up with full shell support for metafiles.

Chapter 14

420

Shell-Integrated Applications
The first thing to be clear about is exactly what constitutes a shell-integrated application. When I use
the phrase, I'm talking about a Win32, document-oriented program that provides at least a certain
number of features that relate to the system's shell.

There's an excellent overview of this topic in an old MSJ article by Jeff Richter (see Further
Reading for details).

So much for the simple answer — let's now discuss the three groups of features that define a shell-
integrated application. To me, shell support means:

! A registered icon and type name for any document the program handles
! A custom context menu for documents that the program handles
! Possibly one or more custom entries in the system's New menu
! A single-instance program
! A new entry in the Recent document folder for each opened document
! Full support for long file names, especially when it comes to user's documents

To these basic features, we could add the following ones, which are used less frequently:

! One or more custom entries on the system's Send To menu
! One or more custom entries on the Start and/or Programs menu
! One or more custom entries in the Favorites folder
! One or more new shortcuts on the desktop
! An application desktop toolbar to collect all the main functionality of the program
! Customized versions of some of the system's common dialogs
! Registering the application to start automatically when the user next logs on

A third group of features is today mostly restricted to the work of specialized installers, like
InstallShield and WISE. They are:

! Copying shared files to a system-wide common path
! Installing the application under the Program Files folder
! Providing an uninstall program
! Exploiting the shell's application path names to define the paths where files can be found

This set of requirements comes from the guidelines for Windows logo compliance. However, at a
higher level of abstraction they are rooted in what is, for the Windows world, a new idea: in order to
open and use a document, the user should not need to know what program actually loads and
displays it. Instead, they simply have to locate and double-click on the descriptive icon and name that
have been allocated to that document. (In fact, depending on your Active Desktop settings, a single
click might suffice to open a document from the shell!)

Designing a Shell Integrated Application

421

Documents and the Shell
With the release of Windows 95, documents gained a more central role in the system's shell. The
document has become the actor, while the program that actually handles it is reduced to a mere
executor. Even their location on the hard drive suggests a lowering of their status: programs get
grouped under the Program Files folder, each one in its own sub-folder, with a sub-tree of
directories in which DLLs and other helper files are stored. Many of these folders are hidden —
further confirmation that programs have a secondary role with respect to documents.

Looking at the screenshot above, you can see that documents have their own specific icons and
descriptions. Better than that, each document has a dedicated context menu from which you can
execute a number of shell functions. Some of these could apply to any kind of document and
therefore appear in all context menus, but others are particular to a single document type.

Basic Document Functions
The Windows shell provides a number of menu verbs for free, which are:

! Copy, Cut, Paste
! Delete
! Rename
! Create Shortcut
! Properties

Chapter 14

422

In addition, there are always at least a couple of other menu commands. Either Open or Open With…
will be there, but the two are mutually exclusive — the latter appears only if you have no program
registered to open the document, and brings up the following dialog if selected:

The action of the Open command, on the other hand, depends upon what you store in the registry, as
we'll discuss shortly.

The 'Send To' Command
The other command you'll always see in one form or another is Send To, which displays a sub-menu
with a list of possible destinations for the selected document. A 'destination' is a program that will
receive the given filename on the command line. The picture below, for example, shows how the
Send To menu lets you set a file to be the attachment in a new e-mail message.

Through the commands I've listed in this section, the shell guarantees a minimum level of support for
any kind of document you may have on your PC. It's up to you, as seasoned user or software
engineer, to extend this basic behavior with more document-specific and appropriate features.

Designing a Shell Integrated Application

423

Registered Document Types
Everything that relates to the configuration of the shell is stored somewhere in the system registry, so
any path you take to modify the shell's appearance or behavior must pass through it.

In order for the shell to recognize and properly handle a certain kind of document, it must be of a
registered type. A type of document is identified by its file name extension, and all the registered
document types are stored under the HKEY_CLASSES_ROOT registry node:

An entry for the file extension (.ext) points to another key under the same node whose name is
stored in the Default value of .ext. In the above figure, for EML files (Microsoft Internet Mail
Message, the Outlook Express e-mail file format), we have the value:

Microsoft Internet Mail Message

If you want to get at all the registered information for this type of document, you must start digging
at:

HKEY_CLASSES_ROOT
 \Microsoft Internet Mail Message

Under this key, you can store information that applies to three areas:

! The user interface
! The context menu
! Shell extensions

Chapter 14

424

Shell User Interface for Documents
By the title of this section, I mean the collection of graphical attributes we might want to set for a
document — these are typically the icon and the type name. The DefaultIcon key lets you assign
an icon to identify all the files with this extension throughout the shell. The Default value of this
key contains a string that looks something like this:

C:\PROGRAMS\THEPROG.EXE,0

Note once again that this information is not stored in the .ext key, but in the one that .ext
points to.

The string that identifies the default icon is made up of a full path name, a comma and an index
number. The icon to be shown is the one with the given index in the given file — remember that an
icon index always starts at zero. Furthermore, if the index is a negative number, then it denotes the
resource ID instead, so for EML files the DefaultIcon string is:

C:\PROGRAM FILES\OUTLOOK EXPRESS\MSIMN.EXE,-4

And as we saw above, the Default value of the main key (Microsoft Internet Mail Message
in the sample above) contains the string to be used as the type name of the document.

To modify these settings, you don't have to be an expert Windows programmer. Any seasoned
Windows user could change the description of EML files, or the icon that represents them. However,
inserting keys to register documents programmatically is completely different from manually modifying
the registry. We need to focus on what your software should do to integrate its documents with the
shell automatically.

Document-Specific Commands on the Context Menu
The key called shell can contain a number of sub-keys, each of which relates to a specific command
that will appear on the document's context menu. The keys under shell are called verbs (in this
case, the verb is open), and the Default values of the keys contain the string that will be shown on
the context menu. If this value is not set, the name of the key itself is used.

So: we have a verb called open,
but it's quite possible for the menu
command to have a different
name. Since we're discussing e-
mail messages, how about having
Read instead of Open on the
menu? If you change the contents
of the Default value and then
bring up the context menu, you'll
see the result:

Designing a Shell Integrated Application

425

The context menu shows Read, but the actual behavior doesn't change at all, because that's
established in the Default value of the command sub-key. Every verb must have a command sub-
key that contains the executable's path and command line, plus any other necessary settings. It's very
important to specify a valid command line with the proper switches, and a %1 to denote the name of
the file to work on:

C:\PROGRAM FILES\OUTLOOK EXPRESS\MSIMN.EXE" /eml:%1

The line above shows the command line for EML files on my machine — whether you see the same
will depend upon whether you have installed Outlook Express.

Shell Extensions for Documents
By modifying the registry, you can add static verbs to the document's context menu. Any static verbs
you define will always be displayed, and will always execute the same command line.

A more flexible and dynamic behavior can be obtained by using shell extensions, which we'll cover in
the next chapter. For now, let's just say that a shell extension is a piece of code that runs in Explorer's
address space and gets called each time Explorer needs to do some 'customizable' actions, such as
painting an icon, or displaying a context menu. Your piece of code is given a chance to decide
dynamically what menu items to add, and what to do in response to user clicks.

All the shell extensions for a given document class are listed under the shellex key, which is placed
at the same level as the shell key.

How Programs are Affected
We've now touched upon a number of features that affect documents, and at the beginning of this
chapter I stated explicitly that documents are the kings of the Windows shell. However, we can't get
away from the fact that in the end, documents are still displayed through programs — the question is,
how and to what degree are programs affected by our efforts at shell integration?

Well, there are two major points. First, users may click repeatedly to open different documents, or
even multiple copies of the same document. When this happens, the program is called repeatedly,
and so to avoid a proliferation of windows you may want to allow only a single running instance.
Second, programs' command lines gain importance, because static verbs are usually implemented
through switches on the command line. You should endeavor to expose the most important functions
in a very modular way.

In Chapter 11, we covered the RunDLL32 module, which represents a good way of calling DLL
functions with a fixed prototype through a command line. In both these cases, the program's
functions must be clearly isolated and easily callable from external modules.

When someone clicks on a document in the Windows shell, the program is called. Each time the
program starts, it checks for other running copies of itself. If any are found, then one is passed the
control and the command line, while the current instance quits. I'll say more about this later in the
chapter, when I come to discuss the sample application.

Chapter 14

426

MDI versus SDI
MDI and SDI are the two typical designs for file-based Windows applications. MDI stands for
Multiple Document Interface, and denotes a program that can open several documents at the same
time, displaying each in a separate window. SDI, on the other hand, is an acronym for Single
Document Interface — an SDI program opens only one document at a time. Traditionally, major
Windows applications have been MDI — the Office suite is a prime example of this. Applets such as
Notepad and Paint, on the other hand, are SDI.

From the shell's point of view, the choice of MDI or SDI really isn't an issue. When you dig a little
deeper, however, you begin to realize that to examine the difference between MDI and SDI is to
open a window onto a much broader comparison: an application-centric versus a document-centric
environment.

The MDI schema is governed by the application, which opens and manages the various 'child'
documents. Conversely, the SDI interface is more document-centric: you see a single document
surrounded by the tools that are available to utilize and modify it.

Since the launch of Windows 95, Microsoft has been recommending the development of SDI
applications wherever possible, but it seems that most people — myself included — have paid little
attention to that advice.

From the information available at the time of writing, it seems that the next version of the Office
suite — Office 2000 — will employ an SDI interface. If confirmed by the final release, I think this
development will herald a real change in Windows applications design.

Creating New Documents
Whenever you right click on an Explorer
window that's displaying the contents of a folder,
you're presented with a menu like the one in the
figure:

The New command lists all the document types that can be created via the shell. When you select
one of the listed types of document, the shell calls the registered application and asks it to create a
new document with a name that's formed from the type name of the document (as it appears in the
menu), prefixed by the word New. For example, if you choose to create a new bitmap image, the file
name will default to New Bitmap Image.bmp.

Designing a Shell Integrated Application

427

The New Menu
Each item that appears in the New menu (except for Folder and Shortcut) has a related file class for
which a ShellNew key exists, under the following registry path:

HKEY_CLASSES_ROOT
 \.ext
 \ShellNew

The contents of the ShellNew key determine what appears on the New menu, and what happens
when someone clicks on it. When you think about it, there are actually four ways of creating a new
document through the shell. You can create:

! Empty, zero-length documents
! Documents that are copies of a default document
! Documents whose contents come from binary data stored in the registry
! Documents created by special external programs, such as Wizards

Naturally enough, these options require different registry settings:

Value Content

NullFile The empty string.

FileName The name of the file to be used as the template. Such files are assumed to
reside in the Windows\ShellNew directory.

Data A chunk of binary data, read from the registry.

Command The command line needed to create the document.

The following screenshot shows the setup on my machine for BMP files:

Normally, you'll want to use NullFile if your application can handle empty and zero-length files.
FileName is the approach chosen by Word and Excel, and is useful if you have complex, compound
files for which even empty files need a certain, minimal structure. In this case, you prepare a standard
file (whether empty or not), save it to the ShellNew subdirectory of the Windows directory, and
assign its name and extension to the FileName value. Each time someone attempts to create a new
file of that type, a copy of the template is created. See Further Reading to get references about Office
97 file format specifications.

Chapter 14

428

Data is a value that may contain binary data to be flushed to the newly created file, making this case
little different from the one we've just been discussing. With FileName, the template is a separate
file; with Data, it is a chunk of data stored in the registry.

We met the Command value in Chapter 11 while discussing replacing the standard handler for
creating shortcuts. If this value is present, then the shell is limited to running the specified command
line, and assuming that it will be able to create a new document of the required type. This option has
been specifically created for Wizards and step-by-step document creation.

We'll now look at an example in which we add a command to the shell's New menu that will create a
brand new HTML file with minimal content.

Creating New HTML Files
I'm assuming that you have a program on your PC that is registered to handle HTML files. When you
need to create a new HTML document from scratch, you usually either:

! Run a visual HTML editor (Microsoft FrontPage, for example)
! Run Notepad or some other plain text editor

Like most of the rest of the Windows world, when I need to write an HTML page, I resort to
Notepad. However, an HTML file is not just another ASCII file. It needs tags to delineate it as a valid
document that a browser can successfully handle. A minimal HTML file may look like this:

<html>
<body>
</body>
</html>

Save this code to a file called, say, html4.htm and place it in your Windows\ShellNew (or
Winnt\ShellNew) directory. Then, open the Registry Editor and add a ShellNew key to:

HKEY_CLASSES_ROOT
 \.htm

This newly created key must also be given a FileName string value:

Designing a Shell Integrated Application

429

Once you have saved these settings, you should be able to
right-click on the desktop and produce something like this:

The picture shows what happened on my PC after I changed the description of the htmlfile
registry key from the original string to Web Page. Any new file created from this menu item will be
called New Web Page.htm.

Note that you can add an item to the New menu only if that file type is correctly registered.

Other Features
There are a couple of other features to take into account when it comes to design and coding a good
shell-integrated application. They are:

! Storing a list of the directories where helper modules like DLLs can be found
! Arranging for an automatic re-run upon next logon

The first feature might seem to be more relevant to setup programs, but not all installers do exactly
what you need, and in those cases you must write your own extensions and delve deep into registry
paths.

The second feature is typical of Explorer and a few other applications. If the application is still
running when you shut down the system, the shell will automatically restart it the next time that you
log on. Let's see how to code this behavior.

Application Paths
Almost all Windows applications are composed of more than one file. Typically, there's an EXE file
and one or more DLLs (not to mention all the system DLLs, such as kernel32.dll and
user32.dll).

The helper DLLs must be copied somewhere by the installer. They can go in the program folder or
elsewhere, but Microsoft strongly discourages you from copying DLLs to one of the main system
folders, like Windows or Windows\System. If you do decide not to put them in the same directory
as the EXE, the chances are that sooner or later you'll get an error message informing you that the
system is unable to locate a given DLL.

Chapter 14

430

Why then would you decide not to put the DLLs in the same folder as the EXE? Well, your
application could be part of a suite in which many programs share the same helper DLLs. It's
wasteful to give each component its own copy of the files, so instead you could create a common
folder and place everything that's shareable in there. The problem now is making the shell aware of it
— when you launch an application that needs a certain library, you must make sure that the path to
the library is globally visible.

MS-DOS based programs (and Windows programs too) used to rely on the PATH environment
variable. A similar, but shell-oriented replacement for this is the so-called application path. To use
one, you should add the following registry key after installing your application (let's call it
program.exe):

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows
 \CurrentVersion
 \App Paths
 \Program.exe

The Default value of the key contains the full path name of the executable. If present, the Path
value lists all the paths where any other files can be found:

Automatic Startup of Applications
When a particular user logs on, Windows will attempt to read the following key:

HKEY_CURRENT_USER
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \RunOnce

If the key exists, any programs whose names are stored in its values will be executed. After
examination, all entries are deleted, so they are executed once and only once. We therefore have the
ability to code applications that are capable of executing the next time a particular user logs on.

Designing a Shell Integrated Application

431

Note that this is only at the next logon, not at each subsequent logon. Applications that are run
every time a particular user logs on have entries under the Run key in the above location.

Automatic execution is not totally a feature of the system; programs must cooperate in order for it to
occur. In particular, a program must add itself (and/or any other application) to the RunOnce key,
and the right moment to do this is in response to the WM_ENDSESSION message. Of course, it's
possible to do this at any time, but since our goal is getting persistence across sessions, we should
create the entry only if we're still running when the user shuts down the current session or logs off.
This is when the WM_ENDSESSION message arrives.

The information about the application to be run should be entered in the registry in the following
format:

ID = program name

You need to create a value whose content is the path name of the executable. The ID must be unique,
but apart from that the name you give it is not too important. The next figure shows an example:

The entries are taken sequentially, in the same order that they were entered — that order doesn't
necessarily coincide with the output of the Registry Editor, where the entries always appear in
alphabetical order. The programs are spawned asynchronously, one after another. If you have a
registry entry like the one shown above, you'll find that Notepad opens up on your desktop when you
log on.

Another RunOnce Key
There's another, rather more powerful RunOnce key located under the following path:

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows
 \CurrentVersion
 \RunOnce

Chapter 14

432

The syntax for using this key is exactly the same as before, but there are three big differences in the
way it works. They are:

! The contents of this key are considered when any user logs on.
! The various registered programs execute synchronously — the next entry runs only when the

previous one has finished.
! The programs registered under this key execute before the programs registered under the same

sub-key of the HKEY_CURRENT_USER node.

See Further Reading for a reference to a document that details the Windows startup process.

If you have a program registered under HKEY_LOCAL_MACHINE\...\RunOnce, then at the next
logon or reboot, Notepad will appear on the desktop before the taskbar and the desktop icons. More
importantly, you won't see them until you terminate the process by closing the window.

The Run Key
The Run key, which I mentioned briefly in the above discussion, also exists both under
HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER. Run and RunOnce follow identical logic,
except that the latter deletes each line it reads from the registry. Items under the Run key are
executed every time someone logs on.

The RunServices Keys
Under Windows 95 and Windows 98, there are two keys that allow you to simulate NT services — that
is, modules that run before the user logs on. These keys are:

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows
 \CurrentVersion
 \RunServices
 \RunServicesOnce

Once again, their syntax is the same as the other keys we've been examining in this section.
RunServices runs applications before every logon, while RunServicesOnce does the same thing
for only the next logon. The programs are executed asynchronously, and might terminate after the
user actually logs on. In any case, all the services must be executed before the system starts
considering the RunOnce and Run keys.

The following table shows the exact order in which Windows considers the registry keys during the
startup process:

Step Key

1 HKLM\...\RunServicesOnce (unsupported under NT)

2 HKLM\...\RunServices (unsupported under NT)

3 User Logon. The user may log on before all the services start.

Designing a Shell Integrated Application

433

Step Key

4 All the services started and the user logged on.

5 HKLM\...\RunOnce

6 All the registered programs completed.

7 HKLM\...\Run

8 HKCU\...\Run

9 Programs contained in the Startup folder for the current user.

10 HKCU\...\RunOnce

The Winlogon Key
If you simply need to display a message before any user logs on, you can exploit the entries of the
following key:

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows
 \CurrentVersion
 \Winlogon

The LegalNoticeCaption and LegalNoticeText values let you define the title and the text of a
system message box that will appear before any user logs on.

Services in Windows 9x
Under Windows NT, you can write services to accomplish certain tasks that require special system
privileges. An NT service is a Win32 application with a particular structure and behavior. Aside from
the specific implementation details, the main features of a service can be summarized as follows:

! A service runs before any user logs on
! A service continues running even after a user logs off
! A service has no user interface and is not interactive
! A service gets special treatment from the operating system — for example, it can be started

automatically and run under any user account, including the System account
! A service runs in a separate, virtual desktop, which is different from the desktop used by the

applications
! A service can be stopped or paused

Windows NT has a special component called Service Control Manager (SCM) to manage the running
services. Because this interface is very powerful, there's no need under Windows NT for registry keys
like RunServices or RunServicesOnce. See Further Reading for more information about writing
NT services.

Chapter 14

434

The interesting thing from our point of view is that by exploiting the RunServices key you can
simulate NT services, obtaining roughly the same behavior. A Windows 9x service is in every way a
normal Win32 application (no matter whether it's a GUI or a console application) that's simply
registered in the RunServices key to run before each logon.

By calling the RegisterServiceProcess() API function, you can register the current process (or
any other running process) as a service, causing it to continue working even after the user has logged
off. This function is not exposed through any import library, though, so you need to load it
dynamically via GetProcAddress(), which is contained in kernel32.dll.

The following table lists the differences between Windows NT and Windows 9x services. A complete
example of a Windows 95 service is referenced in Further Reading.

Windows NT Service Windows 9x Service

Win32 application that exposes a
ServiceMain() function

Traditional Win32 application

Runs before logon If registered under RunServices, runs
before logon

Continues running after logoff If registered as a service with
RegisterServiceProcess(), continues
running after logoff

A GUI or console application with no user
interface

A GUI or console application with no user
interface

Can run under the System account Unsupported

Runs in a separate desktop Unsupported

Can be stopped or paused. Can be stopped only by calling
TerminateProcess()

That a service must have no user interface is not a system requirement, but simply a reasonable
and strong recommendation.

Designing a Shell-Integrated Application
So far, we've examined the major points that make a real-world application integrate successfully with
the shell. Now it's time to look at a concrete example, where we'll be translating all the principles and
rules into practice.

The first requirement for a shell-oriented application is that it be a file-based program. This means
that the application must, broadly speaking, work as a wrapper built around a certain kind of
document. Its menus should faithfully render the actions you might want to make with the documents
it handles. So, to design a shell-integrated application, it's important that you are clear which
functions are to be exported through the shell.

Designing a Shell Integrated Application

435

Secondly, these functions must be coded in as modular a fashion as possible, and must be accessible
through the command line, through a RunDLL32 interface or by means of a shell extension. Let's see
how this advice applies in a case study.

A Metafile Viewer
The application we will develop is a metafile viewer. I've chosen this example for two reasons:

! It is a significant, file-based application
! There's no system utility in Windows to view WMF and EMF files

To expand upon the second point, the only current way to view metafiles is to turn on the View | as
Web Page option for the folder, and relying on the embedded thumbnail control. (Of course, it's not
that hard to find a shareware utility out there, but it remains to be proven that such utilities offer an
adequate level of shell support.)

My example is a simple, dialog-based application that allows you to choose, display, print and
convert any valid Windows metafile. The screenshot below shows the initial appearance of the
sample program, a Wrox AppWizard generated dialog-based application called WMFView:

We'll first examine how to make the application operational in terms of actually being able to display
metafiles, and then we'll see how to enhance its code to help with context menu customization.

Windows Metafiles and Enhanced Metafiles
A metafile is a collection of graphic instructions, called records, which execute one after another in
order to produce a picture. Until the advent of Win32, there were two types of metafiles:

! Windows metafiles
! Placeable metafiles

The Office 97 clip art files, for instance, are all placeable metafiles, and both these types are given the
usual .wmf extension.

Detailed coverage of metafiles is beyond the scope of this book, so you should resort to the MSDN
Library for advanced and exhaustive articles. See also the Further Reading section.

Chapter 14

436

The file format of Windows metafiles changed with the advent of the Win32 platform. Win32
promotes the newer .emf format (enhanced metafiles), but continues to provide support (albeit of a
rather poor kind) for the old WMF files.

This drawback aside, the API for enhanced metafiles is noticeably richer than the corresponding one
for WMFs. Interestingly, among the Win32 common controls is one (the Picture control) that's
capable of displaying an enhanced metafile, starting from its handle. Opening and displaying an EMF
is therefore pretty straightforward, but unfortunately, doing the same for an old WMF file is not that
easy. Thankfully, I discovered a tool for the purpose on the Microsoft web site at:

http://support.microsoft.com/download/support/mslfiles/enmeta.exe

I was therefore able to use this example as a reference while building my own metafile viewer.

Displaying a Metafile
The wmfview.exe program will recognize three types of metafile:

! Windows
! Placeable
! Enhanced

The first two are assumed to have a .wmf extension, while the last should have .emf. Whatever the
original format of the currently opened file, the program always uses enhanced metafiles internally.
The following code shows how to open and display a metafile, no matter what its original format.

//
// Needed to handle 16-bit placeable metafiles
#pragma pack(push)
#pragma pack(2)
typedef struct{
 DWORD dwKey;
 WORD hmf;
 SMALL_RECT bbox;
 WORD wInch;
 DWORD dwReserved;
 WORD wCheckSum;
} APMHEADER, *LPAPMHEADER;
#pragma pack(pop)
//

// Gets the handle and displays the specified metafile
void DisplayMetaFile(HWND hwndMeta, LPTSTR szFile)
{
 // Get the metafile handle
 HENHMETAFILE hemf = GetMetaFileHandle(szFile);
 if(hemf == NULL)
 {
 MessageBox(NULL, __TEXT("Unable to handle the file."),
 szFile, MB_OK | MB_ICONSTOP);
 return;
 }

 // Free the old file and display the new one
 HENHMETAFILE hemfOld = reinterpret_cast<HENHMETAFILE>(
 SendMessage(hwndMeta, STM_GETIMAGE, IMAGE_ENHMETAFILE, 0));

http://support.microsoft.com/download/support/mslfiles/enmeta.exe

Designing a Shell Integrated Application

437

 if(hemfOld)
 DeleteEnhMetaFile(hemfOld);

 // hwndMeta is a Picture control
 SendMessage(hwndMeta, STM_SETIMAGE, IMAGE_ENHMETAFILE,
 reinterpret_cast<LPARAM>(hemf));
 lstrcpy(g_szCurFile, szFile);
}

The DisplayMetaFile() function calls a helper named GetMetaFileHandle() to obtain a
handle to the metafile at the location passed to it, deletes any metafile that is currently in place and
then sends a message to the control to have it display the new metafile.

// Retrieves an HENHMETAFILE handle for the specified file
HENHMETAFILE GetMetaFileHandle(LPTSTR szFile)
{
 DWORD dwSize = 0;
 LPBYTE pb = NULL;

 // Try to read it as an EMF
 HENHMETAFILE hEMF = GetEnhMetaFile(szFile);
 if(hEMF)
 return hEMF;

 // Try to read it as a WMF
 HMETAFILE hWMF = GetMetaFile(szFile);
 if(hWMF)
 {
 dwSize = GetMetaFileBitsEx(hWMF, 0, NULL);
 if(dwSize == 0)
 {
 DeleteMetaFile(hWMF);
 return NULL;
 }

 // Allocate enough memory
 pb = new BYTE[dwSize];
 if(pb == NULL)
 {
 DeleteMetaFile(hWMF);
 return NULL;
 }

 // Get the metafile bits
 dwSize = GetMetaFileBitsEx(hWMF, dwSize, pb);
 if(dwSize == 0)
 {
 delete [] pb;
 DeleteMetaFile(hWMF);
 return NULL;
 }

 // Convert to EMF
 hEMF = SetWinMetaFileBits(dwSize, pb, NULL, NULL);

Chapter 14

438

 // Clean up
 DeleteMetaFile(hWMF);
 delete [] pb;
 return hEMF;
 }

 // Try to handle the input as a placeable metafile
 HANDLE hFile = CreateFile(szFile, GENERIC_READ, 0, NULL,
 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 return NULL;

 // Read the file to a buffer
 dwSize = GetFileSize(hFile, NULL);
 pb = new BYTE[dwSize];
 ReadFile(hFile, pb, dwSize, &dwSize, NULL);
 CloseHandle(hFile);

 // Check to see if it is a placeable metafile
 if((reinterpret_cast<LPAPMHEADER>(pb))->dwKey != 0x9ac6cdd7l)
 {
 // Don't know how to handle this...
 delete [] pb;
 return NULL;
 }

 // Create an enhanced metafile from the bits
 hEMF = SetWinMetaFileBits(dwSize, &(pb[sizeof(APMHEADER)]), NULL, NULL);

 delete [] pb;
 return hEMF;
}

The operation of GetMetaFileHandle() is made trickier by the fact that it has to deal with
'ordinary' metafiles as well as enhanced ones, and much of the code you see here is geared towards
converting from the former to the latter on the fly. At the end, though, it just returns an enhanced
metafile handle to the function that called it.

Printing and Converting a Metafile
The program will also let you print a metafile, or convert from WMF to EMF and vice versa. Printing
is simply a matter of getting an appropriate print device context and playing the enhanced metafile to
it.

void PrintMetaFile(LPTSTR szFile)
{
 // Get an EMF handle
 HENHMETAFILE hEMF = GetMetaFileHandle(szFile);
 if(hEMF == NULL)
 return;

 // Get a printer DC
 PRINTDLG pdlg;
 ZeroMemory(&pdlg, sizeof(PRINTDLG));
 pdlg.lStructSize = sizeof(PRINTDLG);
 pdlg.Flags = PD_RETURNDC;

Designing a Shell Integrated Application

439

 HDC hDC = NULL;
 if(PrintDlg(&pdlg))
 hDC = pdlg.hDC;
 else
 return;

 // Prepare document printing
 DOCINFO di;
 ZeroMemory(&di, sizeof(DOCINFO));
 di.cbSize = sizeof(DOCINFO);
 di.lpszDocName = "Printing EMF";

 // Start printing
 StartDoc(hDC, &di);
 StartPage(hDC);

 // Scale to fit the entire printed page
 RECT rc;
 SetRect(&rc, 0, 0, GetDeviceCaps(hDC, HORZRES), GetDeviceCaps(hDC, VERTRES));
 PlayEnhMetaFile(hDC, hEMF, &rc);

 // Clean up
 EndPage(hDC);
 EndDoc(hDC);
 DeleteDC(hDC);
 DeleteEnhMetaFile(hEMF);
}

Converting metafiles isn't any more complicated, as the following listing will demonstrate. The first of
the three functions here, SaveMetaFile(), arranges for an EMF to be saved to a placeable WMF
file (and vice versa) with the same name, but a different extension. In practice, each metafile is first
converted to EMF (thanks to the GetMetaFileHandle() function), and then saved to disk as EMF
or WMF.

void SaveMetaFile(LPTSTR szFile)
{
 TCHAR szOutputFile[MAX_PATH] = {0};
 HENHMETAFILE hEMF = GetMetaFileHandle(szFile);
 if(hEMF == NULL)
 return;

 // Determine the output format
 lstrcpy(szOutputFile, szFile);
 strlwr(szFile);
 if(strstr(szFile, ".emf"))
 {
 PathRenameExtension(szOutputFile, ".wmf");
 SaveToWMF(hEMF, szOutputFile);
 }
 else if(strstr(szFile, ".wmf"))
 {
 PathRenameExtension(szOutputFile, ".emf");
 SaveToEMF(hEMF, szOutputFile);
 }

 DeleteEnhMetaFile(hEMF);
}

Chapter 14

440

The two helper functions, SaveToEMF() and SaveToWMF(), are very similar to one another and
serve simply to save the metafile in one of two available forms:

void SaveToEMF(HENHMETAFILE hEMF, LPTSTR szFile)
{
 // Get memory to store the EMF bits
 DWORD dwSize = GetEnhMetaFileBits(hEMF, 0, NULL);
 LPBYTE pb = new BYTE[dwSize];

 // Get the EMF bits
 GetEnhMetaFileBits(hEMF, dwSize, pb);

 // Save to file
 HANDLE hFile = CreateFile(szFile, GENERIC_WRITE,
 0, NULL, CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 {
 UINT rc = MessageBox(GetFocus(), "File exists. Overwrite?",
 szFile, MB_ICONQUESTION | MB_YESNO);
 if(rc == IDYES)
 hFile = CreateFile(szFile, GENERIC_WRITE,
 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
 else
 {
 delete [] pb;
 return;
 }
 }

 DWORD dwBytes;
 WriteFile(hFile, pb, dwSize, &dwBytes, NULL);
 CloseHandle(hFile);
 delete [] pb;
}

void SaveToWMF(HENHMETAFILE hEMF, LPTSTR szFile)
{
 // Get memory to store the WMF bits
 HDC hDC = GetDC(NULL);
 DWORD dwSize = GetWinMetaFileBits(hEMF, 0, NULL, MM_ANISOTROPIC, hDC);
 LPBYTE pb = new BYTE[dwSize];

 // Get the WMF bits from the EMF handle
 GetWinMetaFileBits(hEMF, dwSize, pb, MM_ANISOTROPIC, hDC);
 ReleaseDC(NULL, hDC);

 // Save to file
 HANDLE hFile = CreateFile(szFile, GENERIC_WRITE,
 0, NULL, CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 {
 UINT rc = MessageBox(GetFocus(), "File exists. Overwrite?",
 szFile, MB_ICONQUESTION|MB_YESNO);
 if(rc == IDYES)
 hFile = CreateFile(szFile, GENERIC_WRITE,
 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

Designing a Shell Integrated Application

441

 else
 {
 delete [] pb;
 return;
 }
 }

 DWORD dwBytes;
 WriteFile(hFile, pb, dwSize, &dwBytes, NULL);
 CloseHandle(hFile);
 delete [] pb;
}

They might seem superfluous to this discussion, but the conversion functions are not just for show.
Although Win32 primarily supports enhanced metafiles, you invariably end up dealing with lots
of WMF files — mostly, placeable metafiles. An easy way of converting to and from the EMF
format is therefore invaluable for an application such as this.

Assembling the Viewer
In order to bring together the disparate functions I've presented so far to create an application, we
need somewhere to call them from. At this stage of development, the way I've chosen to do that is by
associating a menu with the dialog (you can do that in the Properties context menu of the Visual
C++ Resource Editor). Add the items that you saw in the screenshot at the beginning of this
discussion, and then modify the WM_COMMAND handler in APP_DlgProc() like this:

 case WM_COMMAND:
 switch(wParam)
 {
 case ID_FILE_OPEN:
 OnOpen(hDlg);
 return FALSE;

 case ID_FILE_PRINT:
 OnPrint(hDlg);
 return FALSE;

 case ID_FILE_SAVEAS:
 OnSave(hDlg);
 return FALSE;

 case ID_FILE_EXIT:
 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;

At a stroke, the problem is reduced to the implementation of three relatively easy functions that call
the routines we've already defined. Here's what they look like:

void OnOpen(HWND hDlg)
{
 TCHAR szFile[MAX_PATH] = {0};

Chapter 14

442

 OPENFILENAME ofn;
 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.lpstrFilter =
 "Metafiles\0*.?mf\0WMF\0*.wmf\0Enhanced\0*.emf\0All Files\0*.*\0";
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrFile = szFile;
 if(!GetOpenFileName(&ofn))
 return;
 else
 {
 HWND hwndMeta = GetDlgItem(hDlg, IDC_METAFILE);
 DisplayMetaFile(hwndMeta, ofn.lpstrFile);
 RefreshUI(hDlg, ofn.lpstrFile);
 }
}

void OnPrint(HWND hDlg)
{
 if(lstrlen(g_szCurFile))
 PrintMetaFile(g_szCurFile);
 else
 Msg("There's no metafile currently opened.");
}

void OnSave(HWND hDlg)
{
 TCHAR s[1024] = {0};
 TCHAR szOutputFile[MAX_PATH] = {0};

 if(!lstrlen(g_szCurFile))
 {
 Msg("There's no metafile currently opened.");
 return;
 }

 // Ask for user's confirmation
 lstrcpy(szOutputFile, g_szCurFile);
 if(strstr(g_szCurFile, ".emf"))
 PathRenameExtension(szOutputFile, ".wmf");
 else if(strstr(g_szCurFile, ".wmf"))
 PathRenameExtension(szOutputFile, ".emf");

 wsprintf(s, "You're about to convert %s to %s.\nAre you really sure?",
 g_szCurFile, szOutputFile);
 UINT rc = MessageBox(hDlg, s, APPTITLE, MB_ICONQUESTION | MB_YESNO);

 // Proceed...
 if(rc == IDYES)
 SaveMetaFile(g_szCurFile);
}

As presented, these functions complete the application but for three things. First, APPTITLE is a
global string constant that's used as the title of the dialog and is therefore equal to "Metafile Viewer".
Second, g_szCurfile is a global character array that's used to store the name of the open metafile
and should be set to the empty string in WinMain(). Third, RefreshUI() is a helper function that's
used to add the name of the open metafile to the dialog title:

Designing a Shell Integrated Application

443

void RefreshUI(HWND hWnd, LPTSTR szFile)
{
 TCHAR szCaption[MAX_PATH] = {0};

 // Refresh the caption bar
 wsprintf(szCaption, "%s - %s", APPTITLE, szFile);
 SetWindowText(hWnd, szCaption);
}

With this last function in place and with the addition of the headers and libraries for the common
dialogs and the Shell Lightweight API, you're now the proud owner of a serviceable application for
displaying, printing and converting metafiles. On with the show!

Adapting the Application
What better way is there to print and convert metafiles than by using the document's context menu?
In the functions assembled so far, we have three functions implemented in a modular way:

! Open
! Print
! Convert to

In other words, we have three static verbs to add to WMF and EMF documents. However, there are a
few problems to solve in our application before we can claim successfully to have customized the
context menu. First, we need to add command line support. Second, we need to register both EMF
and WMF as system file classes — they are unknown file types by default.

Even after we've done all this, a third problem arises. Every click on a metafile will cause a new
instance of the wmfview application to run. It would be better to have just one running instance, and
send it any new document to be opened, printed or converted. Let's see how to solve each of these
issues in turn.

The Importance of the Command Line
The application will support the following command lines:

wmfview.exe filename
wmfview.exe /p filename
wmfview.exe /s filename

The first one opens the specified file, while the other two print and convert the file, respectively.
Having command line support will allow us to add new verbs to EMF and WMF documents easily.
Let's see how this is coded:

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{
 // This code is unchanged and omitted for brevity

 // Run main dialog
 BOOL b = DialogBoxParam(hInstance, "DLG_MAIN", NULL, APP_DlgProc,
 reinterpret_cast<LPARAM>(lpsz));

Chapter 14

444

 // Exit
 DestroyIcon(g_hIconLarge);
 DestroyIcon(g_hIconSmall);
 return b;
}

The WinMain() function passes the command line string that it receives to the dialog procedure
through a call to the DialogBoxParam() API function. Any command line arguments are then
processed in response to the WM_INITDIALOG message. Let's see how:

void OnInitDialog(HWND hDlg, LPARAM lParam)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));

 if(lstrlen(reinterpret_cast<LPTSTR>(lParam)))
 ParseCommandLine(hDlg, reinterpret_cast<LPTSTR>(lParam));
}

void ParseCommandLine(HWND hwnd, LPTSTR pszCmdLine)
{
 if(!lstrlen(pszCmdLine))
 return;

 // Get the first 2 (+ 1) chars from the command line (it's the switch)
 TCHAR pszSwitch[2] = {0};
 lstrcpyn(pszSwitch, pszCmdLine, 3);
 LPTSTR psz = pszCmdLine + lstrlen(pszSwitch) + 1;

 // Resolve any case by sending a custom message
 if(!lstrcmpi(pszSwitch, "/p"))
 SendMessage(hwnd, WM_EX_PRINTMETA, 0, reinterpret_cast<LPARAM>(psz));
 else if(!lstrcmpi(pszSwitch, "/s"))
 SendMessage(hwnd, WM_EX_SAVEMETA, 0, reinterpret_cast<LPARAM>(psz));
 else
 SendMessage(hwnd, WM_EX_DISPLAYMETA, 0,
 reinterpret_cast<LPARAM>(pszCmdLine));
}

As you can see, the ParseCommandLine() function examines the command line, decides what to
do and then sends a custom message to the application's window procedure. The custom messages are
defined like this:

const int WM_EX_DISPLAYMETA = WM_APP + 1;
const int WM_EX_PRINTMETA = WM_APP + 2;
const int WM_EX_SAVEMETA = WM_APP + 3;

APP_DlgProc() gains a few more handlers that call some of the functions we've already defined,
like this:

BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg, lParam);
break;

Designing a Shell Integrated Application

445

 case WM_EX_DISPLAYMETA:
 DisplayMetaFile(GetDlgItem(hDlg, IDC_METAFILE),
 reinterpret_cast<LPTSTR>(lParam));
 RefreshUI(hDlg, reinterpret_cast<LPTSTR>(lParam));
 break;

 case WM_EX_PRINTMETA:
 PrintMetaFile(reinterpret_cast<LPTSTR>(lParam));
 break;

 case WM_EX_SAVEMETA:
 SaveMetaFile(reinterpret_cast<LPTSTR>(lParam));
 break;

 case WM_COMMAND:

You should now find that you're able to run the application and display, print and save metafiles
from the command line just as you can by using the dialog menu.

Why a Single Instance Application?
The code shown above runs a new instance of the program at each invocation. Once we've added
shell support for metafiles, we will be able to click on any WMF or EMF file we find and have
wmfview pop up, showing us the file. The trouble is that a new copy of the program is launched not
only when you ask to open a file, but also if you simply want to print or convert it. To avoid dozens
of wmfview windows, we need to make this a single instance application.

Back in the days of Windows 3.x, the hPrevious argument of WinMain() was used to denote the
existence of a previous instance of the application. On Win32 platforms, though, this argument is
maintained for compatibility purposes only, and is always set to NULL. Unfortunately, this makes it a
bit harder to figure out whether another copy of the same process is currently running, but there are
still a few techniques available:

Technique Description

FindWindow() The API function FindWindow() returns the handle of the first
window belonging to a given class and/or with a given title. It can
therefore identify our window by class name and/or title.

EnumWindows() The API function EnumWindows() enumerates all the existing, non-
child windows. This is useful to allow further investigation whenever
there may be multiple windows with the same class or title.

Process name This technique requires you to enumerate all the active processes and
check against the name of your program. (See Further Reading.)

Mutexes and
Semaphores

If you want to limit the number of instances, you can also make use of
synchronization constructs like mutexes and semaphores. Mutexes are
fine for single-instance applications, while semaphores are better for
allowing a fixed number of copies. (See Further Reading.)

Chapter 14

446

Dialog-Based Single-Instance Application
In the case of wmfview, we have additional requirements that force us to adopt the EnumWindows()
approach. For a start, the mutex and process name solutions are no good to us because we need to
retrieve the handle of the previous window so that we can reuse it. Simply knowing that it exists
doesn't help.

Secondly, although FindWindow() is the simpler of the remaining options, our program is dialog-
based, so we don't have an easily-distinguished class name. Put another way, the class name of our
program's main window is #32770, which is exactly the same as any other dialog box or dialog-
based application, and FindWindow() stops after the first match. We could use the title to reduce
the choices, but we'll be adding the name of the open file to the caption bar, making it highly
variable.

All that remains, then, is the EnumWindows()-based approach. We'll enumerate the windows, and
check the class name and the title for each one. For each dialog window, we'll verify that the title
begins with the prefix we expect — that is, Metafile Viewer. To be absolutely sure we get the right
window, we should also check the executable that created it.

Getting the name of the executable is harder than you might imagine, because there isn't a
common approach for Windows 9x and Windows NT. You need to use the ToolHelp API
functions under Windows 9x, and the PSAPI functions under Windows NT. Documentation
about these two is available in the MSDN library; in addition, see Further Reading for articles
that address the specific problem of identifying the program that created a given window.

Once we actually have the HWND handle of the previous instance, we can bring it to the foreground
and call ParseCommandLine(), passing the command line we received. Here's how to modify the
code in WinMain():

int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{
 // Is there another running instance of this?
 HWND hwnd = AnotherInstanceRunning();
 if(IsWindow(hwnd))
 {
 // Bring the previous window to the top
 if(IsIconic(hwnd))
 ShowWindow(hwnd, SW_RESTORE);
 SetForegroundWindow(hwnd);

 // Parse "this" command line but send messages to the prev. window
 ParseCommandLine(hwnd, lpsz);

 // Now we can exit
 return 1;
 }

 // Rest of the function as before
}

Designing a Shell Integrated Application

447

And here's AnotherInstanceRunning(), the function that actually used for the test. It calls
EnumWindows(), and the callback function that we provide on this occasion stops only if it finds a
window of the same class and with the same title as the one we're looking for.

HWND AnotherInstanceRunning()
{
 HWND hwndFound = NULL;
 EnumWindows(CheckRunningApps, reinterpret_cast<LPARAM>(&hwndFound));

 // hwndFound will get the handle of the matching window, if any
 return hwndFound;
}

BOOL CALLBACK CheckRunningApps(HWND hwnd, LPARAM lParam)
{
 TCHAR szClass[MAX_PATH] = {0};
 GetClassName(hwnd, szClass, MAX_PATH);
 if(!lstrcmpi(szClass, "#32770"))
 {
 TCHAR s[MAX_PATH] = {0};
 TCHAR szTitle[MAX_PATH] = {0};
 GetWindowText(hwnd, szTitle, MAX_PATH);

 lstrcpyn(s, szTitle, 1 + lstrlen(APPTITLE));
 if(!lstrcmpi(s, APPTITLE))
 {
 // Uses the buffer pointed by lParam to return the HWND
 HWND* lphwnd = reinterpret_cast<HWND*>(lParam);
 *lphwnd = hwnd;
 return FALSE;
 }
 }

 return TRUE;
}

Now that we finally have a single-instance application to view, print and convert metafiles, we can
think about how to add some shell support.

Adding Shell Support
Typically, shell support means:

! Registering each file type the application handles
! Registering a default icon for each file type
! Adding a few verbs to the context menu
! Adding each opened document to the recent documents list

We've already seen how to register new file types and their icons, and I've
arranged for the resources of Wmfview.exe to include specific icons for both
metafiles and enhanced metafiles:

Chapter 14

448

The entries to be added to the system registry are contained in the following script:

REGEDIT4

; //
; // Register WMF and EMF file types

[HKEY_CLASSES_ROOT\.wmf]
@= "WinMetafile"

[HKEY_CLASSES_ROOT\WinMetafile]
@= "Windows Metafile"

[HKEY_CLASSES_ROOT\.emf]
@= "EnhMetafile"

[HKEY_CLASSES_ROOT\EnhMetafile]
@= "Enhanced Metafile"

; //
; // Register the icons for WMF and EMF

[HKEY_CLASSES_ROOT\WinMetafile\DefaultIcon]
@= "C:\\WmfView\\WmfView.exe,2"

[HKEY_CLASSES_ROOT\EnhMetafile\DefaultIcon]
@= "C:\\WmfView\\WmfView.exe,1"

; //
; // Add Open, Print and Save verbs to WMF

; Open
[HKEY_CLASSES_ROOT\WinMetafile\Shell\Open\Command]
@= "C:\\WmfView\\WmfView.exe %1"

; Print
[HKEY_CLASSES_ROOT\WinMetafile\Shell\Print\Command]
@= "C:\\WmfView\\WmfView.exe /p %1"

; Save To EMF
[HKEY_CLASSES_ROOT\WinMetafile\Shell\Save]
@= "&Convert to EMF"

[HKEY_CLASSES_ROOT\WinMetafile\Shell\Save\Command]
@= "C:\\WmfView\\WmfView.exe /s %1"

; //
; // Add Open, Print and Save verbs to EMF

; Open
[HKEY_CLASSES_ROOT\EnhMetafile\Shell\Open\Command]
@= "C:\\WmfView\\WmfView.exe %1"

; Print
[HKEY_CLASSES_ROOT\EnhMetafile\Shell\Print\Command]
@= "C:\\WmfView\\WmfView.exe /p %1"

Designing a Shell Integrated Application

449

; Save To WMF
[HKEY_CLASSES_ROOT\EnhMetafile\Shell\Save]
@= "&Convert to WMF"

[HKEY_CLASSES_ROOT\EnhMetafile\Shell\Save\Command]
@= "C:\\WmfView\\WmfView.exe /s %1"

Apart from assuming you've installed WmfView.exe in the c:\wmfview folder, the listing reveals a
number of things that you need to be aware of when you're writing your own registry script. In
particular:

! In REG scripts, the @ symbol denotes the Default value
! It is very important that you use a double backslash in path names, and a single backslash for

registry entries
! While writing REG scripts, remember never to break a registry path contained between brackets

across two or more lines

By default, the name of the verb (in this case, any sub-key of the Shell key) is exactly what appears
on the context menu. This works fine for Open and Print, but we don't want the string Save to
represent the command for converting from EMF to WMF and vice versa. That's why we set the
Default value of the Save verb to the custom string that we want to appear in the menu.

You can run the script by using the Registry | Import Registry File… menu item of the Registry
Editor, by double-clicking on the REG file from the shell, or even programmatically, by executing the
file with ShellExecute() as explained in Chapter 8. However you do it, when you restart
Explorer, the result is shown in the next picture:

Chapter 14

450

Changing the Default Menu Item
If present, the Open verb is always set as the default item for the context menu. The default item is
drawn in bold, and is automatically selected by a double left click (or a single-click, depending upon
your Active Desktop settings). The default item is always the first to appear in the context menu.

However, it's possible to reorder the items in the enhanced metafile context menu, for example, by
setting the Default value in the following key:

HKEY_CLASSES_ROOT
 \EnhMetafile
 \Shell

Normally, this value contains an empty string, but if you set it to a comma-separated string whose
tokens are the various verb names, then they'll be displayed in the order you specify, with the first
one as the default item. It's not required that you include all the verbs in the list, so you can limit how
many you reorder.

Remember that this technique works only for the static verbs defined in the
Shell key.

Adding Context Menu Items for any File
In the above screenshot, you may have noticed that there are two items related to WinZip. These are
not specific to metafiles, and instead apply to all files (but not folders). For this reason, the items are
not listed under the Shell key for WinMetaFile or EnhMetaFile. To add context menu items to
any file type, simply add the verb under:

HKEY_CLASSES_ROOT
 *
 \Shell

Sometimes, adding new items like this will remove the default style from the Open With… item. Note
also that all the items you add here are always displayed before the Shell items that are specific to a
particular type of file. However, this is evidently not the case for WinZip, so what's going on there?

Designing a Shell Integrated Application

451

If you want to avoid removing the current default item by adding new commands under
HKEY_CLASSES_ROOT*\Shell, the alternative is for you to define a shell extension, as WinZip
and Briefcase do in the above figure. Shell extensions go under the shellex key, and if they are to
apply to context menus, they require a further sub-key called ContextMenuHandlers. I'll cover
this in detail in the next chapter.

If you need to add custom menu items to any folder or drive then the registry keys to consider
are HKEY_CLASSES_ROOT\Folder and HKEY_CLASSES_ROOT\Drive respectively.

Give a Folder a Custom Icon
Suppose that you're writing a suite of applications that install under a common path. Wouldn't it be
nice if that folder could have a custom icon? Look at this figure:

The Wrox Applications folder is a perfectly normal folder, but its icon is different. To get this
behavior, just do the following:

! In the folder you want to customize, create an ASCII file called desktop.ini. You might want
to make it hidden, but that's not strictly necessary. I'll discuss what you need to put in the file in a
moment.

! Make the directory read-only. This can either be done programmatically or by the means of the
Properties dialog.

The desktop.ini file has a special meaning to Explorer — it represents a junction point between
the shell and a piece of code that's meant to customize both the look and the behavior of the folder.
In Chapter 16, I'll show you how to change the behavior of a folder through namespace extensions,
but that will require desktop.ini to contain rather more information than we need here. To
change the icon of a folder, you just need to add lines like these to the file:

[.ShellClassInfo]
IconIndex=0
IconFile=C:\WMFVIEW.EXE

Chapter 14

452

The role of the entries is quite self-explanatory: IconIndex denotes the icon's index in the
IconFile file, and so the combination of the two defines the icon to be displayed for that folder.

Note that as you change settings for the folder — especially those inherent to Web views — the
contents of this file are automatically updated.

Adding Recent Documents is Free
The Win32 documentation says that if you want to add your documents to the system folder for
recently used documents, then you need to issue a call to the SHAddToRecentDocs() function.
Doing this works perfectly well, but I've noticed that sometimes you don't need to go even this far.

Once it has been registered to handle metafiles, you'll find that the wmfview application
automatically saves any opened document to the folder, even though we never explicitly call
SHAddToRecentDocs(). This is clearly a feature of the shell that applies only to applications that
have registered their documents; for non-registered file types, you will still need the API function.

In fact, you don't necessarily have to open a document. This behavior also applies when you
print one, or indeed execute any of the verbs. However, when you recall the document from the
Documents menu, the default verb always executes.

Drag-and-Drop Support
Having drag-and-drop support for file-based applications is a big plus, and if you've designed your
software carefully and integrated it well with the shell, adding this capability is as easy as assigning
the WS_EX_ACCEPTFILES style to your main window and detecting the next WM_DROPFILES
message.

The important thing is that you have a function that's available to be run as a modular procedure
after such an event occurs. If you handle the command line as explained above, then adding shell
drag-and-drop requires just the following additional code, which will be invoked in response to a
WM_DROPFILES message:

 case WM_DROPFILES:
 HandleFileDrop(hDlg, reinterpret_cast<HDROP>(wParam));
 break;

void HandleFileDrop(HWND hDlg, HDROP hDrop)
{
 TCHAR szFileName[MAX_PATH] = {0};

 // Since we are an SDI app, it doesn't make sense to receive
 // more than one file, so extract only the first
 DragQueryFile(hDrop, 0, szFileName, MAX_PATH);
 SendMessage(hDlg, WM_EX_DISPLAYMETA, 0, reinterpret_cast<LPARAM>(szFileName));
 DragFinish(hDrop);
}

Designing a Shell Integrated Application

453

Customized Open Dialogs
Another interesting feature that shell-oriented applications can use is specialized versions of the
system's common dialogs. The Win32 API describes what you need to do to customize any of the
common dialogs, like Color, Font or Print, and you should refer to Microsoft's documentation for
more details.

For our purposes, the most interesting dialogs are the Open/Save ones. Let's see an example of how
to customize the Open dialog to add a few new buttons that work as bookmarks to specific paths. The
figure below shows an example of customized dialog taken from Visual C++; notice in particular the
Open as section with a label and a combo box.

In the rest of this chapter, I'll demonstrate how to build a dialog that looks a little like the Open
dialog of the upcoming Office 2000 products. Before this, however, I owe you an explanation of how
dialog customization actually takes place.

Defining a New Template
The Open dialog allows you to define a non-standard template, although you don't have the same
degree of freedom as was available in Windows 3.1. If you're using the Explorer-like layout, you're
not allowed to hide controls that aren't needed. This behavior is by design, and I can't see a reliable
way to work around it, apart from writing a new dialog from scratch.

To call the Open dialog, you need the GetOpenFileName() function, as shown below:

OPENFILENAME ofn;
TCHAR szFile[MAX_PATH] = {0};

ZeroMemory(&ofn, sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.lpstrFile = szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFilter = __TEXT("All files\0*.*\0");
ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST | OFN_HIDEREADONLY;
GetOpenFileName(&ofn);

Chapter 14

454

To enable customization, you need to add the following lines before the call is made:

ofn.lpTemplateName = MAKEINTRESOURCE(IDD_DIALOG);
ofn.lpfnHook = OpenDlgExProc;
ofn.Flags |= OFN_EXPLORER | OFN_ENABLEHOOK | OFN_ENABLETEMPLATE;

ofn.lpTemplateName points to a dialog template, and ofn.lpfnHook points to a window
procedure that will handle messages for all the custom controls.

The controls that form the original dialog must be considered as a single control, so any template that
you design must include the whole original dialog as a building block. In practice, this means using
relative positioning for your additional controls. Look at this figure, in which the dialog template you
can see has the Child style, and no border:

The highlighted component is a static control with an ID of stc32, which is a special constant that's
defined in dlgs.h, one of the Visual C++ header files. It represents the standard Open dialog. You
then place your controls around the component, and no matter what size you give the stc32 control
in the Resource Editor, the final window is properly resized, as shown in the figure. The next
screenshot shows how the Open dialog that makes use of the above template will look at runtime; the
dialog that you can see in the background betrays this as yet another Wrox AppWizard-generated
application.

The standard dialog has been extended with a series of three buttons placed vertically on the left-
hand side. So much for the look, but what about the behavior?

Designing a Shell Integrated Application

455

New Dialog Features
Apart from adopting the new look, what else should an Open dialog have in order better to customize
the host application?

! Shortcuts to frequently-used paths are a good idea, and better still if they can be user-defined
! Tooltips on the new controls are another feature that improves the dialog's look and feel
! The dialog should be able to prevent deletion and renaming of the items in the folder

Bookmarks to Frequently Used Paths
Going back to the previous discussion, I've chosen to add a few buttons to store bookmarks to
Favorites, Recent Documents and the Windows directory. The trickiest part of the code is
working out programmatically how to get to a specified path, and the solution is to do it the same as
you would manually. In other words, just set the File name edit box to the name of the path, and
'click' Open.

The IDs of all the controls used in the common dialogs are defined in the dlgs.h header file, but
unfortunately this file doesn't assign intelligible mnemonics to the IDs. However, by combining the
things you discover using Spy++ with the contents of dlgs.h, it's possible to figure out how they
correspond. For the File name edit box, the ID is 0x0480, which is associated to a mnemonic
constant called edt1. Calling this function from the window procedure that handles the button clicks
will do the job we need:

#include <dlgs.h>
#include <shlobj.h>

void Goto(HWND hDlg, WORD wID)
{
 TCHAR szDir[MAX_PATH] = {0};
 LPITEMIDLIST pidl;

 // Retrieve the path to jump to
 if(wID == IDC_WINDOWS)
 GetWindowsDirectory(szDir, MAX_PATH);
 else
 {
 if(wID == IDC_FAVORITES)
 SHGetSpecialFolderLocation(hDlg, CSIDL_FAVORITES, &pidl);
 else
 if(wID == IDC_RECENT)
 SHGetSpecialFolderLocation(hDlg, CSIDL_RECENT, &pidl);

 SHGetPathFromIDList(pidl, szDir);
 }

 // Set a new path in the file name edit box
 HWND hdlgParent = GetParent(hDlg);
 SetDlgItemText(hdlgParent, edt1, szDir);
 SendMessage(hdlgParent, WM_COMMAND, IDOK, 0);
 SetDlgItemText(hdlgParent, edt1, "");
}

Chapter 14

456

Notice from this code that the window handle your hook procedure receives is not the handle to the
actual dialog window. This applies only to the Open dialog, and to get the real window you have to
acquire a handle to the parent of the window that was passed to you:

 HWND hdlgParent = GetParent(hDlg);

Once you've done that, you can safely obtain each child control of the Open dialog.

Icon and Tooltips for the Buttons
The new buttons each have an icon and tooltip. Here's how they are set:

void InitNewButtons(HWND hDlg)
{
 SHFILEINFO sfi;
 LPITEMIDLIST pidl = NULL;

 // Assign an icon to the Favorites button
 SHGetSpecialFolderLocation(hDlg, CSIDL_FAVORITES, &pidl);
 SHGetFileInfo(reinterpret_cast<LPTSTR>(pidl),
 0, &sfi, sizeof(SHFILEINFO), SHGFI_PIDL | SHGFI_ICON);
 SendDlgItemMessage(hDlg, IDC_FAVORITES, BM_SETIMAGE, IMAGE_ICON,
 reinterpret_cast<LPARAM>(sfi.hIcon));

 // Assign an icon to the Recent Documents button
 SHGetSpecialFolderLocation(hDlg, CSIDL_PERSONAL, &pidl);
 SHGetFileInfo(reinterpret_cast<LPTSTR>(pidl),
 0, &sfi, sizeof(SHFILEINFO), SHGFI_PIDL | SHGFI_ICON);
 SendDlgItemMessage(hDlg, IDC_RECENT, BM_SETIMAGE, IMAGE_ICON,
 reinterpret_cast<LPARAM>(sfi.hIcon));

 // Assign an icon to the Windows button
 SendDlgItemMessage(hDlg, IDC_WINDOWS, BM_SETIMAGE, IMAGE_ICON,
 reinterpret_cast<LPARAM>(LoadIcon(NULL, IDI_WINLOGO)));

 // Set tooltips for each button
 SetTooltips(hDlg);
}

The icons are retrieved in different ways according to the specific icon needed. For special folders,
like Favorites or Recent Documents, I relied on SHGetFileInfo(), while LoadIcon() was
a help for the Windows logo. Each button has its own tooltip too:

void SetTooltips(HWND hDlg)
{
 // Creates a new tooltip control
 HWND hwndTT = CreateWindow(TOOLTIPS_CLASS, NULL, TTS_ALWAYSTIP, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, hDlg,
 NULL, GetModuleHandle(NULL), NULL);

 // Define the required tools, one for each button
 // Look in Favorites
 TOOLINFO ti;
 ZeroMemory(&ti, sizeof(TOOLINFO));
 ti.cbSize = sizeof(TOOLINFO);
 ti.uFlags = TTF_IDISHWND | TTF_SUBCLASS;
 ti.hwnd = hDlg;
 ti.uId = reinterpret_cast<UINT>(GetDlgItem(hDlg, IDC_FAVORITES));

Designing a Shell Integrated Application

457

 ti.lpszText = __TEXT("Look in Favorites");
 SendMessage(hwndTT, TTM_ADDTOOL, 0, reinterpret_cast<LPARAM>(&ti));

 // Look in Recent Documents
 ZeroMemory(&ti, sizeof(TOOLINFO));
 ti.cbSize = sizeof(TOOLINFO);
 ti.uFlags = TTF_IDISHWND | TTF_SUBCLASS;
 ti.hwnd = hDlg;
 ti.uId = reinterpret_cast<UINT>(GetDlgItem(hDlg, IDC_RECENT));
 ti.lpszText = __TEXT("Look in Recent documents");
 SendMessage(hwndTT, TTM_ADDTOOL, 0, reinterpret_cast<LPARAM>(&ti));

 // Look in Windows
 ZeroMemory(&ti, sizeof(TOOLINFO));
 ti.cbSize = sizeof(TOOLINFO);
 ti.uFlags = TTF_IDISHWND | TTF_SUBCLASS;
 ti.hwnd = hDlg;
 ti.uId = reinterpret_cast<UINT>(GetDlgItem(hDlg, IDC_WINDOWS));
 ti.lpszText = __TEXT("Look in Windows");
 SendMessage(hwndTT, TTM_ADDTOOL, 0, reinterpret_cast<LPARAM>(&ti));
}

I create a new tooltip window and define five new tools, each one with its own text to display. In each
of the blocks that defines a new tool, the uFlags field specifies that the uId field identifies a window
handle (TTF_IDISHWND). This implies that the window, namely one of the buttons, is the area to
which lpszText is assigned.

For a tip to appear, it's essential that the window that owns the area send proper mouse notifications
to the tooltip window. The TTF_SUBCLASS flag causes the tooltip window to subclass the button
automatically in order to send each message that's needed.

Tying the Code Together
To make all this code as reusable as possible, the following function is a wrapper built around the
standard GetOpenFileName() API that takes as its input a pointer to a OPENFILENAME structure.
If this structure contains a non-null template field, then the standard function is called. In other
words, if the user has already required a custom folder, then the function does nothing but call the
original routine. Otherwise, it replaces the standard dialog template with the one we've developed
above.

#include <commdlg.h>

BOOL GetOpenFileNameEx(LPOPENFILENAME lpofn)
{
 // If the template is custom, revert to the standard dialog
 if(lpofn->lpTemplateName)
 return GetOpenFileName(lpofn);

 // Adjust the OPENFILENAME structure
 lpofn->hInstance = GetModuleHandle(NULL);
 lpofn->lpTemplateName = MAKEINTRESOURCE(IDD_DIALOG);
 lpofn->lpfnHook = OpenDlgExProc;
 lpofn->Flags |= OFN_EXPLORER | OFN_ENABLEHOOK | OFN_ENABLETEMPLATE;

 BOOL b = GetOpenFileName(lpofn);
 return b;
}

Chapter 14

458

The callback used by the above function needs to handle just two messages. When WM_NOTIFY is
received because the dialog has been constructed, InitNewButtons() must be called to set up the
button icons and tooltips. If WM_COMMAND is the message, we check which button has been pressed
and respond appropriately:

UINT CALLBACK OpenDlgExProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 LPOFNOTIFY pN = NULL;
 switch(uiMsg)
 {
 case WM_NOTIFY:
 pN = reinterpret_cast<LPOFNOTIFY>(lParam);
 if(pN->hdr.code == CDN_INITDONE)
 InitNewButtons(hDlg);
 break;

 case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case IDC_FAVORITES:
 case IDC_RECENT:
 case IDC_WINDOWS:
 Goto(hDlg, LOWORD(wParam));
 break;
 }
 break;
 }
 return 0;
}

All that remains now is to call GetOpenFileNameEx() with appropriate arguments from the
OnOK() function of the main application dialog. This will do the trick:

void OnOK(HWND hDlg)
{
 // Local data
 OPENFILENAME ofn;
 TCHAR szFile[MAX_PATH] = {0};

 ZeroMemory(&ofn, sizeof(OPENFILENAME));
 ofn.lStructSize = sizeof(OPENFILENAME);
 ofn.hwndOwner = hDlg;
 ofn.lpstrFile = szFile;
 ofn.nMaxFile = sizeof(szFile);
 ofn.lpstrFilter = "All files\0*.*\0";
 ofn.nFilterIndex = 1;
 ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST | OFN_HIDEREADONLY;

 if(GetOpenFileNameEx(&ofn))
 MessageBox(hDlg, ofn.lpstrFile, "Open", MB_OK | MB_ICONINFORMATION);
}

Prevent the Renaming of Items
By default, the Open dialog allows you to delete and rename the files it displays. This feature is
provided by the system and there's no flag to prevent it. In many cases, however, you don't need it,
and at that point it becomes extremely annoying. Let's see how you can turn it off.

Designing a Shell Integrated Application

459

The control that shows us the list of the files is a list view control with the LBS_EDITLABELS style.
In order to get the behavior we want, we just have to turn this bit off. The hardest part of this process
is getting hold of a handle to the list view.

void ModifyStyle(HWND hDlg)
{
 // Get the files' listview handle.
 HWND hwndDefView = GetDlgItem(GetParent(hDlg), lst2);
 HWND hwndListView = GetDlgItem(hwndDefView, 1);

 // Turn off the bit
 DWORD dwStyle = GetWindowLong(hwndListView, GWL_STYLE);
 dwStyle &= ~LVS_EDITLABELS;
 SetWindowLong(hwndListView, GWL_STYLE, dwStyle);
}

Our list view is child of a container window whose ID is lst2 — another value taken from the
dlgs.h header. The ID of the list view is 1; this information is mostly due to Spy++. The above
function must be called each time the user changes a directory, because the list view is destroyed and
recreated each time this happens. A good place to do this is therefore in response to the
CDN_FOLDERCHANGE notification:

 case WM_NOTIFY:
 pN = reinterpret_cast<LPOFNOTIFY>(lParam);
 if(pN->hdr.code == CDN_INITDONE)
 InitNewButtons(hDlg);
 if(pN->hdr.code == CDN_FOLDERCHANGE)
 ModifyStyle(hDlg);
 break;

Tips for Preventing File Deletion
Even if you subclass the list view, you won't be able to catch events that correspond to the Delete key.
It's clear that Explorer traps the request for file deletion through a keyboard hook that processes the
message, and then eats it.

Given this, the best way to trap the Delete key ourselves is to install our own keyboard hook, trap the
message, and then break the hook chain in the same way Explorer does. This way, Explorer won't get
the message, and will never attempt to delete the file. The hook should be installed before the call to
GetOpenFileName(), and removed immediately afterwards. The modification to the code is
minimal:

BOOL GetOpenFileNameEx(LPOPENFILENAME lpofn)
{
 // If the template is custom, revert to the standard dialog
 if(lpofn->lpTemplateName)
 return GetOpenFileName(lpofn);

 // Adjust the OPENFILENAME structure
 lpofn->hInstance = GetModuleHandle(NULL);
 lpofn->lpTemplateName = MAKEINTRESOURCE(IDD_DIALOG);
 lpofn->lpfnHook = OpenDlgExProc;
 lpofn->Flags |= OFN_EXPLORER | OFN_ENABLEHOOK | OFN_ENABLETEMPLATE;

 // Set a keyboard hook on the current thread
 g_hHook = SetWindowsHookEx(WH_KEYBOARD,
 HookProc, NULL, GetCurrentThreadId());

Chapter 14

460

 BOOL b = GetOpenFileName(lpofn);

 // Remove the hook
 UnhookWindowsHookEx(g_hHook);
 return b;
}

The hook procedure that gets called each time a key is pressed within the Open dialog is very simple,
and completes the code for this chapter:

LRESULT CALLBACK HookProc(int iCode, WPARAM wParam, LPARAM lParam)
{
 // Eat the DELETE key...
 if(wParam == VK_DELETE)
 return 1;

 // ...otherwise feel free to proceed
 return CallNextHookEx(g_hHook, iCode, wParam, lParam);
}

What is a Shell-integrated Application?
We've spent this chapter discussing the various aspects involved in integrating your application with
the shell. We've found that there are a certain number of features that can be coded into an
executable, including parsing command line parameters, and ensuring that there is only a single
instance of the application. We have also come across many other features that are not necessarily
tied to the main application, like file type registration and context menu improvements.

Basically, there are two levels of integration with the shell. The first one is somewhat cosmetic and
aimed at the user interface: nice file type names, nice icons and new context menu items. The second
level, however, touches the source code. It consists of certain global application design rules, but also
many other little tricks, such as handling the WM_ENDSESSION message to cause the application to
rerun automatically at the next logon, and adding shortcuts to the Favorites or Recent
Documents folders.

Summary
In this chapter, I've demonstrated a complete Win32 application that attempts to integrate itself well
with the system's shell. We examined what shell-integration means, what aspects to consider, and how
to design or re-engineer your existing code to facilitate shell support for your documents. We also
discussed customizing and extending the capabilities of Open dialogs.

In brief, the topics of this chapter have been:

! File classes and the information stored in the registry
! Context menu customization
! Creating new documents via the shell
! Application command lines
! How to write Win32, dialog-based, single-instance applications
! Customizing the Open File common dialog
! Principles to make your application shell-aware

Designing a Shell Integrated Application

461

However, I have kept hinting that shell extensions are the most flexible and powerful way to extend
the capability and the behavior of the Windows shell, and now the wait is over! Shell extensions will
be the subject of the next chapter.

Further Reading
A good source of information on the subject of shell integration is an old article by Jeff Richter that
appeared in the April 1996 issue of MSJ. The title is Fusing your Application to the System through the
Windows 95 Shell. Some programming topics that are inherent to the Windows shell are covered in
the Microsoft Press book Programming the Windows 95 User Interface, written by Nancy Cluts (ISBN 1-
556158-84-X). A digital version of the book is available in the MSDN Library.

If you're interested in discovering more about Office 97 file formats, check out the latest MSDN
documentation. All the details are under Microsoft Office Development\Office.

NT services are given the comprehensive treatment they deserve in Professional NT Services by Kevin
Miller (Wrox Press). Other sources of note include Jeff Richter's MSJ articles Design a Windows NT
Service to Exploit Special Operating System Facilities (October 1997) and Manipulate Windows NT Services
by Writing a Service Control Program (February 1998). Also take a look at Why Do Certain Win32
Technologies Misbehave in Windows NT Services? by Frank Kim, MSJ, March 1998. A primer on writing
Windows 95 services can be found in the Windows Developer's Journal of May 1998. The article is
called NT-style Services for Windows 95, and it was written by Dmitri Klementiev.

Identifying the process behind a given window can be a pretty difficult task, and I wrote an article on
exactly this subject for the October 97 issue of WDJ. Called Process Names from Window Handles, it
provides a solution that works both on Windows 9x and Windows NT 4.0. All the information you
may desire on mutexes, semaphores and other kernel objects is available in Jeff Richter's best-selling
Advanced Windows, from Microsoft Press (ISBN 1-572315-48-2).

Finally, we spent a portion of this chapter talking about Windows and enhanced metafiles without
going down to the low-level details. If you want to know more, check out Enhanced Metafiles in Win32
by Dennis Crain, an article on MSDN. To conclude, Knowledge Base article Q145999 points to a
piece of code demonstrating the use of standard and enhanced metafiles.

Finally, and as ever, here are some useful Knowledge Base articles:

! Knowledge Base Article Q179365: Run, RunOnce, RunServices, RunServicesOnce and Startup
! Knowledge Base Article Q137367: Definition of the RunOnce Keys in the Registry
! Knowledge Base Article Q174018: Description of the Windows 95 Startup Process
! Knowledge Base Article Q125714: How to Start an Application at Boot Time Under Windows 95
! Knowledge Base Article Q175030: Enumerate Applications in Win32

Shell Extensions

When you're talking about Windows shell programming, shell extensions are one of the most
important topics. Most of the coolest features that commercial applications deploy are implemented
through shell extensions, and many features that are apparently down to the system are actually due
to plugged-in extensions. The particularly exciting aspect of shell extensions is that they allow you to
manipulate the shell as though your application is actually a part of it.

Another encouraging aspect of shell extensions is that Microsoft is using them sensibly. For example,
the Find menu has grown from what it was under Windows 95 to what it has become under Active
Desktop and Windows 98, and the new items have been added through shell extensions. Moving on,
any bitmap item that appears on a document's context menu has been added using shell extensions.
Further still, any additional page on a document's Properties menu is there by means of a shell
extension as well, and the list could go on.

So, shell extensions are not only important building blocks for adding functionality to the shell, but
also enable your programs to take advantage of the shell's features. In the previous chapter, I outlined
what a typical Win32 program should do in order to integrate with the system. I spoke of context
menus, icons, and a few other minor adjustments. All those changes, however, were static and defined
once and for all. You can set them or remove them, but that's all you can do: there's nothing in
between.

The final step towards a fully Windows-compliant application is therefore to take into account the
possibility of writing one or more shell extensions. Notice that I said, "the possibility," here. In fact,
although shell extensions are a powerful and flexible way to communicate with the shell, it's not the
case that they're a must-have for you and your software.

Chapter 15

464

In this chapter, I'll cover all the programming aspects of shell extensions, and provide you with some
insightful samples. In particular:

! What shell extensions are, and how you work with them
! How to write shell extensions with C++ and ATL
! Ways of debugging shell extensions
! Using shell extensions to customize context menus, icons, and properties

The final part of the chapter will be dedicated to file viewers. Strictly speaking, these are not shell
extensions, but they have a similar internal structure. A file viewer is a module that lets you get a
quick preview of a given type of document without resorting to the application that creates and
manages that type of file. A file viewer is usually linked to the Quick View item on the context menu.

Shell Extensions: Types and Tips
A shell extension is an in-process COM server that Explorer loads when necessary. Shell extensions
are not a completely new idea; they owe more than a little to the File Manager add-ons that were
introduced with Windows 3.1. However, shell extensions use the COM infrastructure instead of DLL
functions, and give you a wider range of functionality.

What are Shell Extensions?
As mentioned above, a shell extension is an in-process COM server that implements COM interfaces.
You write the module, register it in the registry, and run an instance of the Explorer window to test it.
You should never have to worry about how, when or by whom your extension is called — it occurs
automatically, provided that you have registered it correctly.

A shell extension is a DLL that can be located anywhere in your PC. Like any other COM server, it
exports four global functions, through which a client module can identify, and connect to, the server:

! DllGetClassObject()

! DllCanUnloadNow()

! DllRegisterServer()

! DllUnregisterServer()

Beyond this, a shell extension must provide the usual COM paraphernalia, like a class factory and an
implementation of IUnknown. Finally, it must implement the specific interfaces needed to interact
with the shell.

Shell Extensions

465

Calling Shell Extensions
There are a number of events that Explorer recognizes as being customizable via client modules.
Examples are when Explorer is about to show a context menu or a property page, draw an icon or
drop a file over another. Put another way, when performing one of a particular set of tasks on any
kind of document, Explorer looks for registered user modules before proceeding. If one is found,
Explorer connects to it and invokes the required methods.

This scenario looks like the kind of callback mechanism described in any Windows programming
primer. A callback is a function with a predefined prototype (and usually a "recommended" behavior)
that a server module will invoke to let clients intervene in response to given events. A good example
of this is provided by the Windows API enumeration functions. EnumWindows(), which we used in
the last chapter, takes a pointer to a function with a fixed prototype and then invokes it, passing each
window handle it finds. What occurs with shell extensions is conceptually pretty similar.

File Manager Add-ons
The file manager add-on mechanism just relied on callback functions. On being loaded, File Manager
scanned its winfile.ini file looking for a DLL name in the AddOns section:

[AddOns]
MyExtension=C:\WINDOWS\SYSTEM\FMEXT.DLL

In that DLL, File Manager expected to find a function called FMExtensionProc(), whose
prototype had to be:

LRESULT CALLBACK FMExtensionProc(HWND hwnd,
 WORD wMsg,
 LPARAM lParam);

From this point on, File Manager began sending notification messages to the function so specified. By
writing such a function, you could add new toolbar buttons, be notified of selection changes, modify
menus, and other things. If you're interested, you should refer to the Internet Client SDK
documentation for a detailed overview of what you can do. In particular, check out the Platform
SDK\User Interface Services\Shell and Common Controls\Windows Shell API area.

From File Manager Add-ons to Shell Extensions
Now you have an idea of what happens when File Manager add-ons come into play, let's try to
translate this idea into the world of shell extensions. Here are the main structural differences:

! Instead of a single callback function, we now have a COM interface
! Instead of an INI file, we now have a bunch of registry keys and values to associate our extensions

with types of file
! Instead of a simple DLL, we now have a COM server

So, while some similarity cannot be denied, File Manager add-ons and shell extensions are very
different things. For one thing, the scope of the technology has changed: File Manager add-ons are
application-centric, because the messages exchanged rarely regard single files, and never distinguish
between file types. Shell extensions apply separately to each type of file — in fact, they've been
specifically designed to act this way.

Chapter 15

466

How Explorer Calls Into Shell Extensions
To understand the interaction that takes place between Explorer and a shell extension, let's examine
a real case. When we're finished, you should have a clear understanding of how things work, and why
shell extensions have been designed the way they are.

As I mentioned earlier, before proceeding with one of a particular set of tasks, Explorer looks for
registered modules somewhere in the registry. All the extensions it finds are loaded, and their
methods are invoked accordingly. To enable a certain behavior, just register an appropriate module.
To disable it, just unregister the same module.

The exact path in the registry to look in, and the programming interface of the extension, can vary
quite a bit, depending on the event that causes Explorer to trigger the call.

Displaying a Context Menu
Let's consider a typical example: displaying the context menu for a certain type of file — bitmaps,
perhaps. The procedure starts when the user right clicks on a BMP file in a shell view. The context
menu is composed of different groups of items. First, there are the standard system items, like Copy,
Cut, Create Shortcut, and Properties. Then there are the document-specific verbs that get added
statically. Thirdly, there are the general verbs added for any file, regardless of type.

A fourth group of items will come from any context menu shell extension registered for the file type
under consideration. In our case, these are bitmap files.

When Explorer creates the pop-up menu, it starts by adding all the standard items, and each item that
comes from the registry. Then it looks under the ShellEx key for the relevant file type (if one
exists), searching for a ContextMenuHandlers sub-key. For BMPs, this would be:

HKEY_CLASSES_ROOT
 \Paint.Picture
 \ShellEx
 \ContextMenuHandlers

The main key for bitmaps is Paint.Picture if Microsoft Paint is the program enabled to manage
bitmaps. This is the default, unless you've installed some alternative graphics software.

Under the ContextMenuHandlers key, the Default value should contain the CLSID of the COM
server that implements the extension. Once the CLSID is known, Explorer loads the module into its
own memory space. This is accomplished by creating an instance of the server, and asking for the
interface that deals with the extension in question. For context menus, this interface is
IContextMenu, which comprises methods for adding a new item, retrieving its description string to
display on the status bar, and executing some code in response to a user's click.

It works like this: Explorer first invokes IContextMenu::QueryContextMenu() to ask the
module for new items to add. Each time the new item is selected, Explorer calls
GetCommandString() to get a description to show on the status bar. Finally, when someone clicks
the custom menu item, InvokeCommand() is run to provide run-time behavior.

The COM interface functions that get invoked by Explorer can provide a means of customizing items
in the shell. In order for the interface to be visible to Explorer, though, it must be registered
according to a rigorous schema. I'll be digging out these and other details later on in the chapter.

Shell Extensions

467

Types of Shell Extensions
I've mentioned repeatedly that shell extensions are loaded in response to a particular set of shell
events. Consequently, there are a fixed number of different shell extensions, by which I mean a set of
different COM interfaces that expose different functions in order to reflect the specific circumstances.
Displaying a context menu is not the same as painting an icon, or displaying a Properties dialog box,
so it should come as no surprise that there are different COM interfaces doing the work.

The types of shell extensions are:

Shell Extension Interface Description

Context Menu IContextMenu Allows you to add new items to a
shell object's context menu.

Right Drag-and-drop IContextMenu Allows you to add new items to
the context menu that appears
after you right-drag-and-drop files.

Shell Icons IExtractIcon Lets you decide at runtime which
icon should be displayed for a
given file within a file class.

Property Sheet IShellPropSheetExt Lets you insert additional property
sheet pages to the file class
Properties dialog. It also works for
Control Panel applets.

File Hook ICopyHook Lets you control any file operation
that goes through the shell. While
you can permit or deny them, you
aren't informed about success or
failure.

Left Drag-and-drop IDropTarget Lets you decide what to do when
an object is being dropped (using
the left mouse button) onto
another one within the shell.

Clipboard IDataObject Lets you define how an object is to
be copied to and extracted from
the clipboard.

Writing Shell Extensions
It will come as no surprise that writing a shell extension is much the same as writing a COM in-
process server. You have to provide the basic COM stuff, implement the interfaces, register the
server properly, and then go on with testing and debugging. As with any other COM module you
develop, there's a lot of pretty repetitive code that you rarely need to change once you've written it.
This code lends itself well to being encapsulated in some C++ classes. Can you guess what's coming
next?

Chapter 15

468

Using ATL
Of course I'm going to recommend ATL as the best tool for developing shell extensions. After all,
ATL is today the best tool for developing COM servers in C++, and that's exactly what shell
extensions are. Microsoft's Active Template Library is a C++ framework specifically designed to
simplify the development of COM modules, and it's far lighter than MFC.

Our First Shell Extension
It's high time we got down to looking at how to write a shell extension. They are really quite simple
objects, so there's no point in developing a toy sample, even though this is our first one. We'll begin
with an example that completes what we began in the previous chapter for Windows and enhanced
metafiles; my goal is to show you how to add custom pages to the Properties dialog for both WMF
and EMF files.

Adding Property Pages
Wouldn't it be nice if we could preview the metafile directly on the Properties dialog? Sure, you can
get a nifty preview when you select the file in a folder with the View | as Web Page option turned
on, but what if you don't know about or don't want that view? Furthermore, what if you're still
running Windows 95 or Windows NT without the Active Desktop shell update?

The answer, of course, is a property sheet shell extension, which (like any other shell extension) will
work fine even without Active Desktop and Internet Explorer 4.0.

Which Interfaces to Implement
Once the basic ATL code has been generated by the ATL COM AppWizard, the question that needs
to be addressed is this: Which interfaces should be implemented in order to add property pages to a
Properties dialog? In fact, there are two: IShellPropSheetExt and IShellExtInit. The first of
these provides methods to add pages, while the latter takes care of initialization and establishes a
connection between the shell and the extension. Both are defined in shlobj.h.

IShellPropSheetExt requires you to create a new property page using the API functions that deal
with the common controls. This page is then passed to the shell through a callback function. In other
words, when calling the methods of IShellPropSheetExt, the shell passes a pointer to a function
that will be called back by the extension with the page as an argument. The interface has two
methods, one of which is not implemented in most cases.

The single method of IShellExtInit receives the name of the file (or files) selected in the shell,
and makes it available to the module. You can use any technique you want to store this name, but
typically you'd just use a member variable. The initialization of a shell extension is a process that may
vary quite a bit for different types of extensions, so making the mechanism as generic as possible is
the key here.

Initialization of Shell Extensions
We need to spend a few moments discussing how shell extensions get initialized. In this context,
'initialization' means the procedure followed by Explorer to call the extension, passing the correct
arguments. Basically, initialization may take one of three forms: no initialization at all, initialization
via IShellExtInit, and initialization via IPersistFile. The method of initialization used
depends upon the nature of the shell extension itself.

Shell Extensions

469

The following table shows how the various types of extensions get initialized. (Refer to the earlier
table for a list of shell extension types.)

Initialization Applies to Description

No initialization at all File Hook, Clipboard The shell extension doesn't require any
initialization step.

Via IShellExtInit Context Menu,
Property Sheet, Right
Drag-and-drop

The shell extension works on all the
selected files. Their names are passed in
the same format as they are copied to
the clipboard.

Via IPersistFile Left Drag-and-drop,
Icons

The shell extension works on a file
regardless of whether it is selected. The
name is passed as a Unicode string.

The startup process of a shell extension consists of calling one or more methods of the initialization
interface. When Explorer detects an event that may trigger a shell extension, it knows which kind of
extension might be registered, and how to initialize it. All it needs to do in addition is query for the
appropriate interface.

My intention is to describe how IShellExtInit and IPersistFile work in detail as I
demonstrate the shell extensions that need them, so let's begin by looking at IShellExtInit, the
interface involved in property sheet shell extensions. (I'll cover IPersistFile in the section
entitled Initializing the IconHandler Extension.)

The IShellExtInit Interface
The property sheet extension we're dealing with here is loaded by means of the IShellExtInit
interface. This has a single method, called Initialize(), that Explorer invokes, passing the
following three parameters:

Type Parameter Description

LPCITEMIDLIST pidlFolder Always NULL for property sheet extensions

LPDATAOBJECT lpdobj Points to an IDataObject that can be used to
obtain the files currently selected

HKEY hkeyProgID The registry key for the file object involved

Because the same interface serves several types of extension, the first and third parameters can have
different meanings according to the type being initialized. For property sheets, there are no folders
involved, so the pidlFolder argument is unused. The hkeyProdID parameter is an HKEY handle
to the registry key that contains information for the file object involved. For example, if the shell
extension is working on WMF files, and you've worked through the examples in the last chapter, then
hkeyProgID will be a handle to the following key:

Chapter 15

470

HKEY_CLASSES_ROOT
 \WinMetafile

I'll cover what happens to these arguments for other types of shell extension later in the chapter.

For property sheet shell extensions, the most important argument is lpdobj, which contains a
pointer to an object that implements IDataObject. This is a well-known interface that's employed
in a number of user interface tasks. Basically, IDataObject defines the behavior of a block of data
to be exchanged among running modules, and so clipboard and drag-and-drop operations are its
main fields of application.

Copying or getting data to and from the clipboard the OLE way means storing and retrieving a
pointer to an object that implements IDataObject. Likewise, when you drag-and-drop data using
COM interfaces, the source and the target are exchanging data through IDataObject. Another way
of looking at it is this: think of IDataObject as an evolution of the Windows handle — that is, a
generic object for representing a block of memory containing data. The enhancements provide the
ability to store:

! Data with a precise format, not just a generic "pointer to something"
! Data in storage media other than memory
! More blocks of data at the same time

IDataObject exposes methods to get, set and enumerate data. In particular, it makes use of
structures like FORMATETC and STGMEDIUM that define the format and storage medium of the data.
When you get a pointer to IDataObject, you can interrogate it to discover whether it contains data
of a certain format on a certain medium. This latter point will become clearer in a moment, when I
demonstrate how this applies to property sheet shell extensions. I also recommend that you look at
the Further Reading section at the end of the chapter for references to books that cover the internals of
IDataObject.

Let's switch back to property sheet shell extensions. In this case, the IDataObject object passed to
Initialize() contains an HDROP handle. As we saw in Chapter 6, this handle contains a list of
filenames that you can walk with functions like DragQueryFile(). For property sheet extensions,
the list includes the names of all the files currently selected in the shell.

The Properties dialog pops up from the shell only if you right-click on one or more selected files and
choose Properties from the resulting context menu. The list of selected files is passed to the shell
extension via an object that implements IDataObject, and contains data in the CF_HDROP format.
CF_HDROP is one of the standard clipboard formats, and data of this form is stored in a global
memory handle called HDROP.

STGMEDIUM medium;
HDROP hDrop;

FORMATETC fe = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
HRESULT hr = lpdobj->GetData(&fe, &medium);
if(SUCCEEDED(hr))
 hDrop = static_cast<HDROP>(medium.hGlobal);

Shell Extensions

471

The above snippet demonstrates how to retrieve the HDROP handle from an IDataObject pointer
called lpdobj. GetData() takes the description of the data to retrieve through a FORMATETC
variable and, if successful, returns it via a STGMEDIUM argument. FORMATETC is defined as follows:

typedef struct tagFORMATETC
{
 CLIPFORMAT cfFormat;
 DVTARGETDEVICE* ptd;
 DWORD dwAspect;
 LONG lindex;
 DWORD tymed;
} FORMATETC, *LPFORMATETC;

The interesting members from our point of view are cfFormat and tymed, which address the data
format and the type of storage medium respectively. In the snippet, therefore, CF_HDROP is the data
format, while TYMED_HGLOBAL is a constant that denotes a global memory handle as the medium by
which the data should be returned. Other possible storage media are disk files, metafiles, and pointers
to IStorage or IStream objects.

Here and elsewhere in this chapter, I'm going to provide 'do-nothing' implementations of ATL classes
whose functions I'll override when it comes to creating sample projects. The following listing is of a
file called IShellExtInitImpl.h, which contains the most basic possible implementation of the
IShellExtInit interface.

// IShellExtInitImpl.h

#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IShellExtInitImpl : public IShellExtInit
{
public:

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IShellExtInitImpl)

 // IShellExtInit
 STDMETHOD(Initialize)(LPCITEMIDLIST, LPDATAOBJECT, HKEY)
 {
 return S_FALSE;
 }
};

Chapter 15

472

The IShellPropSheetExt Interface
The interface that provides methods for adding new property pages is IShellPropSheetExt. It
exposes two functions (on top of the IUnknown functions): AddPages() and ReplacePage(). The
first one takes the following parameters:

Type Parameter Description

LPFNADDPROPSHEETPAGE lpfnAddPage Points to a function that will actually
add the page

LPARAM lParam Argument that has to be passed to the
function specified by lpfnAddPage

AddPages() creates a new property sheet and calls the function whose address it received through
lpfnAddPage. This callback function is defined by the shell, and has the following prototype:

BOOL CALLBACK AddPropSheetPageProc(HPROPSHEETPAGE hpage, LPARAM lParam);

The second argument is always passed by the shell, but getting the first one is the task of
AddPages(). The callback function is called once for each registered property sheet shell extension,
specifically when the shell is displaying the Properties dialog. AddPages() can add one or more
pages, but if it does add multiple pages, it must create them and call the function pointed to by
lpfnAddPage repeatedly.

ReplacePage(), the other method exposed by IShellPropSheetExt, is only used to replace
property pages in Control Panel applets. I won't be implementing it in the sample we're constructing
here, but the prototype is:

HRESULT ReplacePage(
 UINT uPageID, // Index of page to replace
 LPFNADDPROPSHEETPAGE lpfnReplacePage, // Pointer to fn to replace page
 LPARAM lParam); // Additional argument for fn

In keeping with my earlier promise, the following listing is of IShellPropSheetExtImpl.h, a file
that contains a basic implementation of IShellPropSheetExt:

// IShellPropSheetExtImpl.h

#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IShellPropSheetExtImpl : public IShellPropSheetExt
{
public:
 TCHAR m_szFile[MAX_PATH];

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IShellPropSheetExtImpl)

Shell Extensions

473

 // IShellPropSheetExt
 STDMETHOD(AddPages)(LPFNADDPROPSHEETPAGE, LPARAM)
 {
 return S_FALSE;
 }

 STDMETHOD(ReplacePage)(UINT, LPFNADDPROPSHEETPAGE, LPARAM)
 {
 return E_NOTIMPL;
 }
};

Adding a New Property Page
To start off the project proper, create a new ATL DLL project called WMFProp and add a simple
object called PropPage. After the skeleton of the ATL component has been generated, we need to
make some changes to the new object's header file, PropPage.h:

// PropPage.h : Declaration of the CPropPage

#ifndef __PROPPAGE_H_
#define __PROPPAGE_H_

#include "resource.h" // main symbols
#include <comdef.h> // Standard interface GUIDs
#include "IShellExtInitImpl.h" // IShellExtInit
#include "IShellPropSheetExtImpl.h" // IShellPropSheetExt

BOOL CALLBACK PropPage_DlgProc(HWND, UINT, WPARAM, LPARAM);

//
// CPropPage
class ATL_NO_VTABLE CPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CPropPage, &CLSID_PropPage>,
 public IShellExtInitImpl,
 public IShellPropSheetExtImpl,
 public IDispatchImpl<IPropPage, &IID_IPropPage, &LIBID_WMFPROPLib>
{
public:
 CPropPage()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_PROPPAGE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CPropPage)
 COM_INTERFACE_ENTRY(IPropPage)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(IShellExtInit)
 COM_INTERFACE_ENTRY(IShellPropSheetExt)
END_COM_MAP()

Chapter 15

474

// IPropPage

public:
 STDMETHOD(Initialize)(LPCITEMIDLIST, LPDATAOBJECT, HKEY);
 STDMETHOD(AddPages)(LPFNADDPROPSHEETPAGE, LPARAM);
};

#endif //__PROPPAGE_H_

The interface methods for which an implementation is required are Initialize() and
AddPages(). I've also declared a static member function called PropPage_DlgProc(), which is
needed to define the behavior of the page being added — it will be the window procedure of the new
page.

Code for Initialize()
The Initialize() method looks like this:

HRESULT CPropPage::Initialize(
 LPCITEMIDLIST pidlFolder, LPDATAOBJECT lpdobj, HKEY hKeyProgID)
{
 if(lpdobj == NULL)
 return E_INVALIDARG;

 // Initialize common controls (Property Sheets are common controls)
 InitCommonControls();

 // Get the name of the selected file from the IDataObject
 // Data is stored in the CF_HDROP format
 STGMEDIUM medium;
 FORMATETC fe = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
 HRESULT hr = lpdobj->GetData(&fe, &medium);
 if(FAILED(hr))
 return E_INVALIDARG;
 HDROP hDrop = static_cast<HDROP>(medium.hGlobal);

 if(DragQueryFile(hDrop, 0xFFFFFFFF, NULL, 0) == 1)
 {
 DragQueryFile(hDrop, 0, m_szFile, sizeof(m_szFile));
 hr = NOERROR;
 }
 else
 hr = E_INVALIDARG;

 ReleaseStgMedium(&medium);
 return hr;
}

Because property sheets are common controls, we need to initialize the appropriate library. This also
means that you have to #include commctrl.h and import the comctl32.lib library.

After getting hold of the selected files by the technique I described earlier in this section, I check how
many there are. For the sake of simplicity, if there is more than one file selected, I just exit the
function; that's what this code does:

 if(DragQueryFile(hDrop, 0xFFFFFFFF, NULL, 0) == 1)
 {
 ...
 }

Shell Extensions

475

When called as above, DragQueryFile() returns the number of selected files. The next line then
extracts the first and only file (it has an index of 0) and stores its name in the m_szFile buffer:

 DragQueryFile(hDrop, 0, m_szFile, sizeof(m_szFile));

Finally, when all this activity is complete, it's time to release the storage medium by issuing a call to
ReleaseStgMedium().

Code for AddPages()
The code for AddPages() is as follows:

HRESULT CPropPage::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage, LPARAM lParam)
{
 lstrcpy(g_szFile, m_szFile);

 // Fill out the PROPSHEETPAGE structure needed to create a new page
 PROPSHEETPAGE psp;
 ZeroMemory(&psp, sizeof(PROPSHEETPAGE));
 psp.dwSize = sizeof(PROPSHEETPAGE);
 psp.dwFlags = PSP_USEREFPARENT | PSP_USETITLE | PSP_DEFAULT;
 psp.hInstance = _Module.GetModuleInstance();
 psp.pszTemplate = MAKEINTRESOURCE(IDD_WMFPROP);
 psp.pszTitle = __TEXT("Preview");
 psp.pfnDlgProc = PropPage_DlgProc;
 psp.lParam = reinterpret_cast<LPARAM>(g_szFile); // Custom data for dlgproc
 psp.pcRefParent = reinterpret_cast<UINT*>(&_Module.m_nLockCnt);

 // Create the new page
 HPROPSHEETPAGE hPage = ::CreatePropertySheetPage(&psp);

 // Add the page to the property sheet
 if(hPage != NULL)
 {
 if(!lpfnAddPage(hPage, lParam))
 ::DestroyPropertySheetPage(hPage);
 return NOERROR;
 }
 return E_INVALIDARG;
}

The new page contains a dialog that must have neither caption nor border, and the pszTemplate
member of the PROPSHEETPAGE structure is set to contain its ID in the above code. I designed my
dialog to contain a single Picture control with the SS_ENHMETAFILE style that I called
IDC_METAFILE; adding a dialog template to the project resources is always necessary for a property
sheet shell extension.

However, a dialog requires a dialog procedure to handle all the controls it includes. In the example
here, PropPage_DlgProc() simply responds to WM_INITDIALOG and draws the metafile, for
which purpose I've used the functions that I defined in the previous chapter. Since the dialog
procedure can't access the members of the class, I pass the name of the file to be displayed through
the lParam field of the PROPSHEETPAGE structure, and the dialog procedure receives a pointer to
this data structure as the lParam argument of the WM_INITDIALOG message.

Chapter 15

476

BOOL CALLBACK PropPage_DlgProc(
 HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 HWND hwndMeta = GetDlgItem(hwnd, IDC_METAFILE);
 LPPROPSHEETPAGE lppsp = reinterpret_cast<LPPROPSHEETPAGE>(lParam);
 DisplayMetaFile(hwndMeta, reinterpret_cast<LPTSTR>(lppsp->lParam));
 return FALSE;
 }
 return FALSE;
}

Registering Shell Extensions
As I said earlier, a shell extension won't work if you fail to register it correctly: Explorer will not be
able to find the module to load. Each and every shell extension is tied to a certain file object, be that
a file type (say, EMF), or a generic object (like Folder). Thus, when you're registering a shell
extension, you need to consider whether you need to add information to install the file type as well.
This is not necessary if you're writing shell extensions for system file types like BMP, TXT, Folder
or *. However, for custom file types (say, XYZ), or file types that are not defined by default (as is the
case for EMF and WMF), you should make sure that the registration information has already been
entered.

Assuming that the file types involved are correctly registered, I still need to add a few lines to the
standard registry script produced by the ATL Wizard. These lines will associate the shell extension
with the file type or types that it will work with. In this case, the shell extension must be tied to both
WMF and EMF files. In the last chapter, I registered these types under the following keys:

HKEY_CLASSES_ROOT
 \WinMetafile

for WMFs, and

HKEY_CLASSES_ROOT
 \EnhMetafile

for EMFs.

A shell extension must be registered under the shellex sub-key of the specified file class's key.
Under shellex, you'll need to create additional keys to group the various types of extensions, and
these have specific names. To register a property sheet shell extension, you should create a key called
PropertySheetHandlers, under which you can list the CLSID of all the property sheet shell
extensions for that file class.

In case that sounds a little strange, there are shell extension types that allow you to define
multiple servers for the same file class, to be called sequentially. For instance, it's perfectly
possible to have three COM servers implementing three different extensions to the context menu
for bitmap files. This is true for all the shell extension types except those that handle the
clipboard and dragging-and-dropping with the left button, but I'll wait until discussing these
types later in the chapter before saying more on this issue.

Shell Extensions

477

The following listing shows how the default registry script should be changed to register a property
sheet shell extension correctly.

HKCR
{
 WMFProp.PropPage.1 = s 'PropPage Class'
 {
 CLSID = s '{0D0E3558-8011-11D2-8CDB-505850C10000}'
 }
 WMFProp.PropPage = s 'PropPage Class'
 {
 CLSID = s '{0D0E3558-8011-11D2-8CDB-505850C10000}'
 CurVer = s 'WMFProp.PropPage.1'
 }
 NoRemove CLSID
 {
 ForceRemove {0D0E3558-8011-11D2-8CDB-505850C10000} = s 'PropPage Class'
 {
 ProgID = s 'WMFProp.PropPage.1'
 VersionIndependentProgID = s 'WMFProp.PropPage'
 ForceRemove 'Programmable'
 InprocServer32 = s '%MODULE%'
 {
 val ThreadingModel = s 'Apartment'
 }
 'TypeLib' = s '{0D0E354B-8011-11D2-8CDB-505850C10000}'
 }
 }

 WinMetafile
 {
 Shellex
 {
 PropertySheetHandlers
 {
 {0D0E3558-8011-11D2-8CDB-505850C10000}
 }
 }
 }

 EnhMetafile
 {
 Shellex
 {
 PropertySheetHandlers
 {
 {0D0E3558-8011-11D2-8CDB-505850C10000}
 }
 }
 }
}

The next picture illustrates the state of the registry after the registration of enhanced metafiles. Notice
the presence of three property sheet shell extensions. If we have other shell extensions for enhanced
metafiles — to manage the context menu, for example — they will be registered in the same way but
under a new sub-tree, located at the same level as PropertySheetHandlers.

Chapter 15

478

Now that the shell extension is registered correctly, you should be able to right-click on EMF or
WMF files and get behavior something like this:

Testing Shell Extensions
So far, we've written and registered a shell extension. Now it's time to see if everything works as it
ought to. The only way to run a shell extension is to start up Explorer and perform the action that
causes the shell extension to come into play, but it can be tricky to convince Explorer that your
extension exists!

In certain cases, you will need to log off or even restart the machine to cause the shell to load the
updated version of your extension. In other cases, a simple shutdown of Explorer is fine, and you can
use the Taskbar utility we built back in Chapter 9 to do so. I have also experienced circumstances in
which pressing F5 suffices, but there appears to be no method that will always work, other than
rebooting the machine.

Shell Extensions

479

See the section entitled A Shell Extension Developer's Handbook at the end of this chapter
for more discussion on this topic.

These little difficulties aside, suppose now that you're running your extension. Things get complicated
when you detect an error and need to debug the code to find the point at which the problem is
occurring. Debugging a shell extension is not an intuitive task, and we need to examine carefully how
to proceed.

The first step is to set
explorer.exe as
the executable for
the debug session.
This is necessary
because a shell
extension is a DLL
and not a stand-alone
executable. Note that
you need to specify
the full path to
Explorer:

The next step is to make sure that you have the shell extension project open in the Visual C++ IDE.
The trick is to stop the shell and then cause a new instance of it to run under the debugger, which is
harder than it sounds.

If you simply run the debugger, you cause a new Explorer window to appear, but this doesn't mean
that a new shell process has started. For debugging to take place, you first need to terminate the shell
process without terminating the other processes on the machine. Then, next time you run the
debugger, it will actually create a new, 'debuggable' shell process.

To stop the shell, you can programmatically send a WM_QUIT message to the only window of class
Progman. (I covered this technique in Chapter 9.) To do it manually, follow this procedure:

! Select Shut Down... from the Start menu and click Cancel while holding down Ctrl-Alt-Shift. It's
not an easy thing to do, but it works! When you do this, the taskbar disappears and you'll feel
abandoned by the system, but don't be tempted to reboot the machine! There's nothing wrong
and everything is under control.

! Use the Alt-Tab keys to bring the Visual C++ window to the top, and run the debugger. Now the
taskbar will be visible again. It's a brand new shell process running under the Visual C++
debugger.

! Now do what you would do to debug any program: click on the Build | Start Debug | Go menu
item. When the Explorer window shows up, perform an action that will cause the shell extension
to load. In the sample we've been discussing so far, you could select a WMF file, right-click, and
open the Properties dialog box.

Chapter 15

480

The breakpoints you've put in the
code are now detected as usual, and
cause processing to stop when
they're hit. When you've finished
debugging, double clicking on the
desktop will bring the Task Manager
window to the foreground:

Choose File | Run, launch Explorer, and everything will be restored to the way it was before. I agree
that it's not exactly the kind of thing you'd want to do every day, but it does work.

Interestingly, Control Panel applets — which always comprise a series of tabbed pages — don't run
in Explorer's address space. This means that you can't use the technique described above to debug
them. Instead, you should specify rundll32.exe as the executable for the debug session. (See
Further Reading for more details.)

Debugging under Windows NT
If you want to do your testing under Windows NT, then I recommend that you add a value under the
following key:

HKEY_CURRENT_USER
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer

The value to be added is called DesktopProcess, and it must be a REG_DWORD value set to 1. If
you set it and then log on again, you'll find that the Windows NT shell is divided into two parts — the
desktop, the taskbar and the tray area run in a separate process from folders and files. When you run
Explorer from within the Visual C++ environment now, you really are starting a new process that
you can debug. Moreover, any crashes won't affect the stability of the system desktop.

Unloading a Shell Extension
Another interesting topic of shell extension testing is determining when a shell extension is going to
be unloaded. Like any COM object, a shell extension is the target of a continuous stream of
unloading requests issued through DllCanUnloadNow(). Depending on its internal reference count,
the module can decide whether it may be unloaded.

Shell Extensions

481

There is no automatic mechanism that removes a module whose reference count has become zero
from memory, and so the sooner Explorer calls DllCanUnloadNow(), the sooner an unused shell
extension is unloaded. Note that an unloaded shell extension also means that the module can safely
be recompiled, which is a pretty important aspect to consider during the development process of a
shell extension.

By default, Explorer attempts to unload a shell extension every ten seconds or so. The documentation
claims that you can make such attempts more frequent by setting the Default value of the following
key to 1:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \AlwaysUnloadDll

In my tests on machines running Windows 95/NT with Active Desktop and higher, I didn't see a
great deal of difference — attempts to unload the shell extension appeared to be a bit more frequent,
which I discovered by dumping the time of each unloading attempt to a file. With the retail version of
Windows 95, however, there was a really substantial difference: ten minutes with AlwaysUnloadDll
set to 0, against ten seconds with it set to 1.

More on Property Page Shell Extensions

The above example only worked if you had a
single file selected, but there's nothing to
preventing us from adding a separate
property sheet for each selected file, like this:

The changes required to the code aren't major, and it's even possible to make it so that you can run
both extensions at the same time — Explorer will manage them sequentially. The only drawback is
that you may have additional copies of some property pages. Let's see what changes we need to
make.

Chapter 15

482

Modifying the Code to Support Multiple Selection
The first and most obvious thing to do is change the class declaration of the shell extension to make it
reflect the fact that we no longer have a single file to keep track of, but a list of file names. This list
has an upper limit, though, because prsht.h (the header file for property sheets) limits the number
of pages on any one sheet to 100. The mnemonic constant name is MAXPROPPAGES.

That said, it's very unlikely you'll manage to fit 100 pages on a single tab control — I've noticed the
control never exceeds six rows of pages, giving a more reasonable maximum of 30-35 pages. Here,
then, is the new version of IShellPropSheetExt.h:

// IShellPropSheetExtImpl.h (Multi-selection version)
//
//
#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IShellPropSheetExtImpl : public IShellPropSheetExt
{
public:
 TCHAR m_aFiles[MAXPROPPAGES][MAX_PATH];
 int m_iNumOfFiles;

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IShellPropSheetExtImpl)

 // IShellPropSheetExt
 STDMETHOD(AddPages)(LPFNADDPROPSHEETPAGE, LPARAM)
 {
 return S_FALSE;
 }

 STDMETHOD(ReplacePage)(UINT, LPFNADDPROPSHEETPAGE, LPARAM)
 {
 return E_NOTIMPL;
 }
};

The code in the implementations of both Initialize() and AddPages() also changes slightly.
Here is the new Initialize():

HRESULT CPropPage::Initialize(
 LPCITEMIDLIST pidlFolder, LPDATAOBJECT lpdobj, HKEY hKeyProgID)

{
 if(lpdobj == NULL)
 return E_INVALIDARG;

 // Initialize common controls
 InitCommonControls();

 // Get the data in CF_HDROP format
 STGMEDIUM medium;
 FORMATETC fe = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
 HRESULT hr = lpdobj->GetData(&fe, &medium);
 if(FAILED(hr))
 return E_INVALIDARG;
 HDROP hDrop = static_cast<HDROP>(medium.hGlobal);

Shell Extensions

483

 // Get the number of selected files
 m_iNumOfFiles = DragQueryFile(hDrop, 0xFFFFFFFF, NULL, 0);

 // Normalize it to the maximum number allowed
 m_iNumOfFiles = (m_iNumOfFiles >= MAXPROPPAGES ?
 MAXPROPPAGES : m_iNumOfFiles);

 // Extract and manage all the selected files
 for(int i = 0 ; i < m_iNumOfFiles ; i++)
 DragQueryFile(hDrop, i, m_aFiles[i], MAX_PATH);

 ReleaseStgMedium(&medium);
 return hr;
}

Now all the files are stored in an array of filenames. They will be processed one after another in
AddPages():

HRESULT CPropPage::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage, LPARAM lParam)
{

 for(int i = 0 ; i < m_iNumOfFiles ; i++)
 {
 // Check if the selected file is a metafile
 LPTSTR p = PathFindExtension(m_aFiles[i]);
 if(lstrcmpi(p, __TEXT(".WMF")) && lstrcmpi(p, __TEXT(".EMF")))
 continue;

 // Allocate the string to pass. Will be freed in the dlgproc.
 LPTSTR psz = new TCHAR[MAX_PATH];
 lstrcpy(psz, m_aFiles[i]);

 // Strip path and extension for the title
 LPTSTR pszTitle = PathFindFileName(m_aFiles[i]);
 PathRemoveExtension(pszTitle);

 // Fill out the PROPSHEETPAGE structure
 PROPSHEETPAGE psp;
 ZeroMemory(&psp, sizeof(PROPSHEETPAGE));
 psp.dwSize = sizeof(PROPSHEETPAGE);
 psp.dwFlags = PSP_USEREFPARENT | PSP_USETITLE | PSP_DEFAULT;
 psp.hInstance = _Module.GetModuleInstance();
 psp.pszTemplate = MAKEINTRESOURCE(IDD_WMFPROP);
 psp.pszTitle = pszTitle;
 psp.pfnDlgProc = PropPage_DlgProc;
 psp.lParam = reinterpret_cast<LPARAM>(psz);
 psp.pcRefParent = reinterpret_cast<UINT*>(&_Module.m_nLockCnt);

 HPROPSHEETPAGE hPage = ::CreatePropertySheetPage(&psp);

 // Add the page to the property sheet
 if(hPage != NULL)
 if(!lpfnAddPage(hPage, lParam))
 :: DestroyPropertySheetPage(hPage);
 }
 return NOERROR;
}

Chapter 15

484

There are a few things to note about this version of AddPages(). First of all, I've set the title of the
property page to the name of the file without path and extension, by using some of the functions from
shlwapi.dll that I covered in Chapter 10. Of course, this makes it necessary to #include
<shlwapi.h>, and to link to shlwapi.lib.

Second, one of the comments in the listing refers to having to delete in the dialog procedure the
pointer that was allocated with new in the for loop, and so PropPage_DlgProc() now looks like
this:

BOOL CALLBACK PropPage_DlgProc(
 HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 HWND hwndMeta = GetDlgItem(hwnd, IDC_METAFILE);
 LPPROPSHEETPAGE lppsp = reinterpret_cast<LPPROPSHEETPAGE>(lParam);
 DisplayMetaFile(hwndMeta, reinterpret_cast<LPTSTR>(lppsp->lParam));
 delete [] reinterpret_cast<LPTSTR>(lppsp->lParam);
 return FALSE;
 }
 return FALSE;
}

Finally, the function now distinguishes WMF/EMF files from other types — it accepts the former and
discards the latter. When a number of files are selected, you can't be sure that they will all be of the
same type. That means when you right-click to get the Properties dialog, you won't necessarily be
selecting a file of the expected type, and so there's no guarantee that your extension will be used. For
example, if you select an EMF and a BMP file, and ask for the Properties dialog by right clicking on
the BMP file name, you'll get the dialog for the BMP. On the other hand, if all your files are
metafiles, or if you right-click on a metafile, here's what you could get:

Shell Extensions

485

Context Menu
When it comes to adding new items to a context menu, shell extensions are the most flexible
technique because they give you total control over events. In the previous chapter, I examined a
means of achieving the same task based on registry manipulation, but that involved an external piece
of code coming into play. With shell extensions, you run a piece of code that communicates directly
with the shell, receiving and returning information. If you write and register a context menu shell
extension, you'll be given a chance to specify a menu item string, a status bar description and a
behavior every time the menu is displayed. If you really want to, you can change them each time
programmatically, without having to modify anything in the registry.

Implementing IContextMenu
Arranging a context menu shell extension means writing a COM server that implements the
IContextMenu interface. Apart from this change, you don't need to do anything else that I haven't
already described in the previous example. IContextMenu has three functions, over and above the
three of IUnknown:

! GetCommandString()

! InvokeCommand()

! QueryContextMenu()

They retrieve a description for the menu item, execute some code in response to a click, and add a
new command to the menu respectively.

Help Text for the New Item
GetCommandString() has a prototype like this:

HRESULT GetCommandString(
 UINT idCmd, // ID of the menu command that needs a description
 UINT uFlags, // Specifies what to do (see later)
 UINT* pwReserved, // Reserved. Always set to NULL
 LPSTR pszName, // Buffer to receive the string retrieved (Max 40)
 UINT cchMax // Actual length of the string retrieved
);

The valid uFlags for GetCommandString() are:

Flag Description

GCS_HELPTEXT The shell requires a descriptive string for the item

GCS_VALIDATE The shell simply wants to know whether an item with this ID
exists and is valid

GCS_VERB The shell requires the language-independent name for the verb
the menu item represents

As I explained earlier in the book (check out Chapter 8 in particular), a verb is a name that renders a
command. Verbs can be executed through functions like ShellExecute() and
ShellExecuteEx().

Chapter 15

486

When you add new menu items statically through the registry, the name of the key you create is the
language-independent verb; the command behind it is hidden in a Command sub-key. When you add
items dynamically, you should implement InvokeCommand() to provide a behavior (like the
Command key does), and respond properly to the GCS_VERB flag to let the shell know about the verb
of your new command.

Note that any help text you pass in will be truncated after 40 characters, although passing a longer
string doesn't break anything but the text itself.

A Behavior for the New Item
InvokeCommand() is the method called when the user clicks on a custom context menu item. The
prototype is:

HRESULT InvokeCommand(LPCMINVOKECOMMANDINFO lpici);

The CMINVOKECOMMANDINFO structure looks like this:

typedef struct _CMINVOKECOMMANDINFO
{
 DWORD cbSize;
 DWORD fMask;
 HWND hwnd;
 LPCSTR lpVerb;
 LPCSTR lpParameters;
 LPCSTR lpDirectory;
 INT nShow;
 DWORD dwHotKey;
 HANDLE hIcon;
} CMINVOKECOMMANDINFO, *LPCMINVOKECOMMANDINFO;

Let's examine it in more detail.

Member Description

cbSize The size of the structure.

fMask A bitmask to enable the dwHotkey and hIcon members, and to
prevent any UI action, like message boxes (See later).

hwnd Parent window of the menu.

lpVerb A DWORD given by the ID of the command (with 0 in the high
word), or a string denoting the verb to execute (See later).

lpParameters Always NULL if the interface is called from the shell (See later).

lpDirectory Always NULL if the interface is called from the shell (See later).

nShow An SW_ constant to pass to ShowWindow() if a new application
is started.

dwHotKey The hot key to be assigned to an application started by the
command. Ignored if fMask turns off its specific bit (See later).

hIcon Icon to be assigned to an application started by the command.
Ignored if fMask turns off its specific bit (See later).

Shell Extensions

487

The legal values for fMask are:

Values Description

CMIC_MASK_HOTKEY The dwHotKey member is valid

CMIC_MASK_ICON The hIcon member is valid

CMIC_MASK_FLAG_NO_UI No action that may affect the user interface (creating
windows or message boxes, for example) should be
taken

The lpVerb member is a 32-bit value, and its content can be determined in two ways. It might be the
result of a call to

lpVerb = MAKEINTRESOURCE(idCmd, 0);

Here, idCmd is the ID of the menu item, but lpVerb can also denote the name of the verb to
execute. In this case, the high-order word isn't zero, and the value is really a pointer to a string.

Like the other shell-related interfaces, IContextMenu can also be called from outside the shell,
without a corresponding UI action over a shell element. Once you have an IShellFolder pointer,
for example, you can ask it for an IContextMenu interface on the folder or the file object it's bound
to. Then you can invoke a verb programmatically, using IContextMenu without going through the
shell. In cases like this, lpParameters and lpDirectory might not be NULL.

More likely, you'll use ShellExecuteEx() to call a verb added dynamically by a shell extension.
In this case, you can specify additional parameters and a working directory through the interface of
the function, and these are the arguments that end up filling lpParameters and lpDirectory.
(See Chapter 8 for details about ShellExecuteEx().)

Adding a New Item
While it's creating the context menu for a given file object, the shell asks any registered context menu
shell extension to add its own items by calling QueryContextMenu(). The prototype of this
function is:

HRESULT QueryContextMenu(
 HMENU hmenu, // Handle of the menu to which items are to be added
 UINT indexMenu, // Zero-based index of the first item to be added
 UINT idCmdFirst, // Lowest available command ID for the new item
 UINT idCmdLast, // Highest available command ID for the new item
 UINT uFlags // Attributes that affect the context menu
);

When adding a new menu item, the shell indicates the position at which the first item will be added,
as well as the range of values from which to pick up the command ID. Here's a code snippet that
shows the typical way to insert a new item from within QueryContextMenu():

 idCmd = idCmdFirst;
 lstrcpy(szItem, ...);
 InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION, idCmd++, szItem);

Chapter 15

488

Of all the documented flags available for the uFlags argument, we really only need to worry about
two here: CMF_NORMAL and CMF_DEFAULTONLY. The others are not significant for a 'simple' shell
extension, and apply mostly to namespace extensions (which I'll cover in the next chapter). However,
here's the complete list:

Flags Description

CMF_CANRENAME If set, a namespace extension should add a Rename
item.

CMF_DEFAULTONLY The user double-clicked, so a namespace extension can
add its default item. A shell extension shouldn't do
anything, and in fact it should avoid adding items if this
flag is set.

CMF_EXPLORE Set when the Explorer tree window is open.

CMF_INCLUDESTATIC Ignored by shell extensions.

CMF_NODEFAULT The menu shouldn't have a default item. Ignored by shell
extensions, but namespace extensions should refrain
from defining a default item.

CMF_NORMAL No special situation. Shell extensions can add their
items.

CMF_NOVERBS Ignored by shell extensions. Used for the Send To menu.

CMF_VERBSONLY Ignored by shell extensions. Used for shortcut objects'
menus.

You might be wondering why shell extensions should ignore flags that are useful to namespace
extensions, or apply to special menus like Send To, or shortcuts. Isn't IContextMenu an interface
for shell extensions?

Actually, the answer is no. IContextMenu is a generic COM interface for providing the
functionality of a context menu. Almost all of the system menus can be extended by registering a
context menu handler in the appropriate area of the registry — the shell loads it and thereby provides
the possibility of adding and managing custom items. Thus, IContextMenu can be used to work
outside the Explorer window as well, and I'll show you an example of this later on in the chapter. A
namespace extension is a customized shell view, directly involved in providing a context menu to the
user, so IContextMenu affects namespace extensions too.

The Return Value of QueryContextMenu()
Like other COM functions, QueryContextMenu() returns an HRESULT value. In many cases you
use predefined constants, but just occasionally you need to format a specific return value.
QueryContextMenu() is one of the functions that requires you to do this.

As you probably know, an HRESULT is a 32-bit value whose bits are split into three components:
severity, facility, and code. QueryContextMenu() wants you to return a special value for the code,
and zeros elsewhere. Specifically, you should return the number of menu items added. To format an
HRESULT, the MAKE_HRESULT() macro is extremely helpful:

return MAKE_HRESULT(SEVERITY_SUCCESS, FACILITY_NULL, idCmd - idCmdList);

Shell Extensions

489

A Dependency List for Executables
Let's put everything you've learned about context menus so far into practice. When you walk through
Explorer, you come across hundreds of executables. Wouldn't it be nice if someone could tell you
what libraries those programs reference? The list of the modules statically referenced by a program is
known as its dependency list. (See Further Reading.)

By scanning the binary format of a Win32 executable (and assuming a good understanding of the
Win32 Portable Executable format), it's possible to extract the names of all the DLLs an application
needs. In this example, we're going to implement a tool for this purpose as a context menu for EXE
or DLL files.

Before going any further, let's clarify a few things. Firstly, the tool won't need to run the application —
it will limit itself to examining the bytes. Secondly, it will be capable of retrieving only those DLLs
explicitly imported in the code. This is because only DLLs that are statically linked to the project leave
a footprint in code; if a program loads a DLL dynamically through LoadLibrary(), the DLL is not
referenced in the import table, and we can't trace it.

Creating a Context Menu Extension
I'm not going cover the nitty-gritty details of how to get the dependency list of a Win32 executable,
because it's a pretty complex topic that lies at the margins of this book's scope. If you're interested,
see the Further Reading section for a list of books and articles that cover the subject at the lowest level
of detail. In this example, I'll be using a shortcut that takes advantage of a relatively new system DLL
called ImageHlp. This library doesn't expose a specific function to get the file names, but by making
clever use of one of its routines, there are ways to work it out.

To begin, use the ATL COM AppWizard to create a DLL project called Depends, and add a new
simple object called ExeMenu, accepting all the default options. This will be the object that
implements the interfaces required for a context menu shell extension: IContextMenu and
IShellExtInit. Here are the changes you need to make to the main header file, ExeMenu.h:

#include "resource.h" // Main symbols
#include "IContextMenuImpl.h" // IContextMenu
#include "IShellExtInitImpl.h" // IShellExtInit
#include "DepListView.h" // Dialog
#include <comdef.h> // Interface IDs

//
// CCExeMenu
class ATL_NO_VTABLE CExeMenu :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CExeMenu, &CLSID_CExeMenu>,
 public IShellExtInitImpl,
 public IContextMenuImpl,
 public IDispatchImpl<IExeMenu, &IID_IExeMenu, &LIBID_DEPENDSLib>
{
public:
 CExeMenu()
 {
 }

Chapter 15

490

 TCHAR m_szFile[MAX_PATH]; // Name of the executable
 CDepListView m_Dlg; // Dialog that shows the results

 // IContextMenu
 STDMETHOD(GetCommandString)(UINT, UINT, UINT*, LPSTR, UINT);
 STDMETHOD(InvokeCommand)(LPCMINVOKECOMMANDINFO);
 STDMETHOD(QueryContextMenu)(HMENU, UINT, UINT , UINT, UINT);

 // IShellExtInit
 STDMETHOD(Initialize)(LPCITEMIDLIST, LPDATAOBJECT, HKEY);

DECLARE_REGISTRY_RESOURCEID(IDR_EXEMENU)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CExeMenu)
 COM_INTERFACE_ENTRY(IExeMenu)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(IShellExtInit)
 COM_INTERFACE_ENTRY(IContextMenu)
END_COM_MAP()

// IExeMenu
public:
};

The CExeMenu class derives from IShellExtInitImpl and IContextMenuImpl, two ATL
classes that provide basic implementations of the IShellExtInit and IContextMenu interfaces.
The IShellExtInitImpl.h header file is identical to the one we used in the previous example,
while IContextMenuImpl.h looks like this:

// IContextMenuImpl.h

#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IContextMenuImpl : public IContextMenu
{
public:

 // Data
 TCHAR m_szFile[MAX_PATH];

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IContextMenuImpl)

 // IContextMenu
 STDMETHOD(GetCommandString)(UINT, UINT, UINT*, LPSTR, UINT)
 {
 return S_FALSE;
 }

 STDMETHOD(InvokeCommand)(LPCMINVOKECOMMANDINFO)
 {
 return S_FALSE;
 }

Shell Extensions

491

 STDMETHOD(QueryContextMenu)(HMENU, UINT, UINT , UINT, UINT)
 {
 return S_FALSE;
 }
};

Once again, the implementations here are minimal, to say the least. In other situations, you might
want to prepare more effective classes and increase the quantity of reusable code, but this will suffice
for our purposes. All that remains now is to provide the code for the various functions of the two
interfaces involved, and all that goes in ExeMenu.cpp:

// QueryContextMenu
HRESULT CExeMenu::QueryContextMenu(
 HMENU hmenu, UINT indexMenu, UINT idCmdFirst, UINT idCmdLast, UINT uFlags)
{
 // This shell extension is intended to provide a 'Dependency List'
 // item on the context menu for EXE files.
 UINT idCmd = idCmdFirst;

 // Add the new item
 InsertMenu(hmenu, indexMenu++, MF_STRING | MF_BYPOSITION,
 idCmd++, __TEXT("Dependency &List"));

 return MAKE_HRESULT(SEVERITY_SUCCESS, FACILITY_NULL, idCmd - idCmdFirst);
}

// InvokeCommand
HRESULT CExeMenu::InvokeCommand(LPCMINVOKECOMMANDINFO lpcmi)
{
 // Creates a modal dialog to display the information
 lstrcpy(m_Dlg.m_szFile, m_szFile);
 m_Dlg.DoModal();
 return S_OK;
}

// GetCommandString
HRESULT CExeMenu::GetCommandString(
 UINT idCmd, UINT uFlags, UINT* pwReserved, LPSTR pszText, UINT cchMax)
{
 // We don't care about the command ID, since we have a single item
 if(uFlags & GCS_HELPTEXT)
 lstrcpyn(
 pszText, __TEXT("Displays all the DLLs needed by the module"), cchMax);
 return S_OK;
}

// Initialize
HRESULT CExeMenu::Initialize(
 LPCITEMIDLIST pidlFolder, LPDATAOBJECT lpdobj, HKEY hKeyProgID)
{
 if(lpdobj == NULL)
 return E_INVALIDARG;

 // Get the data as CF_HDROP
 STGMEDIUM medium;
 FORMATETC fe = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
 HRESULT hr = lpdobj->GetData(&fe, &medium);
 if(FAILED(hr))
 return E_INVALIDARG;

Chapter 15

492

 // Get the name of the selected file
 DragQueryFile(reinterpret_cast<HDROP>(medium.hGlobal), 0, m_szFile, MAX_PATH);

 ReleaseStgMedium(&medium);
 return hr;
};

As you can see, the code for Initialize() is nearly identical to what we had in the same function
for our earlier property pages example.

Initializing a Context Menu Extension
I said earlier that the role of the parameters of Initialize() were different for different types of
shell extensions. For context menu extensions, the pidlFolder argument is a PIDL for the folder
that contains the selected file objects. These file objects are pointed to by lpdobj through the
IDataObject interface that we met in the last example. The hKeyProgID parameter specifies the
file class of the selected file object, and if several objects are selected, it refers to the one that has the
focus.

Getting an Executable's Dependency List
My goal for this extension is that when the user clicks on the Dependency List menu item:

The shell will call into the InvokeCommand() method that causes a dialog to pop up. In the
screenshot, notice the text on the status bar, which is the string we provided through
GetCommandString().

Shell Extensions

493

I added a dialog using the ATL Object Wizard, giving it the name DepListView and adding a
public data member called m_szFile to hold the filename:

 enum {IDD = IDD_DEPLISTVIEW};
 TCHAR m_szFile[MAX_PATH];

The initialization of the dialog then takes place in its OnInitDialog() method, which requires
shlobj.h and windowsx.h to be included at the top of DepListView.h:

LRESULT CDepListView::OnInitDialog(
 UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)
{

 // Prepare the listview. Uses functions defined in previous chapters
 HWND hwndList = GetDlgItem(IDC_LIST);
 LPTSTR pszCols[] = {__TEXT("Library"), reinterpret_cast<TCHAR*>(280),
 __TEXT("Version"), reinterpret_cast<TCHAR*>(103)};
 MakeReportView(hwndList, pszCols, 2);

 // Set the file name using an ellipsis if it's too long
 TCHAR szTemp[60] = {0};
 PathCompactPathEx(szTemp, m_szFile, 60, '\\');
 SetDlgItemText(IDC_FILENAME, szTemp);

 // Get the size of the import table
 int iNumOfBytes = GetImportTableSize(m_szFile);
 if(iNumOfBytes <= 0)
 return 0;

 // Get the COM allocator and reserve some memory
 LPMALLOC pM = NULL;
 SHGetMalloc(&pM);
 LPTSTR psz = static_cast<LPTSTR>(pM->Alloc(iNumOfBytes));
 if(psz == NULL)
 {
 ::MessageBox(0, __TEXT("Not enough memory!"), 0, MB_ICONSTOP);
 pM->Release();
 return 0;
 }
 ZeroMemory(psz, iNumOfBytes);

 // Access the import table
 int iNumOfLibs = GetImportTable(m_szFile, psz);
 if(iNumOfLibs <= 0)
 {
 pM->Release();
 return 0;
 }

 int i = 0;
 while(i < iNumOfLibs)
 {
 // p formats a null-separated string for the list view
 TCHAR buf[2048] = {0};
 LPTSTR p = buf;

 lstrcpy(p, psz);
 lstrcat(p, __TEXT("\0"));
 p += lstrlen(p) + 1;

Chapter 15

494

 // Get the version info
 TCHAR szInfo[30] = {0};
 SHGetVersionOfFile(psz, szInfo, NULL, 0);
 lstrcpy(p, szInfo);
 lstrcat(p, __TEXT("\0"));
 p += lstrlen(p) + 1;

 // Add the string
 AddStringToReportView(hwndList, buf, 2);

 // Next library
 psz += lstrlen(psz) + 1;
 i++;
 }

 pM->Release();

 return 1;
}

First, we format the report list view by adding a couple of columns to host the file name and the
version number. Second, we read in the import table for the executable module and format a NULL-
separated string. In order to arrange the dialog you can see here, I've reused some of the functions
that we developed in earlier chapters — in particular, MakeReportView() and
AddStringToReportView() from Chapter 6 and SHGetVersionOfFile() from Chapter 10.

The picture shows the final dialog,
which is composed of a report list
view whose identifier is IDC_LIST,
and a text label named
IDC_FILENAME.

Notice also that I've utilized the PathCompactPathEx() function from shlwapi.dll to force the
file name to a fixed number of characters — it inserts an ellipsis automatically to cut text off when it
gets too long.

I said earlier that I wasn't going to go into detail about exactly how we get the dependency list, but
there are a few things about the process that are worth mentioning. The ImageHlp API, which is
available on both Windows 9x and Windows NT 4.0, provides functions to work on the memory
image that an executable module produces. There are functions to walk the symbols, to map it into
memory, and so on. (See the documentation in the MSDN Library for more information.)

Shell Extensions

495

In particular, we're interested in a function called BindImageEx(), which allows you to get the
virtual address of any function that the executable imports from external libraries. Interestingly (from
our point of view), the function accepts a callback routine to which it passes the name of each DLL it
meets. By hooking these calls, we can easily figure out how many bytes are required to hold the
entire list of names (GetImportTableSize()), and arrange a NULL-separated string with all the
names (GetImportTable()).

We're going to provide these functions by means of a simple DLL, the header file for which
(DepList.h) looks something like this, and should be #include'd at the top of DepListView.h:

#include <windows.h>
#include <imagehlp.h>

// Returns the bytes required to hold the names of the DLLs
int APIENTRY GetImportTableSize(LPCTSTR pszFileName);

// Fills the specified buffer with the name of the DLLs
int APIENTRY GetImportTable(LPCTSTR pszFileName, LPTSTR pszBuf);

The greater part of the source code, of course, comes in DepList.cpp:

#pragma comment(lib, "imagehlp.lib")
#include "DepList.h"

/*--*/
// GLOBAL section
/*--*/

// Data
LPTSTR* g_ppszBuf = NULL;
int g_iNumOfBytes = 0;
int g_iNumOfDLLs = 0;

// Callbacks
BOOL CALLBACK SizeOfDLLs(IMAGEHLP_STATUS_REASON, LPSTR, LPSTR, ULONG, ULONG);
BOOL CALLBACK GetDLLs(IMAGEHLP_STATUS_REASON, LPSTR, LPSTR, ULONG, ULONG);

/*--*/
// Procedure...: GetImportTableSize()
/*--*/
int APIENTRY GetImportTableSize(LPCTSTR pszFileName)
{
 g_iNumOfBytes = 0;

 // Bind to the executable
 BindImageEx(BIND_NO_BOUND_IMPORTS | BIND_NO_UPDATE,
 const_cast<LPTSTR>(pszFileName), NULL, NULL, SizeOfDLLs);
 return g_iNumOfBytes;
}

The prototype of BindImageEx() is as follows:

BOOL BindImageEx(DWORD dwFlags,
 LPSTR pszFileName,
 LPSTR pszFilePath,
 LPSTR pszSymbolPath,
 PIMAGEHLP_STATUS_ROUTINE pfnStatusProc);

Chapter 15

496

You have to specify the filename you want to work with in pszFileName, and this may or may not
include a path. If not, you can use pszFilePath to specify a root path in which to search for
pszFileName. More importantly, this function accepts a callback routine in pfnStatusProc that
gets invoked while the function binds to the specified executable. Here's the prototype of this
callback:

BOOL CALLBACK BindStatusProc(IMAGEHLP_STATUS_REASON Reason,
 LPSTR ImageName,
 LPSTR DllName,
 ULONG Va,
 ULONG Parameter);

The only parameters I'm interested in are Reason and DllName. The purpose of the second of these
is obvious, while the first one lets you filter the numerous calls made to the function for the ones
you're actually interested in. I only want to know how many bytes are needed to store all the modules
referred, and which modules these are. SizeOfDLLs() is a callback function that returns the size of
the file import table, and GetDLLs() returns a NULL-separated string obtained by concatenating the
names of all the modules bound by the call to BindImageEx(). This string is then combined with
version information to produce the output you can see in the previous screenshot.

/*--*/
// Procedure...: GetImportTable
/*--*/
int APIENTRY GetImportTable(LPCTSTR pszFileName, LPTSTR pszBuf)
{
 g_ppszBuf = &pszBuf;
 g_iNumOfDLLs = 0;

 // Bind to the executable
 BindImageEx(BIND_NO_BOUND_IMPORTS | BIND_NO_UPDATE,
 const_cast<LPTSTR>(pszFileName), NULL, NULL, GetDLLs);
 return g_iNumOfDLLs;
}

/*--*/
// Procedure...: SizeOfDLLs()
// Description.: Callback for calculating the size of DLLs
/*--*/
BOOL CALLBACK SizeOfDLLs(IMAGEHLP_STATUS_REASON Reason,
 LPSTR ImageName, LPSTR DllName, ULONG Va, ULONG Parameter)
{
 if(Reason == BindImportModule || Reason == BindImportModuleFailed)
 g_iNumOfBytes += lstrlen(DllName) + 1;
 return TRUE;
}

/*--*/
// Procedure...: GetDLLs()
// Description.: Callback for packaging a string
/*--*/

Shell Extensions

497

BOOL CALLBACK GetDLLs(IMAGEHLP_STATUS_REASON Reason, LPSTR ImageName,
 LPSTR DllName, ULONG Va, ULONG Parameter)
{
 if(Reason == BindImportModule || Reason == BindImportModuleFailed)
 {
 lstrcpy(*g_ppszBuf, DllName);
 *g_ppszBuf += lstrlen(*g_ppszBuf) + 1;
 g_iNumOfDLLs++;
 }
 return TRUE;
}

Finally, the functions are exported by the DepList.def file:

EXPORTS
 GetImportTableSize @1
 GetImportTable @2

At this point, provided that you're set up with all the appropriate import libraries, you should be able
to compile and link the code we've put together so far. We're not quite out of the woods yet, though.

Registering the Extension
This listing shows the modifications that need to be added to the end of the ATL script code in
ExeMenu.rgs in order to register our shell extension.

 Exefile
 {
 Shellex
 {
 ContextMenuHandlers
 {
 {20349851-699F-11D2-9DAF-00104B4C822A}
 }
 }
 }
 Dllfile
 {
 Shellex
 {
 ContextMenuHandlers
 {
 {20349851-699F-11D2-9DAF-00104B4C822A}
 }
 }
 }

}

With these changes in place, you'll find that next time you start the shell, the context menu generated
by right clicking on DLL or EXE files will have the new Dependency List item we've been working
towards.

Chapter 15

498

Adding a New Find Menu

Another interesting use we can make of context menu
extensions is to customize the list that appears next to
the Find menu. For example, we could add a tool that
lets us find all the currently running processes under
Windows 9x and Windows NT.

Provided that
we have a valid
context menu,
adding a new
'find' utility is
just a matter of
writing a few
pieces of
information to
the registry:

Under the Static key you can see, we need to add a new key called, say, FindProcess, and make
it the root of a new sub-tree. The Default value of this key must be the CLSID of the context menu
extension. Below that, the Default value of the key named 0 is the string to be displayed in the
menu. Finally, by adding a sub-key called DefaultIcon to the 0 key, you can assign an icon to the
item.

Shell Extensions

499

With a little thought, you'll realize that this is a strange and rather minimal shell extension. We don't
need any initialization, because there's no file to work with. We don't need a description, because
there's no status bar. We don't even need to add a new item explicitly, because the shell does this
when it reads the registry. In fact, why we need a shell extension to customize the Find menu at all is
a mystery to me!

Because the Find menu is also available through Explorer, you might think that a description is
necessary, but a quick examination of the items already in the menu will show you that this is
not the case. The complexity of creating a context menu shell extension reduces to implementing
only the InvokeCommand() method that actually runs the 'find' utility.

Configuring the Registry
Writing a context menu shell extension that works as a new 'find' utility takes very little effort, as the
following code demonstrates. Here are the four interface methods that required rather more effort
when we implemented them in ExeMenu.h:

// QueryContextMenu
HRESULT CProcess::QueryContextMenu(
 HMENU hmenu, UINT indexMenu, UINT idCmdFirst, UINT idCmdLast, UINT uFlags)
{
 return S_OK;
}

// InvokeCommand
HRESULT CProcess::InvokeCommand(LPCMINVOKECOMMANDINFO lpcmi)
{
 m_Dlg.DoModal();
 return S_OK;
}

// GetCommandString
HRESULT CProcess::GetCommandString(
 UINT idCmd, UINT uFlags, UINT* pwReserved, LPSTR pszText, UINT cchMax)
{
 return S_OK;
}

// Initialize
HRESULT CProcess::Initialize(
 LPCITEMIDLIST pidlFolder, LPDATAOBJECT lpdobj, HKEY hKeyProgID)
{
 return S_OK;
};

Chapter 15

500

A little more complicated is the script that's required for configuring the registry. Note that what
follows extends and does not replace the original script. This code should be added at the bottom of
the RGS file that ATL writes for you.

HKLM
{
 Software
 {
 Microsoft
 {
 Windows
 {
 CurrentVersion
 {
 Explorer
 {
 FindExtensions
 {
 Static
 {
 FindProcess = s '{977DA8D2-41D5-11D2-BC00-AC6805C10E27}'
 {
 0 = s 'Find &Process...'
 {
 DefaultIcon = s '%MODULE%,0'
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

Finding the Running Processes
Enumerating the running processes requires different techniques under Windows 9x and Windows
NT 4.0 — the former provides a valuable set of functions in ToolHelp.dll, while the latter does
not. Under Windows NT, you have to resort to a quite different library called PSAPI.dll.

PSAPI.dll ships with Windows NT 4.0, but it isn't always copied to your hard drive during
installation. Nevertheless, on the Visual C++ CD you will find the two files you need to use PSAPI,
namely psapi.h and psapi.lib.

I'm not going to cover the details of this procedure here because they are beyond the scope of the
book. However, I'll list some resources in the Further Reading section at the end of the chapter, and
the source code on the Wrox web site includes a project that incorporates all this material.

IContextMenu2 and IContextMenu3
With the introduction of Internet Explorer 4.0, two new context menu interfaces have been added,
both of which are improvements over IContextMenu. More precisely, IContextMenu2 can be
considered an extension of IContextMenu, while IContextMenu3 (which requires Internet
Explorer 4.01) enhances IContextMenu2.

Shell Extensions

501

Both interfaces, however, only have one more function than IContextMenu. To add to the
confusion, the 'extra' function in IContextMenu2 is called HandleMenuMsg(), while the one in
IContextMenu3 is called HandleMenuMsg2(). The prototypes are similar:

HRESULT HandleMenuMsg(UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

HRESULT HandleMenuMsg2(UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* plResult);

These new interfaces extend IContextMenu by providing support for owner-drawn (and bitmapped)
context menus. In particular, HandleMenuMsg() lets you intercept and handle three system
messages:

! WM_INITMENUPOPUP

! WM_MEASUREITEM

! WM_DRAWITEM

The last two of these only come into play if you have owner-drawn menu items. For its part,
HandleMenuMsg2() adds a fourth message to the list of the mirrored messages: WM_MENUCHAR.
Documentation on this subject may be found in the Internet Client SDK.

Right-hand Drag & Drop

The Windows shell provides the possibility of dragging
and dropping files from one directory to another, but if
you hold down the right mouse button as you perform
the operation, the behavior is modified: you are
prompted with a menu. It's not the most-used feature of
Windows, but it allows you to decide what to do after
dragging a set of file objects:

Windows provides a typical menu for this operation, as shown in the figure. It also considers what
operations are valid as a result of the action — you won't get the Move Here item if you're dropping in
the same folder as the source, for example. Accordingly, right-hand drag-and-drop doesn't support
keyboard modifiers like Ctrl or Shift that allow you to change the result of the operation on the fly. All
the available options are listed in the final menu.

Chapter 15

502

You can add custom items here too — an ordinary context menu extension will suffice. However,
even though drag-and-drop handlers and context menu handlers are the same thing from a
programming standpoint, they differ quite a bit when it comes to registration.

Registering Drag & Drop Handlers
Right-hand drag-and-drop handlers don't work on the basis of file types, so you can't install them to
work on ZIP files alone, for example. They only apply to directories. A typical registration script is
the following, in which I'm registering a right-hand drag-and-drop handler to work on the contents of
directories.

HKCR
{

 Directory
 {
 Shellex
 {
 DragDropHandlers
 {
 RightDropDemo = s '{20349851-699F-11D2-9DAF-00104B4C822A}'
 }
 }
 }

}

The first thing to note is that your registry entry goes under the DragDropHandlers key, instead of
ContextMenuHandlers. Furthermore, you need to create a specific sub-key and set its Default
value to the CLSID. The name of the sub-key doesn't actually matter, as Explorer will enumerate the
entire contents of the DragDropHandlers tree.

As usual, the first method called in the extension is IShellExtInit::Initialize(), and here
you can perform a check on the types of the files selected. The input arguments respectively give you
the PIDL of the target folder where the user dropped, the data object (from which you can retrieve
the files being acted upon) and the registry key that contains information about the type of the file
with the focus.

By arranging a check on the file extensions, you can avoid doing work on any file types for which it
would be undesirable or unnecessary to do so. This approach is completely different from what we
have been doing so far. For drag-and-drop handlers, you register all your shell extensions in the same
tree, and during initialization you can decide whether the files selected are of interest. To abort a
shell extension, simply return E_FAIL from Initialize(). Here's an example in which I assume a
class called CDropExt that implements IContextMenu and IShellExtInit.

STDMETHODIMP CDropExt::Initialize(
 LPCITEMIDLIST pidlFolder, LPDATAOBJECT lpdobj, HKEY hkeyProgID)
{
 FORMATETC fe = {CF_HDROP, NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};
 STGMEDIUM medium;

 HRESULT hr = lpdobj->GetData(&fe, &medium);
 if(FAILED(hr))
 return E_FAIL;

Shell Extensions

503

 TCHAR szFile[MAX_PATH] = {0};
 HDROP hdrop = static_cast<HDROP>(medium.hGlobal);

 // Get the number of dragged files
 UINT cFiles = DragQueryFile(hdrop, 0xFFFFFFFF, NULL, 0);

 // Process the files one after another
 for(int i = 0 ; i < cFiles ; i++)
 {
 // Get the ith file name
 DragQueryFile(hdrop, i, szFile, MAX_PATH);

 // Check the extension and return E_FAIL to stop
 }

 return S_OK;
}

In the code above, I scan the list of dragged files (obtained through IDataObject), get the name of
each file in turn and check the extension to decide whether or not it is of a supported type.

Right-hand drag-and-drop handlers work on the files that are the source of a drag-and-drop operation,
provided that the operation is carried out with the right-hand mouse button. This is different from the
DropHandler sample that I'll show later on in the chapter, which applies to the target of a drop
action.

If you take a look at the contents of the registry on your PC, you'll find that no program registers
drag-and-drop extensions for a given file type, as occurs for context menu handlers. WinZip, one of
the very few 'must-have' utilities, works in exactly this way: its shell extension is always in the
background when you 'right-drop' files, but it only pops up if you drop a ZIP file.

Assigning Dynamic Icons
The property sheets and context menus we've examined so far are two of the more exciting and
generally useful applications of shell extensions, but they are definitely not the only ones. In this
section, I'll be delving deep inside dynamic icons. In other words, I'll show how to have different
icons for different files that are essentially of the same type.

Think about EXE files. Each time you met one of them in a shell view, the icon displayed is not a
generic icon for that file type, but an icon that belongs to the file itself (unless, of course, the EXE
doesn't contain an icon). This is true for ICO files as well.

In fact, this has been a feature of the shell ever since Windows 95, so it's quite likely that you've
never given it much thought. Nevertheless, the dynamic assignment of icons to files of a certain type
is a precise behavior that the shell provides through shell extensions.

I'm going to present an example in which I'll be showing you how to apply the technique to BMP
files. Don't worry, I'm not talking about providing a 16 x 16 pixel preview of any bitmap you may
have — it would be a painful activity to crunch an 800 x 600 true color picture down to the size of a
small icon! What I have in mind is to exploit the icon to provide information about the bitmap at a
glance. How about having a different icon to reflect the palette size of the BMP file?

Chapter 15

504

Different Icons for Different Color Depths
Basically, I'm going to distinguish four cases and assign a different icon to each one:

! Monochromatic bitmaps
! 16 colors (4-bit)
! 256 colors (8-bit)
! True color bitmaps (24-bit or greater)

The idea is that we'll define an IconHandler shell extension (named after the key you place in the
registry) and let it examine the color table of each bitmap file, in order to return the correct icon for
Explorer to display. An IconHandler shell extension requires you to implement the following
COM interfaces:

! IExtractIcon
! IPersistFile

The first of these is intended to facilitate the communication between your module and Explorer. In
other words, Explorer will call methods of the IExtractIcon interface to ask for the icon to display
with the file loaded through the IPersistFile interface.

Notice that since this extension doesn't apply only to selected files but to any file,
initialization is carried out via IPersistFile rather than IShellExtInit.

Initializing the IconHandler Extension
The IPersistFile interface is composed of six functions above the three of IUnknown, with the
following prototypes:

HRESULT GetClassID(LPCLSID lpClsID);
HRESULT IsDirty();
HRESULT Load(LPCOLESTR pszFileName, DWORD dwMode);
HRESULT Save(LPCOLESTR pszFileName, BOOL fRemember);
HRESULT SaveCompleted(LPCOLESTR pszFileName);
HRESULT GetCurFile(LPOLESTR* ppszFileName);

You'll be pleased to know that for the purposes of shell extensions, you don't have to implement all
of these methods. In fact, the Load() method will suffice; for all the others, we'll just return
E_NOTIMPL. Load() lets us store the name of the bitmap file for which the icon is necessary, so all
we have to do is convert the file name from Unicode to ANSI, and save it to a data member for
further use.

Retrieving the Icon
There are two possible ways for Explorer to get the icon to display, and each passes through a
method of IExtractIcon. The methods are:

! GetIconLocation()

! Extract()

Shell Extensions

505

The first of these is intended to return the path and index of the icon to use, together with some flags
that instruct the shell how to handle it. Explorer calls the second, on the other hand, in order to give
the extension a chance to extract the icon itself. Let's have a look at them in more detail, starting with
GetIconLocation():

HRESULT GetIconLocation(
 UINT uFlags, // The reasons for which an icon is needed
 LPSTR szIconFile, // Buffer to contain the path name of the icon
 INT cchMax, // Size of the above buffer
 LPINT piIndex, // Ptr to an int that will contain the icon index
 UINT* pwFlags); // Sends information to the shell about the icon

The uFlags argument is not especially useful for our purposes here, but it may be helpful if you're
working with folders instead of bitmaps, or with files in general — one of the things it lets you know is
whether the icon is required in the 'open' state.

The other 'flag' parameter, pwFlags, allows us to tell the shell about the points listed below:

Flag Description

GIL_DONTCACHE Prevents Explorer from storing the icon in its internal cache.

GIL_NOTFILENAME The information passed through szIconFile and
piIndex don't evaluate to a <path, index> pair.

GIL_PERCLASS The icon should be used for any document of the class. This
flag is no use in our case, because we want to obtain the
exact opposite! However, Microsoft itself recommends that
you use the registry if you want to assign the same icon to
all the files of a class. (See Chapter 14 for details.)

GIL_PERINSTANCE The icon is assigned to a specific document. Each document
of the class has its own icon. This is just what I want to
obtain.

GIL_SIMULATEDOC The icon is needed to create a document icon.

When Explorer needs to display an icon for a file, it first looks for a registered IconHandler
extension. If it finds one, it initializes the module with the given file by calling the
IPersistFile::Load() function. Next, it asks the extension to provide a path name and an index
for the icon by calling IExtractIcon::GetIconLocation(). Explorer now expects to receive all
the information it needs to retrieve the icon; if GetIconLocation() fails, the shell goes on as if the
extension had never been found.

If GetIconLocation() succeeds, it should return S_OK. If it returns S_FALSE, the shell will use
the default icon specified in the DefaultIcon registry key.

When GetIconLocation() returns, Explorer examines the pwFlags argument. If the
GIL_NOTFILENAME bit is turned on, it assumes that the extension wants to extract the icon itself. It
invokes the Extract() method, passing in the things it received through szIconFile and
piIndex. From Extract(), Explorer expects to receive a pair of HICONs for the small and large
icon. It's defined like this:

Chapter 15

506

HRESULT Extract(
 LPCSTR pszFile, // Value ret'd by GetIconLocation through szIconFile
 UINT nIconIndex, // Value ret'd by GetIconLocation through piIndex
 HICON* phiconLarge, // Ptr to an HICON to receive the lge icon handle
 HICON* phiconSmall, // Ptr to an HICON to receive the sml icon handle
 UINT nIconSize); // Desired size of the icon in pixels. Low word
 // for the large icon; high word for the small icon

This function must ensure that Explorer gets handles to a large and a small icon for the file. More
importantly, the function should return S_FALSE to prevent Explorer from extracting the icon itself.
In most cases, you don't need to implement Extract(), but even then you should arrange for it to
return S_FALSE rather than E_NOTIMPL.

Details of the Example

To demonstrate this technique, we're going to create an ATL DLL project called BmpIcons. The
following picture shows the icons that I used to identify the various bitmaps, but of course you're free
to come up with your own:

The four icons are for monochromatic, 16-, 256-, and true-color bitmaps respectively; I added them
to my project as resource files with the names BmpMono.ico, Bmp16.ico, Bmp256.ico and
Bmp24.ico respectively.

Next, add a simple ATL object called Icon to the project. The CIcon class this generates will need
to inherit from both IExtractIconImpl and IPersistFileImpl, two ATL classes that provide a
basic implementation for the IExtractIcon and IPersistFile interfaces:

// IExtractIconImpl.h

#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IExtractIconImpl : public IExtractIcon
{
public:

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IExtractIconImpl)

 // IExtractIcon
 STDMETHOD(Extract)(LPCSTR, UINT, HICON*, HICON*, UINT)
 {
 return S_FALSE;
 }

 STDMETHOD(GetIconLocation)(UINT, LPSTR, UINT, LPINT, UINT*)
 {
 return S_FALSE;
 }
};

Shell Extensions

507

For our purposes, Extract() as defined here is fine — we don't need to override it in the source
code for CIcon. The situation when we turn to considering IPersistFile is even better, because
we can put everything into the 'Impl' class, making it highly reusable:

// IPersistFileImpl.h

#include <AtlCom.h>

class ATL_NO_VTABLE IPersistFileImpl : public IPersistFile
{
public:
 TCHAR m_szFile[MAX_PATH];

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IPersistFileImpl)

 // IPersistFile
 STDMETHOD(GetClassID)(LPCLSID)
 {
 return E_NOTIMPL;
 }

 STDMETHOD(IsDirty)()
 {
 return E_NOTIMPL;
 }

 STDMETHOD(Load)(LPCOLESTR wszFile, DWORD /*dwMode*/)
 {
 USES_CONVERSION;
 lstrcpy(m_szFile, OLE2T(wszFile));
 return S_OK;
 }

 STDMETHOD(Save)(LPCOLESTR, BOOL)
 {
 return E_NOTIMPL;
 }

 STDMETHOD(SaveCompleted)(LPCOLESTR)
 {
 return E_NOTIMPL;
 }

 STDMETHOD(GetCurFile)(LPOLESTR*)
 {
 return E_NOTIMPL;
 }
};

Chapter 15

508

The declaration of our shell extension looks like this:

#include "resource.h"
#include "IPersistFileImpl.h"
#include "IExtractIconImpl.h"
#include <comdef.h>

//
// CIcon
class ATL_NO_VTABLE CIcon :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CIcon, &CLSID_Icon>,
 public IExtractIconImpl,
 public IPersistFileImpl,
 public IDispatchImpl<IIcon, &IID_IIcon, &LIBID_BMPICONSLib>
{
public:
 CIcon()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_ICON)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CIcon)
 COM_INTERFACE_ENTRY(IIcon)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(IPersistFile)
 COM_INTERFACE_ENTRY(IExtractIcon)
END_COM_MAP()

// IExtractIcon
 STDMETHOD(GetIconLocation)(UINT, LPSTR, UINT, LPINT, UINT*);

// IIcon
public:

private:
 int GetBitmapColorDepth();
};

Now we just need to give a body to GetIconLocation(), which is the core function for icon
handlers. I've also added a private helper function called GetBitmapColorDepth().

HRESULT CIcon::GetIconLocation(
 UINT uFlags, LPSTR szIconFile, UINT cchMax, LPINT piIndex, UINT* pwFlags)
{
 // We store ourselves the icons
 ::GetModuleFileName(_Module.GetModuleInstance(), szIconFile, cchMax);

 // Analyze the bitmap color table
 int iBitCount = GetBitmapColorDepth();
 if(iBitCount < 0)
 return S_FALSE;

 switch(iBitCount)
 {
 case 1:
 *piIndex = 0; // Monochrome
 break;

Shell Extensions

509

 case 4:
 *piIndex = 1; // 16 colors
 break;

 case 8:
 *piIndex = 2; // 256 colors
 break;

 default:
 *piIndex = 3; // True color
 }

 *pwFlags |= GIL_PERINSTANCE | GIL_DONTCACHE;
 return S_OK;
};

int CIcon::GetBitmapColorDepth()
{
 // Read file header
 HFILE fh = _lopen(m_szFile, OF_READ);
 if(fh == HFILE_ERROR)
 return -1;

 BITMAPFILEHEADER bf;
 _lread(fh, &bf, sizeof(BITMAPFILEHEADER));

 BITMAPINFOHEADER bi;
 _lread(fh, &bi, sizeof(BITMAPINFOHEADER));
 _lclose(fh);

 // Returns
 return bi.biBitCount;
};

With this, the source code for the shell extension is complete, but we still have to consider the thorny
issue of registration. Like any shell extension, if you miss something while registering it, you'll be
unable to put the extension to work properly.

Registering the Icon Handler
An icon handler shell extension follows the same pattern as other shell extensions, although once
again it uses a different key. On this occasion, you need to create an IconHandler key under the
ShellEx key of the involved document class. For bitmaps (and provided that you use Microsoft
Paint to open them), the key is:

HKEY_CLASSES_ROOT
 \Paint.Picture
 \ShellEx
 \IconHandler

Then, set the Default key to the object CLSID, and this time you should also set the DefaultIcon
key to %1, to let Explorer know that the icon should be determined on a file-by-file basis. Normally,
the DefaultIcon key contains a comma-separated string with a filename and an icon index.

Chapter 15

510

Here's the non-standard portion of the ATL-generated script:

HKCR
{
 // Object registration

 Paint.Picture
 {
 DefaultIcon = s '%%1'
 ShellEx
 {
 IconHandler = s '{A2B00480-425A-11D2-BC00-AC6805C10E27}'
 }
 }

}

Note that for the DefaultIcon key to take on the value %1, we need to use a double
percentage sign (%%).

To make sure that everything's working properly, it's safest to restart the system or log off. Notice that
the old value of the DefaultIcon key is overwritten, so you might want to keep a note of it
somewhere for safe keeping. Finally, here's how the shell extension changes your view of the shell:

You can't have more IconHandler extensions for the same file class. If you register more, only the
first one is considered.

Monitoring Folders through ICopyHook
A dream for many programmers is the ability to write a utility to monitor what's going on in the file
system. There may be many reasons for this, but testing applications, debugging and just plain
curiosity are certainly among them.

In Chapter 7 we discussed notification objects, which notify your application when something
changes in the file system or within a specified folder. Unfortunately, under Windows 95 and
Windows 98 there's no way to know which files caused the notification to be raised. In other words,
you know that something changed in the watched folder, but then it's completely up to you to figure
out exactly what happened. Under Windows NT, things are a little better thanks to a platform-
specific function called ReadDirectoryChangesW().

Shell Extensions

511

Even though a number of Windows NT 4.0 functions have been ported to the Windows 9x
platform with Windows 98, ReadDirectoryChangesW() is not among them. Instead,
functions like MoveFileEx(), CreateFiber() and CreateRemoteThread() are
now available under Windows 98.

Help is at hand: the Windows shell documents an interface called ICopyHook that can be employed
to perform similar tasks. Basically, it lets you monitor any copy, move, rename or delete operations
that occur within a folder. At first sight, it looks really exciting, but unfortunately there are three
serious shortcomings that limit the usefulness of this extension:

! It only applies to folders and printers, not to file types
! It only allows you to permit or deny the operation, not to perform it yourself
! It only lets you know about the beginning of an operation, not about its end

For my next example, I'm going to create an ATL project that demonstrates how to implement this
interface to build up a directory-watching tool.

Implementing ICopyHook
For this example I created a DLL project with the ATL COM AppWizard and called it Copy,
accepting all the default options. Once it had been generated, I used the Object Wizard to add a
simple ATL object called Monitor, and made these changes to the header file Monitor.h:

#include "resource.h"
#include "ICopyHookImpl.h"

///
// CMonitor
class ATL_NO_VTABLE CMonitor :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMonitor, &CLSID_Monitor>,
 public IShellCopyHookImpl,
 public IDispatchImpl<IMonitor, &IID_IMonitor, &LIBID_COPYLib>
{
public:
 CMonitor()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_MONITOR)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMonitor)
 COM_INTERFACE_ENTRY(IMonitor)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_IID(IID_IShellCopyHook, CMonitor)
END_COM_MAP()

Chapter 15

512

// ICopyHook
public:
 STDMETHOD_(UINT, CopyCallback)(HWND hwnd, UINT wFunc, UINT wFlags,
 LPCSTR pszSrcFile, DWORD dwSrcAttribs,
 LPCSTR pszDestFile, DWORD dwDestAttribs);

// IMonitor
public:
};

You've probably already noticed that the COM map is a little different from the rest of our examples
so far because of the new COM_INTERFACE_ENTRY_IID() macro, which I'll discuss in a moment.
The CMonitor class is derived from IShellCopyHookImpl, which in turn inherits from
ICopyHook:

#include <AtlCom.h>
#include <ShlObj.h>

class ATL_NO_VTABLE IShellCopyHookImpl : public ICopyHook
{
public:

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IShellCopyHookImpl)

 // ICopyHook
 STDMETHOD_(UINT, CopyCallback)(HWND hwnd, UINT wFunc, UINT wFlags,
 LPCSTR pszSrcFile, DWORD dwSrcAttribs,
 LPCSTR pszDestFile, DWORD dwDestAttribs);
};

Having seen the earlier examples, most of this procedure should already be looking pretty familiar.
The ICopyHook interface requires you to implement a single function called CopyCallback(),
which is basically just a filter built on top of SHFileOperation() (see Chapter 3). It 'catches' all
the operations that go through that function, and your implementation can permit or refuse them to
take place. Not surprisingly, the prototype of CopyCallback() looks rather like
SHFileOperation().

UINT CopyCallback(
 HWND hwnd, // Parent of any window displayed by handler
 UINT wFunc, // The operation to carry out (see Ch 3)
 UINT wFlags, // Attributes of the operation (see Ch 3)
 LPCSTR pszSrcFile, // Source file for the operation
 DWORD dwSrcAttribs, // DOS attributes of the source file
 LPCSTR pszDestFile, // Target file for the operation
 DWORD dwDestAttribs); // DOS attributes of the target file

CopyCallback() returns an UINT that evaluates to one of the typical MessageBox() return
constants: IDYES, IDNO, IDCANCEL. Depending on the value returned, the operation will continue,
be rejected, or be canceled respectively. Rejection means that just this one operation won't execute,
whereas cancellation, on the other hand, means that all pending operations will also be canceled.

Shell Extensions

513

What's ICopyHook's IID?
While developing my first CopyHook extension, I took it for granted that the interface ID of
ICopyHook would be IID_ICopyHook, so I was surprised when the compiler started complaining
about an undeclared identifier. Curiously, the IID of ICopyHook is not IID_ICopyHook, but
IID_IShellCopyHook.

This fact posed a little problem with ATL code that declares the COM map of the server object. After
you've added a new Monitor object to an ATL project, the code in the header file looks like this:

BEGIN_COM_MAP(CMonitor)
 COM_INTERFACE_ENTRY(IMonitor)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

The COM map is responsible for your object's implementation of QueryInterface(), and so in
order to expose the ICopyHook interface, and as we've been doing in the other examples up to this
point, I added a line like this:

BEGIN_COM_MAP(CMonitor)
 COM_INTERFACE_ENTRY(IMonitor)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ICopyHook)
END_COM_MAP()

As I've said, this is what caused the compilation error. To fix it, I had to inform ATL that the
interface to expose is ICopyHook, but that its IID isn't IID_ICopyHook. Fortunately, the designers
of ATL have pre-empted this problem, and there's a COM_INTERFACE_ENTRY macro for dealing
with exactly this kind of situation:

BEGIN_COM_MAP(CMonitor)
 COM_INTERFACE_ENTRY(IMonitor)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_IID(IID_IShellCopyHook, CMonitor)
END_COM_MAP()

This macro tells ATL to use the vtable of the class named in the second parameter as the
implementation of the interface identified by the first parameter, which is exactly what we need.

Logging the Operations
The extension we're going to create here will simply compose and output strings to a log file. The
strings will include the names of the source and target files, the type of operation, and the time at
which it took place. Here's the implementation of CopyCallback():

UINT CMonitor::CopyCallback(HWND hwnd, UINT wFunc, UINT wFlags,
 LPCSTR pszSrcFile, DWORD dwSrcAttribs,
 LPCSTR pszDestFile, DWORD dwDestAttribs)
{
 TCHAR szTime[50] = {0};
 GetTimeFormat(LOCALE_SYSTEM_DEFAULT, 0, NULL, NULL, szTime, 50);

 FILE* f = NULL;
 f = fopen(__TEXT("c:\\monitor.log"), __TEXT("a + t"));
 fseek(f, 0, SEEK_END);

Chapter 15

514

 switch(wFunc)
 {
 case FO_MOVE:
 fprintf(f, __TEXT("\n\n\rMoving:\n\r[%s] to [%s]\n\rat %s"),
 pszSrcFile, pszDestFile, szTime);
 break;

 case FO_COPY:
 fprintf(f, __TEXT("\n\n\rCopying:\n\r[%s] to [%s]\n\rat %s"),
 pszSrcFile, pszDestFile, szTime);
 break;

 case FO_DELETE:
 fprintf(f, __TEXT("\n\n\rDeleting:\n\r[%s] \n\rat %s"),
 pszSrcFile, szTime);
 break;
 }

 fclose(f);

 // Do not hamper the normal flow
 return IDYES;
}

Registering a CopyHook Extension
To register a CopyHook extension, you need to create a CopyHookHandlers key under the
ShellEx key of the type of file you want to hook. Below CopyHookHandlers, create a new key
with any name you like — the shell simply enumerates all the sub-keys it finds. The Default value of
this one should point to the CLSID of the extension.

Here's how the ATL registry script code changes, (I've chosen to identify our custom key by the name
Monitor):

HKCR
{
 // Object registration

 Directory
 {
 ShellEx
 {
 CopyHookHandlers
 {
 Monitor = s '{7842554E-6BED-11D2-8CDB-B05550C10000}'
 }
 }
 }

}

In this case, we're registering the extension to work on directories. You can try to register it to apply
to file types (like exefile), but the shell will never invoke the extension if you do. This behavior is
by design.

Shell Extensions

515

Here's a typical log file:

Monitorable Objects
Despite my warning about files, directories are not the only objects that can be monitored by a
CopyHook extension — printers and drives can be watched as well. To hook on printers, you need to
register your server under the HKEY_CLASSES_ROOT\Printers key; this is the trick that allows
some printer managers to pop up with their own user interface each time you print.

The Internet Client SDK documentation claims that you can register a CopyHook extension under
the * key, which might lead you to believe that this is a way to monitor operations on files, but sadly
this is untrue. In my experience, there is no way to hook for single files being copied or moved.

More on Copy Hooking
I said earlier that the shell doesn't notify your extension about the result (success, failure, abort) of the
hooked operation. However, since you know the directories involved in the operation, you could try
to detect it yourself by using a notification object (see Chapter 7). By installing such an object on both
the source and the target path, you would know when something changes in either. Then, through
simple checks, you could discover how things went. For a copy, for example, you could verify
whether the target directory contains a file with the same name as the source.

Actually, it's not quite that easy, because SHFileOperation() (which lies behind the hook)
can allow files to be renamed on collision, so the system assigns the target a different name from
the source. The principle, though, is sound.

I started investigating CopyHook extensions when I was developing a product whose basic document
was composed of a collection of files. If my customers wanted to manage documents through the shell
(and not just through the program), they had to remember the inner structure of the document and be
sure to copy or delete all its components. My idea was to hook on copy, move, rename and delete
operations, and then to make sure that all relevant files were affected by changes to any one of them.
As I've explained, though, this seems to be impossible, and so the program I was developing ended
up using compound files and OLE structured storage instead.

Chapter 15

516

Dropping Data over a File
A common feature of Win32 programs is the ability to select files from Explorer's window, drop them
over the client area of a program, and have it detect and handle the data received. I've presented
examples of this feature in earlier chapters, particularly in Chapter 6.

What I'll try to do here is a bit different. I want to be able to handle the same drop event when its
target is a single file of a certain type in the Explorer window or the Windows desktop. Once again,
the first example that comes to mind is WinZip: if you try to drag-and-drop one or more files over an
existing .zip file, you'll notice that the mouse cursor changes to the typical 'add' cursor (an arrow
with a plus sign). As soon as you drop, the file is compressed and added to the archive. This behavior
is obtained through another type of shell extension: DropHandler.

The DropHandler Extension
A DropHandler extension derives from IDropTarget and IPersistFile, and must be
registered under:

HKEY_CLASSES_ROOT
 \<FileClass>
 \ShellEx
 \DropHandler

Where <FileClass> is obviously the name that identifies the types of documents to which you
want the extension to apply.

As usual, the Default value should be the CLSID of the server. Note that DropHandler doesn't
allow multiple handlers to be in operation for the same file type at the same time. This is also hinted
at by the fact that the name of the registry key is not plural.

The IDropTarget Interface
Before going on with a couple of examples, have a look at the methods of IDropTarget. They are
all invoked after the drag-and-drop has started, and when the mouse moves around a possible target:

Method Description

DragEnter() The mouse entered a possible target that should decide
whether data can be accepted or not

DragOver() The mouse is moving over a possible target

DragLeave() The mouse left the drop area

Drop() The drag-and-drop has finished

In general, a possible target for an OLE drag-and-drop operation is a window (or a portion of a
window) that registered itself through the RegisterDragDrop() function. When the module that
originates and governs the drag-and-drop (the source) detects a window underneath the mouse, it
verifies whether drag-and-drop support exists. If it does, the source gets a pointer to the
IDropTarget interface exposed by the window and starts invoking the above methods.

Shell Extensions

517

Under the hood, this simply means checking whether the HWND has a certain property that
contains the pointer to the IDropTarget interface. By 'property' here, I mean a 32-bit data
handle attached to a window via the SetProp() API function.

DragEnter() gets called when the mouse enters an area that's a potential target. An IDropTarget
interface is always associated with a window, but by coding DragEnter() properly, you can treat
any area as a possible drop target. The prototype of the method is:

HRESULT IDropTarget::DragEnter(LPDATAOBJECT pDO,
 DWORD dwKeyState,
 POINTL pt,
 DWORD* pdwEffect);

It receives a pointer to an IDataObject interface that contains the data being dragged. The other
parameters are a 32-bit value to denote the state of the keyboard, the position of the mouse in screen
coordinates, and a buffer to fill with the effect allowed for the operation. In other words, the method
is expected to analyze the incoming data, the mouse position and the state of the keyboard in order to
determine whether it can accept the drop. By this means, you can accept drops over only a certain
area of the window. (You need to convert the position to client coordinates before doing so.)

DragOver() is called when the mouse is moved over the target area. This method is meant to
provide 'real-time' information about the drag-and-drop operation — as the mouse moves, the final
effect may change. The prototype considers the state of the keyboard and the position of the mouse:

HRESULT IDropTarget::DragOver(DWORD dwKeyState,
 POINTL pt,
 DWORD* pdwEffect);

Once again, you let the source know about the expected effect via the 32-bit output buffer
pdwEffect. Of course, DragOver() is called more frequently (and always later) than
DragEnter(), and so the effect set by DragOver() can overwrite the one set by DragEnter().

DragLeave() is a very simple method that's invoked to let the target know when the mouse has
exited its area. The prototype is straightforward:

HRESULT IDropTarget::DragLeave();

The final method, Drop(), gets called when the data has been released over the target. This is
clearly the most important function of all, and I'll have more to say about it shortly.

In order to create an ATL component, I need the IPersistFileImpl.h header that was used in
the last example, and a similar file providing a base class for IDropTarget:

// IDropTargetImpl.h

#include <AtlCom.h>

class ATL_NO_VTABLE IDropTargetImpl : public IDropTarget
{

Chapter 15

518

public:

 // IUnknown
 STDMETHOD(QueryInterface)(REFIID riid, void** ppvObject) = 0;
 _ATL_DEBUG_ADDREF_RELEASE_IMPL(IDropTargetImpl)

 // IDropTarget (optimized for shell drag-and-drop)
 STDMETHOD(DragEnter)(LPDATAOBJECT pDO, DWORD dwKeyState,
 POINTL pt, DWORD *pdwEffect)
 {
 STGMEDIUM sm;
 FORMATETC fe;

 // Do we accept this type of data?
 ZeroMemory(&sm, sizeof(STGMEDIUM));
 ZeroMemory(&fe, sizeof(FORMATETC));
 fe.tymed = TYMED_HGLOBAL;
 fe.lindex = -1;
 fe.dwAspect = DVASPECT_CONTENT;
 fe.cfFormat = CF_HDROP;
 if(FAILED(pDO->GetData(&fe, &sm)))
 {
 fe.cfFormat = CF_TEXT;
 if(FAILED(pDO->GetData(&fe, &sm)))
 {
 // Reject the drag-and-drop
 *pdwEffect = DROPEFFECT_NONE;
 return E_ABORT;
 }
 }

 // The default action is to copy data...
 *pdwEffect = DROPEFFECT_COPY;
 return S_OK;
 }

 STDMETHOD(DragOver)(DWORD dwKeyState, POINTL pt, DWORD* pdwEffect)
 {
 // Do not accept keyboard modifiers
 *pdwEffect = DROPEFFECT_COPY;
 return S_OK;
 }

 STDMETHOD(DragLeave)()
 {
 return S_OK;
 }

 STDMETHOD(Drop)(LPDATAOBJECT pDO, DWORD dwKeyState,
 POINTL pt, DWORD* pdwEffect);
};

Admittedly, this basic implementation is optimized for the use I want to make of it. In fact, I coded
into this header file the actual behavior for all the methods but Drop(). The non-generic things
about this class are:

! The target only accepts data in plain text format. The format name is CF_TEXT, one of the
standard Windows clipboard formats.

! The target only supports 'copy' and no other operation like 'link' or 'move'.

Shell Extensions

519

Handling the Drop Event on TXT files
The first example I'll show you consists of handling text being dropped onto TXT files. The idea is
that the dropped data (a file or plain text) will be added to the bottom of the target file. Start by
creating a DLL project called DropText with the ATL COM AppWizard, and then use the Object
Wizard to create a simple object called StrAdd. The ATL object under examination is declared as
follows:

#include "resource.h" // main symbols

#include "IPersistFileImpl.h"
#include "IDropTargetImpl.h"
#include <ComDef.h>

//
// CStrAdd
class ATL_NO_VTABLE CStrAdd :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CStrAdd, &CLSID_StrAdd>,

 public IDropTargetImpl,
 public IPersistFileImpl,

 public IDispatchImpl<IStrAdd, &IID_IStrAdd, &LIBID_DROPTEXTLib>
{
public:
 CStrAdd()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_STRADD)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CStrAdd)
 COM_INTERFACE_ENTRY(IStrAdd)
 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(IDropTarget)
 COM_INTERFACE_ENTRY(IPersistFile)

END_COM_MAP()

// IDropTarget
public:
 STDMETHOD(Drop)(LPDATAOBJECT, DWORD, POINTL, LPDWORD);

// IStrAdd
public:

private:
 HDROP GetHDrop(LPDATAOBJECT);
 BOOL GetCFText(LPDATAOBJECT, LPTSTR, UINT);

};

Chapter 15

520

The most interesting part of the code is what happens when the drop occurs, and this is defined in the
source for the Drop() method that's shown next:

#include "stdafx.h"
#include "DropText.h"
#include "StrAdd.h"

#include <shlwapi.h>

// Constants
const int MAXBUFSIZE = 2048; // Size of text to retrieve
const int MINBUFSIZE = 50; // Size of text to be shown

//
// CStrAdd

HRESULT CStrAdd::Drop(
 LPDATAOBJECT pDO, DWORD dwKeyState, POINTL pt, LPDWORD pdwEffect)
{
 // Get the CF_HDROP data object
 HDROP hdrop = GetHDrop(pDO);
 if(hdrop)
 {
 // Consider only the first file in case of multiple selection
 TCHAR szSrcFile[MAX_PATH] = {0};
 DragQueryFile(hdrop, 0, szSrcFile, MAX_PATH);
 DragFinish(hdrop);

 // Check whether it is a TXT file
 LPTSTR pszExt = PathFindExtension(szSrcFile);
 if(lstrcmpi(pszExt, __TEXT(".txt")))
 {
 MessageBox(GetFocus(),
 __TEXT("Sorry, but you can only drop TXT files!"),
 __TEXT("Drop Files..."),
 MB_ICONSTOP);
 return E_INVALIDARG;
 }

 // Confirmation before concatenating...
 TCHAR s[2 * MAX_PATH] = {0};
 wsprintf(s, __TEXT("Would you add \n%s\nat the bottom of\n%s?"),
 szSrcFile, m_szFile);
 UINT rc = MessageBox(GetFocus(), s,
 __TEXT("Drop Files..."), MB_ICONQUESTION | MB_YESNO);
 if(rc == IDNO)
 return E_ABORT;
 }
 else
 {
 TCHAR szBuf[MAXBUFSIZE] = {0};
 GetCFText(pDO, szBuf, MAXBUFSIZE);

 TCHAR s[MAX_PATH + MINBUFSIZE] = {0};
 TCHAR sClipb[MINBUFSIZE] = {0};
 lstrcpyn(sClipb, szBuf, MINBUFSIZE);
 wsprintf(s, __TEXT("Would you add\n[%s...]\nat the bottom of\n%s?"),
 sClipb, m_szFile);
 UINT rc = MessageBox(GetFocus(), s,
 __TEXT("Drop Files..."), MB_ICONQUESTION | MB_YESNO);

Shell Extensions

521

 if(rc == IDNO)
 return E_ABORT;
 }

 // TO DO: Concatenate the text...

 return S_OK;
}

The function supports text and filenames, so you can drop either another TXT file selected within
Explorer, or a piece of text taken from a text editor or a word processor, including Word, Notepad,
WordPad, or even the Visual C++ Editor.

The first check performed by Drop() regards the type of the data being dropped. If the
GetHDrop() method returns a valid handle, then the data is in CF_HDROP format and must be
accessed through DragQueryFile(). In this case, the function only deals with the first file,
discarding all the others in case of multiple selection, but this decision was taken only for the sake of
simplicity — there's nothing to prevent you doing something more complex. The code also checks the
extracted filename for a TXT extension by using the now familiar PathFindExtension() function
from shlwapi.dll.

// Extracts an HDROP from a LPDATAOBJECT
HDROP CStrAdd::GetHDrop(LPDATAOBJECT pDO)
{
 STGMEDIUM sm;
 FORMATETC fe;

 // Check for CF_HDROP data
 ZeroMemory(&sm, sizeof(STGMEDIUM));
 ZeroMemory(&fe, sizeof(FORMATETC));
 fe.tymed = TYMED_HGLOBAL;
 fe.lindex = -1;
 fe.dwAspect = DVASPECT_CONTENT;
 fe.cfFormat = CF_HDROP;
 if(FAILED(pDO->GetData(&fe, &sm)))
 return NULL;
 else
 return static_cast<HDROP>(sm.hGlobal);
}

If the data dropped is not in CF_HDROP format, then the Drop() method attempts to extract plain
text from it by using the helper function GetCFText(). If successful, it fills a buffer with a maximum
number of bytes.

// Extracts CF_TEXT from a LPDATAOBJECT
BOOL CStrAdd::GetCFText(LPDATAOBJECT pDO, LPTSTR szBuf, UINT nMax)
{
 STGMEDIUM sm;
 FORMATETC fe;

 // Check for CF_TEXT data
 ZeroMemory(&sm, sizeof(STGMEDIUM));
 ZeroMemory(&fe, sizeof(FORMATETC));
 fe.tymed = TYMED_HGLOBAL;
 fe.lindex = -1;
 fe.dwAspect = DVASPECT_CONTENT;
 fe.cfFormat = CF_TEXT;

Chapter 15

522

 if(FAILED(pDO->GetData(&fe, &sm)))
 return FALSE;
 else
 {
 LPTSTR p = static_cast<LPTSTR>(GlobalLock(sm.hGlobal));
 lstrcpyn(szBuf, p, nMax);
 GlobalUnlock(sm.hGlobal);
 return TRUE;
 }
}

That brings the C++ code required for the technicalities of the extension to a conclusion, and once
again it's time to think about registration. It's all a matter of knowing where to put the appropriate
entries:

HKCR
{
 // Object registration

 txtfile
 {
 Shellex
 {
 DropHandler = s '{AE62DAAC-509C-11D2-BC00-AC6805C10E27}'
 }
 }
}

The following picture shows the confirmation message boxes that appear when you drop a TXT file
or plain text over a TXT file in the Windows shell:

You'll surely have noticed that I didn't actually implement the code for concatenating the text, but
the important part of this code is the detection, not the execution.

Adding Shell Support to Script Files
In Chapter 13, I covered the Windows Scripting Host object model. At the end of the chapter, during
a discussion about ways of improving the WSH environment, I mentioned the possibility of writing a
shell extension to drop parameters over a VBScript or JScript file. Now it's time to unravel the
mystery and see how to achieve that.

The shell extension I need is a DropHandler that must be associated with VBS and JS files. The
code layout is absolutely identical to the previous example: an ATL COM object implementing both
IPersistFile and IDropTarget, reusing the same basic interface implementations. The things
that need to change are the registration script and — of course — the code for the Drop() method.

Shell Extensions

523

The Project and the Registration Script
Let's get the easy stuff out of the way. I created a project called VBSDrop, added a simple object
called WSHUIDrop, and made the following changes to the RGS script:

HKCR
{
 // Object registration

 vbsfile
 {
 Shellex
 {
 DropHandler = s '{E671DB13-4D41-11D2-BC00-AC6805C10E27}'
 }
 }

 jsfile
 {
 Shellex
 {
 DropHandler = s '{E671DB13-4D41-11D2-BC00-AC6805C10E27}'
 }
 }
}

Dropping Parameters over Script Files
The example I'm going to present shows how you can pass parameters to a VBS or JS script file
through the shell. The idea is that you select data — filenames in the Explorer window, for example —
and drop them onto a script file that will receive them through the command line. The sample uses
filenames and the CF_HDROP format, but as I've already shown, this is not a limitation: you can
handle strings as well.

The Drop() function I'll present here extracts the various file names you dropped over the VBS or
JS file, and creates an itemized string in which each space-separated item is a fully-qualified file
name. If a path name contains spaces of its own, then it gets put in quotes. For this last operation, I
exploit yet another function from the seemingly limitless shlwapi.dll library:
PathQuoteSpaces() encloses a path string in quotes if it contains long filenames that include
spaces.

When the string is ready it must be passed as an argument to the script file and executed, and this is
just what ShellExecute() has been designed to do. In the following call, the name of the script file
has been saved in the m_szFile data member of the CWSHUIDrop class during the initialization of
the shell extension:

ShellExecute(GetFocus(), __TEXT("open"), m_szFile, pszBuf, NULL, SW_SHOW);

To run a VBS or JS file, you simply have to execute the open verb. The pszBuf variable constitutes
the command line parameters for the file.

Chapter 15

524

///
// A portion of this code also appeared in the December 1998 issue of MIND

HRESULT CWSHUIDrop::Drop(
 LPDATAOBJECT pDO, DWORD dwKeyState, POINTL pt, LPDWORD pdwEffect)
{
 // Get the CF_HDROP data object
 HDROP hdrop = GetHDrop(pDO);
 if(hdrop == NULL)
 return E_INVALIDARG;

 // Get the Shell memory handler
 LPMALLOC pMalloc = NULL;
 SHGetMalloc(&pMalloc);

 // Allocate enough memory for the final string to be composed
 int iNumOfFiles = DragQueryFile(hdrop, -1, NULL, 0);
 LPTSTR pszBuf = static_cast<LPTSTR>(
 pMalloc->Alloc((1 + MAX_PATH) * iNumOfFiles));
 LPTSTR psz = pszBuf;
 if(!pszBuf)
 {
 pMalloc->Release();
 return E_OUTOFMEMORY;
 }
 ZeroMemory(pszBuf, (1 + MAX_PATH) * iNumOfFiles);

 // Get the dropped filenames and compose the string
 for(int i = 0 ; i < iNumOfFiles ; i++)
 {
 TCHAR s[MAX_PATH] = {0};
 DragQueryFile(hdrop, i, s, MAX_PATH);
 PathQuoteSpaces(s);
 lstrcat(pszBuf, s);
 lstrcat(pszBuf, __TEXT(" "));
 }
 DragFinish(hdrop);

 // Run the script, passing the dropped files as a command line argument
 ShellExecute(GetFocus(), __TEXT("open"), m_szFile, pszBuf, NULL, SW_SHOW);

 pMalloc->Release();
 return S_OK;
}

To see the global effect of this code, consider the following JScript code:

///
// JScript sample for shell DropHandler
// It simply displays what it receives on the command line

var shell = WScript.CreateObject("WScript.Shell");
var sDrop = "Arguments received:\n\n";

if(WScript.Arguments.Length > 0)
{
 for(i = 1 ; i <= WScript.Arguments.Length ; i++)
 sDrop += i + ") " + WScript.Arguments.Item(i - 1) + "\n";
 shell.Popup(sDrop);
}

Shell Extensions

525

else
 shell.Popup("No argument specified.");

WScript.Quit();

This code, which I placed in a file called jsdrop.js, examines its command line and displays a
message box listing the various parameters on separate rows. In the next figure, I'm trying to drop a
few files over it:

Thanks to our new DropHandler shell extension,
the result is the following message box:

DataHandler Shell Extensions
We're almost at the end of our odyssey through the world of Windows shell extensions, but before we
finish, there's time for a few words about another extension type that touches on another common
aspect of the user interface: the clipboard. If you want to gain control over a copy-and-paste
operation that involves files of a certain type, then you should write a DataHandler extension.

Suppose, for example, that you want to change the way a BMP file is copied to the clipboard when
someone presses Ctrl-C. By default, the shell copies the name of the file in CF_HDROP format. If you
want the image to go to the clipboard in CF_BITMAP format, then you need to write a DataHandler
extension.

Chapter 15

526

The COM Interfaces Involved
To write a DataHandler shell extension, you need to implement IPersistFile and
IDataObject. Registration of an extension of this type requires a new Default value for:

HKEY_CLASSES_ROOT
 \<FileClass>
 \ShellEx
 \DataHandler

As usual, the value you set should be the CLSID of the server, while <FileClass> is the name that
identifies the types of documents to which you want the extension to apply.

IDataObject is responsible for transferring data throughout the clipboard, and contains several
methods. For our purposes here, however, you only have to implement the ones I've marked with an
asterisk.

Method Description

*GetData() Retrieves the data associated with the given
object

GetDataHere() Similar to GetData(), but the function also
receives the storage medium to store the data in

*QueryGetData() Determines whether the required data is
available

GetCanonicalFormatEtc() Lists the formats supported by the object

*SetData() Associates the specified data with the given
object

EnumFormatEtc() Enumerates the formats to use to store data with
the object

DAdvise() Connects a sink object to know when data
changes

DUnadvise() Disconnects a sink object

EnumDAdvise() Enumerates the sinks currently connected

DataHandler, like IconHandler and DropHandler, doesn't allow multiple handlers to be in
operation for the same file type at the same time. This means, for example, that if you copy the image
bits to the clipboard for a BMP file, then you lose the ability to copy the name — unless of course you
write an extension that does both these things!

A Shell Extension Developer's Handbook
In this chapter, we've used ATL to create a number of shell extensions — in fact, it's become
something of a habit. In the following step-by-step procedure, I've summarized exactly what you need
to do in order to create, compile and test your shell extensions with ATL.

Shell Extensions

527

! Create a new ATL project using the ATL COM AppWizard.
! Add a new simple object
! If one is not already available, write an IxxxImpl.h file for each interface you need to

implement. You need to define a new class that inherits from the interface and provides a basic
behavior for each method. You can also add attributes or private members, if required.

! Modify the new object class's header file. In particular, have it inherit from all the IxxxImpl
classes you defined in the previous step. Add the interfaces to the object's COM map, and add
declarations for all the interface methods that you need to override.

! Modify the ATL registry script to accomplish shell extension registration. Normally, the Wizard
only generates the code necessary to register the server.

! Add the code for the overridden methods.
! Compile the project and make sure the registration went as expected. If you're not sure, repeat the

registration by calling regsvr32.exe.
! Before testing the functionality, make sure the code is properly loaded into the shell. This is an

operation that can vary depending upon the type of the shell extension. For context menus and
property sheets, refreshing the Explorer windows is enough. Icon handlers and copy hooks, on the
other hand, require you to log off or even to reboot.

Version 4.71 of the shell releases DLLs after a few seconds' inactivity, so having to reload the DLL
after recompilation shouldn't be an issue except in the case of copy hooks. These are active all the
time, so to recompile them you must first unregister the server, and then either log off or reboot.

File Viewers
To conclude this chapter, let's have a look at some modules that aren't shell extensions, but which
play a similar role. File viewers (also known as 'quick viewers') are COM in-process servers that add
functionality to document types through the system shell: they plug into Explorer and provide a
quick view of the content of a certain type of file. For example, the Word Viewer lets you see Word
documents but is far smaller and less powerful than the full Word program.

The user can neither modify nor execute special functions on a file that's opened with a quick viewer;
the goal is simply to provide a read-only document preview without having to launch the application
normally associated with the file. In order to give your documents full integration with the shell, file
viewers must be considered as well as shell extensions.

File viewers rely on a special component that's been available since
shell version 4.0, but which is not always installed by default — on
one of my PCs, the component doesn't even appear as an option!
In the end, I managed to install it by copying files from another PC
and manually entering the keys to the registry. Anyway, I hope
you're luckier than I was, and can get Windows Setup to install the
component for you. Once it's in place, a Quick View item will
appear on the context menu for files:

Chapter 15

528

Windows comes with a number of
interesting file viewers. One of them
provides a useful view of all the symbols
that a Win32 executable (DLL or EXE)
exports and imports. Here it is in action on
winword.exe:

Starting a Quick View
When you click on Quick View, Windows launches the quikview.exe program, which is a kind of
manager for file viewers. It doesn't do anything itself; instead, it loads and interfaces with the COM
module responsible for actually displaying the contents of the file.

From our point of view, the biggest difference between file viewers and shell extensions is that the
main program is not explorer.exe but quikview.exe — file viewers don't run in Explorer's
address space. Apart from that, there's a new COM interface to cope with (IFileViewer), and
registration follows a different logic. In a nutshell, though, it's fair to say that when it comes to
loading and unloading file viewers, quikview.exe works quite a lot like Explorer.

The important thing about file viewers is that rather than having different applications for different
types of files, there is just one main module that manages different COM extensions. These external
plug-ins provide the actual viewing functionality, and they are all registered under:

HKEY_CLASSES_ROOT
 \QuickView

When you take a look, you'll find that there's
a key for each supported file type. Here's a
screenshot of a typical Windows 9x registry:

Shell Extensions

529

Each specific file extension key has a sub-key containing the CLSID of the COM server that provides
the display. By default, all the supported file types are implemented in sccview.dll, whose CLSID
is {F0F08735-0C36-101B-B086-0020AF07D0F4}.

How a Quick Viewer Gets Called
Either a click on the context menu or a command line like 'quikview filename' will cause the
quick view manager to start. It examines the file extension, and scans the QuickView registry area
searching for a CLSID. If successful, it creates an instance of the COM server and begins to deal with
the interfaces this object must implement.

When the user requires a new
quick view window, the manager
looks at the state of the Replace
Window toolbar button:

If it is set, then the same window and instance is used. Otherwise, a new instance of the viewer
appears. A quick viewer must also support drag-and-drop, as you'll see shortly.

Writing a Quick Viewer
A quick viewer is an in-process COM module that implements three interfaces:

! IPersistFile
! IFileViewer
! IFileViewerSite

IPersistFile serves the purpose of loading the specified file. The manager just queries the module
for IPersistFile, and calls the Load() method. A typical file viewer will then open the file and
convert its content to a viewable format. If the file is a metafile, for example, then
IPersistFile::Load() might want to create an HENHMETAFILE handle. Since a file viewer only
ever takes 'read' actions, there's no need to implement the IPersistFile interface in its entirety,
and writing code for the Load() method alone should work fine.

Showing the File
The IFileViewer interface is composed of three functions:

! PrintTo()

! Show()

! ShowInitialize()

Chapter 15

530

Everything necessary to draw the content must go in ShowInitialize(). It must create an
invisible window, and fill its client area with the file to display. In fact, this function should do
everything that's needed to display the file, short of turning on the WS_VISIBLE style of the created
window. In other words, ShowInitialize() is required to work on a kind of off-screen buffer.

ShowInitialize() should take care of everything to do with the user interface of the file viewer.
This means:

! Creating the main window (if required)
! Creating and initializing the toolbar and the status bar
! Setting up menus and accelerators
! Creating the (initially invisible) window to host the content
! Resizing the windows properly

When the task has been completed successfully, it's the turn of Show(). Among other things, this
method makes the window visible and enters a message loop.

From this brief description, you can see that a quick viewer is much more than a plug-in module. In
fact, it's really a complete document/view application compiled inside a DLL. The command menus
you can see, any font changes, and even starting the default application to open the file must all be
handled inside the DLL.

A quick viewer should support drag-and-drop, and so the window must have the
WS_EX_ACCEPTFILES flag. This may cause a situation where the viewer is currently displaying a
document of type BMP, for example, and the user drops, say, a TXT file over the window. How can a
viewer designed for bitmaps manage a text file properly?

To manage a case such as this, there's a lot of work done behind the scenes. Once I've explained it, it
will be clear why the IFileViewer has both ShowInitialize() and Show() methods. The first
method is called just to make sure that everything necessary to show the file is available — if it fails,
the currently displayed document remains unchanged, as though you had never tried to open another
file. This feature helps to make the entire quick view application look 'monolithic', instead of being
(as it is) a collection of separate components.

When the Show() method is called, the quick viewer receives a FVSHOWINFO structure as its single
argument:

typedef struct
{
 DWORD cbSize;
 HWND hwndOwner;
 int iShow;
 DWORD dwFlags;
 RECT rect;
 LPUNKNOWN punkRel;
 OLECHAR strNewFile[MAX_PATH];
} FVSHOWINFO, *LPFVSHOWINFO;

Shell Extensions

531

This is used not only to pass information in, but also to return data back to the quikview.exe
program. When a file is dropped, the quick viewer receives the usual WM_DROPFILES message. If the
file can't be handled, then the module should do the following:

! Set strNewFile to the actual file name
! Turn on the FVSIF_NEWFILE bit in the dwFlags field
! Save its IUnknown pointer to punkRel
! Set rect to the current size of the window
! Exit the message loop

The important thing is that because you don't have to destroy a window, flickering and abrupt
changes in the user interface are avoided. The FVSHOWINFO structure that you return is passed
unchanged to the new (and appropriate) viewer for the new file.

quikview.exe invokes this new viewer (in our example, it will handle TXT files) and calls its
ShowInitialize() method to prepare the display. Note that at this stage we still have the same
bitmap on the screen, even though a completely different module is working under the hood. When
the TXT quick viewer has finished loading and rendering the text, quikview.exe calls the Show()
method, passing the FVSHOWINFO structure that was returned by the BMP quick viewer's Show()
method. This structure contains the exact area the window should occupy, the name of the open file,
and the IUnknown pointer of the previous (and still visible) quick viewer. Show() can display its
window such that the previous one is completely covered.

At this point, the old window is still 'behind' the new one, and in fact the Show() method still has
one more duty to perform. If it finds that the FVSIF_NEWFILE flags is set, then it must get the
punkRel field of FVSHOWINFO and call Release() to free the old quick viewer.

Pinning
The third interface we have to deal with is IFileViewerSite, which has two quite easy methods:

! GetPinnedWindow()

! SetPinnedWindow()

A quick view window is said to be pinned when its Replace Window button is selected. This state
causes the manager to direct all requests for new quick viewers to that window. If a window is pinned,
then a click on the context menu is equivalent to dropping a file onto that window.

GetPinnedWindow() returns the handle of the window currently pinned (remember that you may
have many quick viewers open at the same time), while SetPinnedWindow() moves that attribute
to a new window. Their prototypes are simply:

HRESULT GetPinnedWindow(HWND*);
HRESULT SetPinnedWindow(HWND);

The logic behind pinning can be summarized this way:

! SetPinnedWindow() always fails if another window is pinned
! You always need to unpin the currently pinned window yourself — this is done by calling

SetPinnedWindow() with a NULL argument

Chapter 15

532

To let you know whether your window should start pinned, FVSHOWINFO includes the
FVSIF_PINNED flag in its dwFlags member. Given this, the most sensible way to pin a window is
by means of a couple of lines like these:

SetPinnedWindow(NULL);
SetPinnedWindow(hwnd);

Writing and Registering a File Viewer
Writing a file viewer is not the simple task it might seem, and in Further Reading I've put together the
best list of references I could find to help you. Once you've written it, however, registering it is
completely straightforward. Assuming that you've arranged a file viewer for .ext files, here's the key
change for the registry:

[HKEY_CLASSES_ROOT\QuickView\.EXT\<CLSID>]
@="EXT File Viewer"

Where <CLSID> should of course be changed to reflect the actual CLSID. Furthermore, don't forget
to register the server, as you would do with any other COM server. If you're using ATL to create the
object, then add the following lines to the RGS script file:

 {
 QuickView
 {
 .ext
 {
 <CLSID> = s 'description'
 }
 }
 }

Summary
This chapter has covered shell extensions at great length. We've examined their integration with
Explorer, the logic behind them, and their implementation. We also developed several examples that
showed the various types of shell extensions in action. In particular, we looked at:

! How to add custom property pages to the Properties dialog
! How to add custom menu items to a document's context menu
! How to add custom menu items to the system's Find menu.
! How to draw custom icons for each document of a certain type
! How to monitor changes in any folder in the system
! How to handle drag-and-drop onto files in the shell

I also provided an annotated review of the techniques available to extend the way Explorer copies
data to the clipboard, and handles drag-and-drop. Finally, I introduced you to file viewers, focusing
on the programming aspects that could give you problems.

Shell Extensions

533

Further Reading
With so many subjects covered, there's plenty of additional material that may interest you. To start,
the first article on shell extensions that I saw was by Jeff Prosise, and appeared in the March 1995
edition of MSJ. Called Integrate your Applications with the Windows 95 User Interface Using Shell
Extensions, the article is still valid as it presents a basic understanding of shell extensions with easy-to-
understand examples.

The world's simplest code examples (many of which use MFC) for anything that relates to the shell
are in Nancy Cluts' book, Programming the Windows 95 User Interface. Originally published by
Microsoft Press, this book is now available in the Books section of the MSDN Library that comes
with Visual C++.

Any topics that require serious knowledge of COM and OLE can be faced better after a look at Kraig
Brockschmidt's Inside OLE (Microsoft Press) and Don Box's Essential COM (Addison-Wesley). Also
David Chappell's Understanding ActiveX and OLE (Microsoft Press) can be very helpful. For more
information about programming using ATL, the Wrox Press books Beginning ATL COM Programming
(Grimes et al) and Professional ATL COM Programming (Grimes) are highly recommended.

Also in this chapter, I presented some code that enumerates the modules required by an executable,
and the code on the web site includes an example that retrieves the list of running processes under
Windows 9x and NT. To help here, I think that just about everything to do with the binary format of
Win32 executables has been covered at one time or another in one of Matt Pietrek's Under The Hood
columns in MSJ. In particular, I recommend the February 97 column, where he explains in detail
how to follow the chain of imported libraries. Additional references may be found in his book,
Windows 95 System Programming Secrets (IDG).

Regarding the enumeration of processes, I can suggest two articles. One is my own, and appeared in
the October 97 issue of WDJ under the title Process Names from Window Handles. It explains how to get
back to the name of the process that created a given window from an HWND. On the same theme,
Pietrek's August 98 MSJ column is devoted to a similar topic. These two articles have in common a
unified approach that hides the different system support for enumeration in Windows 9x and NT 4.0.

Finally, we come to file viewers. You'll find mention of these in the Cluts book I've already
referenced, which is acceptable as a primer, but if you really need insights, tips, and even a complete
case study, you must look at the series of three articles from Paul Dilascia that appeared in MSJ in
January, March and June 1997. They will give you a precise idea of the circumstances in which you
should enrich your application with file viewers. The series also covers using palettes, fonts, and
hooking with MFC. The article that focuses specifically on file viewers is the final one, which I
recommend as the de facto guide to programming file viewers.

When it comes to writing your first file viewer, I suggest you take the FileView example that comes
with Visual C++ (look in the Samples\SDK\Win32 folder), compile it, and then make changes to
that code. You risk consuming too much time by trying to write a file viewer from the ground up.
Another helpful idea that stands out from the Dilascia articles is that you should think about setting
up a framework that simplifies the development of file viewers, and the author provides one based on
MFC.

Chapter 15

534

Finally, to conclude this chapter, here some useful KB articles:

! Knowledge Base Article Q138942: Debug a Windows Shell Extension
! Knowledge Base Article Q183106: Debug Control Panel Property Sheet Extensions
! Knowledge Base Article Q135986: How to Add a Custom Find Utility to the Start Menu
! Knowledge Base Article Q175030: Enumerate Applications in Win32

Namespace Extensions

Explorer uses a hierarchical structure to represent many of the objects that form the system — files,
folders, printers, network objects, and so on. These objects combine to define a namespace, which is a
closed collection of symbols or names in which any given symbol or name can be successfully
resolved. Resolving a name inside a namespace means successfully associating a given name with
some concrete information that it represents.

The Explorer takes care of collecting all these objects together, communicating with them, and
displaying their contents in what has now become the typical, two-pane window, with a tree view on
the left and a list view on the right.

What makes things really interesting and exciting is that Explorer supports an interface that lets your
code plug into this mechanism and add completely new, custom objects. In fact, Windows itself
comes with a number of these namespace extensions, examples of which include the Dial-Up
Networking, My Briefcase, and My Computer folders. In this chapter, I'm going to explain how the
entire namespace machinery works, and walk you through the code as painlessly as possible.

Namespace extensions really are a huge topic. While it's not that hard to find articles about them,
many of these satisfy only one of the above two commitments. Either they explain the basics,
providing a mostly code-free overview of the whole mechanism, or else they concentrate on the code,
discussing tricks and approaches, but don't provide an overall explanation of how namespace
extensions work. Here's the running order of the things I'm going to cover:

! An overview of namespace extensions
! Installing a namespace extension
! Writing a complete namespace extension to browse the hierarchy of all the currently open

windows
! Rules for defining custom PIDLs
! Exploiting namespace extensions to host custom applications in Explorer

Chapter 16

538

Namespace extensions are built on a concept that is not particularly complex on its own. However,
the extreme richness of details, programming approaches, implementation features, and required
know-how makes writing them a far-from-trivial task. Even once you have an extension up and
running, you're still a long way from finishing it. There are so many additional features you can add
that the time and effort required for completion could double by the time you're done.

To be fair, a bare namespace extension is really no more complicated than the shell extensions we
saw in the previous chapter. The trouble is that in most cases, a bare namespace extension is quite
useless.

An Overview of Namespace Extensions
The world's easiest definition of a namespace extension is the following:

A namespace extension is a way of allowing external and custom information to be
integrated in the Windows Explorer.

By 'integrated', I basically mean that the information is displayed and handled in the same way that
any other standard information would be. A synonym for 'namespace extension' might be 'custom-
drawn folder' — a namespace extension includes the code to access and render the data, and the
plumbing to integrate with the Explorer. The last of these is quite a standard piece of code, although
encapsulating it in a collection of classes, for example, is still something of a challenge. (Are you
listening, Microsoft?)

The information you want Explorer to display may or may not be related to a physical directory —
consider the Dial-up Networking folder that has information about Internet connections, for example,
or the Printers folder that contains details of the installed printers. There are also examples of
namespace extensions that show file data in a non-standard fashion, like the Recycle Bin or the
Temporary Internet Files folder.

Namespace Extensions

539

We can identify three levels of differences between the namespace extension and the 'ordinary'
folder:

! The view, that is, the contents of Explorer's right-hand pane
! The menu (and possibly the toolbar)
! Other minor graphical changes, such as the icon in the tree view and custom text on the status bar

Most important of these is the custom content displayed in the view. Although the Recycle Bin uses a
list view to display its content, this is only a choice — in your extensions, you can use any kind of
window you like (although list views are probably the most flexible windows you can employ).

What Does Writing a Namespace Extension Mean?
A namespace extension renders a custom folder in Windows Explorer. It's an in-process COM object
that the shell detects, provided that you have registered it correctly. A namespace extension
implements a bunch of interfaces that Explorer will call back to get everything it needs to set up a
proper view of the folder. Typically, Explorer requires:

! A folder manager object, through which it will ask its questions
! A window to display the folder's content
! An object to enumerate the various items contained in the folder
! A means of identifying the various items in the folder uniquely
! A collection of accessory functions to customize its user interface

Chapter 16

540

This figure illustrates the architecture of Explorer:

And the next figure shows how this relates to namespace extensions:

When Explorer detects the presence of a namespace extension (and I'll explain exactly how it does
that later on), it loads the COM server that implements it and asks for an interface called
IShellFolder. This interface works as a folder manager, and has the task of providing Explorer
with everything it needs. In other words, it's a kind of proxy between Explorer and the rest of the
extension.

When Explorer needs to display the contents of the view, it asks IShellFolder for a view object.
Similarly, when it's time to display nodes in the tree view, it asks to enumerate the content and looks
for the folder and subfolder attributes. Once again, all this is done through the IShellFolder
interface.

When a namespace extension is loaded, Explorer also gives it a chance to update the user interface.
All the events that may be of interest to the extension are notified by calling an appropriate function
in one of the defined interfaces.

Put another way, writing a namespace extension means being ready to answer any incoming call from
Explorer, and answering a call means implementing a certain function in a particular COM interface.
As you might imagine, there's a minimal set of interfaces and functions that must be supported in
order for the extension to be well integrated.

Namespace Extensions

541

The Inner Structure of Explorer
Explorer is a program that relies entirely on shell and namespace extensions to put flesh on its
skeleton that's made up of an empty framework with a tree view, a list view and a few other controls.
Everything that actually gets displayed comes from outside the explorer.exe file. The standard
extensions are implemented in shell32.dll, and this makes them system code of a sort, but they're
definitely namespace extensions nevertheless.

Explorer scans the registry for installed components and opens communications with any of them,
whether they were written by you or provided with the operating system.

Namespace Extensions vs. Shell Extensions
In principle, shell extensions and namespace extensions are very similar indeed. Both need
registration to be detected and invoked, both are in-process COM servers implementing a fixed
number of interfaces and both allow customization of the shell. What's quite different is the final
effect they produce: a namespace extension adds a new folder to Explorer, while a shell extension is
limited to working on file types.

Primary Interfaces
Now that we have some understanding of what's going on when namespace extensions come into
play, let's see in more detail what really happens. This gives us a chance to look at the interfaces and
at some of the function prototypes as well. Later in the chapter I'll be using this information to
construct our examples. The interfaces a namespace extension is absolutely required to implement
are:

! IShellFolder
! IPersistFolder
! IEnumIDList
! IShellView

The first two of these evaluate to what I earlier termed a "folder manager". IEnumIDList is what I
called an "enumerator", while IShellView is mainly intended to provide a window for the view that
will replace the standard list view.

Spanning across these four major interfaces (plus some other minor ones), there's the concept of a
PIDL. I explained exactly what a PIDL is and how it is implemented in Chapter 2, but I can
summarize here: a PIDL is an identifier that unambiguously identifies an item in a folder, and across
the whole of the shell's namespace. A PIDL is something that's specific to a type of folder, and so
when you're writing a 'custom folder', you should provide a 'custom PIDL' too! Although there are a
few basic rules to follow when it comes to doing this, there's no general way of designing PIDLs, and
they depend mostly upon the content they help to render. I'll have much more to say on this subject
later in the chapter.

There are some other, optional, COM interfaces that a namespace extension can implement, and for
a real-world extension exactly how 'optional' they are is open to question. IContextMenu and
IExtractIcon, for example, are very often required to assign custom context menus and icons to
single items.

Chapter 16

542

In the following sections, I'll present tables that list all the functions defined by the various
interfaces. If you can reasonably avoid implementing them, their names will appear in Italics. To
avoid implementation, and to let Explorer know what you're up to, just return an error code of
E_NOTIMPL.

An Activation Timeline
Before we depart on our tour of the interfaces, here's something to keep in mind for when we do so.
To give you a picture of the communication that goes on during the process of getting a namespace
extension displayed in Explorer, I've drawn up this timetable of events:

! Explorer detects the namespace extension through a junction point, and gets its CLSID.
! An instance of it is created, and Explorer queries for the IShellFolder interface.
! Explorer asks the object implementing IShellFolder to return a pointer to the IShellView

interface on a view object.
! A pointer to IShellBrowser is passed to the view object, allowing it to manipulate Explorer's

menu and toolbar. The view object also receives a pointer to IShellFolder.
! Explorer asks the IShellFolder object to return an object to enumerate the content of the

folder. This object will implement the IEnumIDList interface.
! Explorer walks the list of elements contained in the folder. For each one it gets the PIDL and

draws it according to its role and characteristics.

This is what happens when you select the namespace extension's node in Explorer's tree view. When
you click to expand it, Explorer does the following:

! It asks IShellFolder to return an object to enumerate the content of the folder.
! It displays only those elements that have the 'folder' attribute. If they also have the 'has subfolders'

attribute, 'plus' nodes are drawn.
! It asks IShellFolder to provide the icon to display near each node in the tree view. (In fact, it

will receive a pointer to the IExtractIcon interface.)
! It asks IShellFolder to provide the text to be displayed for each item.
! It asks IShellFolder to provide the context menu for each item.

The Folder Manager
IShellFolder derives from IPersistFolder, which in turn inherits from IPersist. The
functions of IPersistFolder allow Explorer to initialize the new folder, telling it where is located
in the namespace. The IShellFolder-specific functions constitute a programming interface by
means of which Explorer can ask for a view, an enumerator object, or a child subfolder. Furthermore,
an IShellFolder object must be capable of providing the attributes of each single item it contains,
comparing two such items, and returning their display names. Items are identified through PIDLs.

Namespace Extensions

543

The IPersistFolder interface
The following table presents the functions of IPersistFolder:

Function Description

GetClassID() Returns the CLSID of the object. This method comes from IPersist.

Initialize() Allows the folder to initialize itself. The method is passed a PIDL
identifying the location of the folder in the namespace; this may or
may not be relevant to the folder. If it is, it should be cached for
further use, otherwise the method will simply return S_OK.

You will usually implement both of these methods, whose prototypes and typical (minimal) code
follow:

STDMETHODIMP CShellFolder::GetClassID(LPCLSID lpClassID)
{
 *lpClassID = CLSID_WinView;
 return S_OK;
}

STDMETHODIMP CShellFolder::Initialize(LPCITEMIDLIST pidl)
{
 return S_OK;
}

The snippet is taken from the example that I'll cover in greater detail later in the chapter. For now,
you need to know that CLSID_WinView should be a constant that identifies the CLSID of your own
extension, and CShellFolder is the name of a C++ class that derives from IShellFolder and
IPersistFolder.

You never call the methods of IPersistFolder directly. Instead, the system calls them during the
process that binds it to your folder.

The IShellFolder interface
The IShellFolder interface exposes the ten functions listed below:

Function Description

BindToObject() This is the way by which the shell asks the module to open a
subfolder, if any. This method is passed a PIDL and should
simply create a new folder object based on the PIDL received.

BindToStorage() At present, the shell never invokes this method, so just return
E_NOTIMPL.

CompareIDs() Takes two PIDLs and should decide their order — that one is
greater than the other, or that they are equal.

Table Continued on Following Page

Chapter 16

544

Function Description

CreateViewObject() Creates and returns the IShellView object that will provide
the content for the right-hand pane.

EnumObjects() Creates and returns the IEnumIDList object that will
provide enumeration of items.

GetAttributesOf() Returns a family of attributes for the specified item — whether
it can be renamed or copied; whether it requires a ghosted
icon; whether it's a folder or has subfolders. The valid
constants have mnemonic names beginning with SFGAO_.
Check the documentation for a complete list.

GetDisplayNameOf() Returns the name to be used to render the item in the folder,
the address bar, or for parsing purposes. The application for
which the item's name is needed is one of the arguments
passed. The value comes from the SHGNO enumerated type.
(See later.)

GetUIObjectOf() By means of this method, Explorer asks for a specified
interface that has to do with the UI. It's a kind of highly
specialized QueryInterface().

ParseDisplayName() Returns a PIDL given a display name. The display name,
however, is not necessarily what appears in the shell view or in
the address bar. It is what GetDisplayNameOf() returns
when the SHGDN_FORPARSING flag is set.

SetNameOf() Assigns a new display name to a given object. The name is to
be used in the address bar, in folders, and for parsing
purposes.

I explained display names in Chapter 4, but briefly, it is the name used to render the item within the
shell. In most cases, this display name coincides with the actual file name, although if the folder
doesn't contain files it must be necessarily something else. There are three types of display names that
are to be used in three different contexts, and they all come from the following enum type:

typedef enum tagSHGDN
{
 SHGDN_NORMAL = 0, // Name relative to the desktop
 SHGDN_INFOLDER = 1, // Name relative to the folder
 SHGDN_INCLUDE_NONFILESYS = 0x2000, // Also non-file system objects
 SHGDN_FORADDRESSBAR = 0x4000, // Used for address bar
 SHGDN_FORPARSING = 0x8000, // Used for parsing
} SHGNO;

While each item is uniquely identified by a PIDL, it can be rendered with different names in different
situations. To return the display name for any case, you implement GetDisplayNameOf(). This
function receives a parameter whose value is a combination of the SHGNO values. In particular, the
function might be required to return an absolute (SHGDN_NORMAL) or a relative name
(SHGDN_INFOLDER). In the former case, you'd return a display name relative to the desktop, while in
the latter a name relative to the parent folder is required.

Namespace Extensions

545

In addition to this, there may be more flags that say more about the use the shell will make of the
name, giving you a chance to adjust it properly, if needed. When the name is being shown in the
address bar, SHGDN_FORADDRESSBAR will be set; when you detect SHGDN_FORPARSING, it means
that the name will be passed to ParseDisplayName() to convert it to a PIDL. You may need to
include special information to facilitate this task.

The SHGDN_INCLUDE_NONFILESYS bit is simply informational, and lets the method know that the
caller also wants non-file system objects. If the PIDL passed is not for a file system object and this bit
is not set, the method should fail.

By means of IShellFolder, Explorer can get any information about the
extension it may need in order to host it properly. Any required interface is
obtained through the methods of this interface: the shell view, the context
menu, the icon handler, and the item enumerator.

Interface Obtained through

IShellView CreateViewObject()

IContextMenu GetUIObjectOf()

IExtractIcon GetUIObjectOf()

IEnumIDList EnumObjects()

Enumeration of Items
You write a namespace extension in order to embed a custom folder in the shell. This 'virtual' (rather
than physical) folder may have contents that you want to display in a non-standard fashion.
Alternatively, it may have non-standard contents that you want to display as if it was a list of file
objects. A hypothetical folder called My Hardware, for example, could contain references to the
various devices attached to the system. This information might be presented as a list view, in which
the devices are rendered as items.

Whatever the specifics of the content, it's likely that it will be composed of a collection of elements,
although nobody outside the namespace extension is necessarily aware of that fact. Nevertheless,
Explorer needs to enumerate these objects in order to draw the tree view, for example.

To allow external modules to walk through the content of a custom folder, a namespace extension
should implement the IEnumIDList interface. This is a collection of functions that provides any
module with the ability to enumerate the various items of any folder. This interface is highly generic,
and a module can communicate with it without knowing anything about the content or the
organization of the folder itself.

Chapter 16

546

The IEnumIDList Interface
The IEnumIDList interface exposes four functions for moving back and forth within a given
collection.

Function Description

Next() Returns the specified number of items in the collection. Each item found is
identified via a PIDL.

Skip() Skips over a specified number of items.

Reset() Moves the current pointer to the top of the list.

Clone() Duplicates an object.

The key function is Next(), whose prototype looks like this:

HRESULT IEnumIDList::Next(ULONG celt,
 LPITEMIDLIST* rgelt,
 ULONG* pceltFetched);

The first argument to the function specifies the number of items to retrieve, and PIDLs to these items
will be stored by the function into the rgelt array. The total number of elements actually copied is
then stored in the third argument, pceltFetched. An enumerator object manipulates (or acts as if it
manipulates) a linked list of all the items. A full implementation, therefore, should store a pointer to
the current item and move it by as many items as Next() retrieves.

The Skip() method also moves forward the item pointer by the number passed as its argument, but
it doesn't actually retrieve or read their content as it does so:

HRESULT IEnumIDList::Skip(ULONG celt);

Clone() and Reset() are helper methods for the object, and below you'll find a couple of typical
implementations of them:

STDMETHODIMP CEnumIDList::Reset()
{
 m_pCurrent = m_pFirst;
 return S_OK;
}

STDMETHODIMP CEnumIDList::Clone(IEnumIDList** ppEnum)
{
 return E_NOTIMPL;
}

Usually, the methods of this interface are built on top of a linked list that is filled during initialization
of the class that implements it. Each item of the list points to a PIDL.

Namespace Extensions

547

The Importance of the PIDL
With the IEnumIDList functions, anyone can navigate through the content of any folder. In a
namespace extension, an object implementing IEnumIDList is returned as the result of a call to
IShellFolder::EnumObjects(). However, a generic interface for enumerating items is not
enough to identify each folder item correctly, and this is where PIDLs fit in.

As I explained back in Chapter 2, a PIDL is a pointer to a collection of SHITEMID structures. It
allows you easily and unequivocally to identify a relative or absolute route to any given object in a
folder. Such a route is said to be "relative" if it begins with the folder that contains the item, and
"absolute" if it is a series of references that starts from the Desktop and goes straight to the object. A
PIDL always identifies the element uniquely throughout the entire shell.

Defining a good PIDL is clearly a central issue for any namespace extension. A PIDL should be a
collection of pieces of data, each of which refers to a folder or a subfolder encountered in the path
from the Desktop down to the item. The structure of a PIDL depends upon the data you want the
folder to render, and deciding how to organize the PIDL is ultimately up to the programmer, but
there are few recommendations to consider:

! The PIDL should be allocated through the shell's memory allocator (IMalloc interface). This
allows Explorer to free it. A PIDL is not an object but just a block of memory: once you've passed
it to Explorer, it must be able to free it without nasty side effects.

! PIDLs can be saved to and then read from persistent storage media, such as disk files. This implies
that all the information needed must be found sequentially. No pointers and no references to
external data should be present.

! Since PIDLs can be persisted, you might want to consider using signatures and a version number
so that you can always recognize your PIDL at any time, and guarantee backward compatibility.
Of course, if that's not an issue for your application, you don't need to do it.

A PIDL is an array of SHITEMID structures:

typedef struct _SHITEMID
{
 USHORT cb;
 BYTE abID[1];
} SHITEMID, *LPSHITEMID;

cb is the size of the entire structure, including itself. The abID member marks the beginning of a
sequence of data that can be structured in any way you want. As an example, consider the following
PIDLDATA structure:

typedef struct _PIDLDATA
{
 TCHAR szSignature[SIGNSIZE];
 WORD wVersion;
 TCHAR szFileName[MAX_PATH];
 BYTE icon[ICONFILESIZE];
} PIDLDATA, *LPPIDLDATA;

Chapter 16

548

This is a possible way of rendering the data that forms a filename PIDL — it's a chunk of data that's
pointed by the abID field of the SHITEMID structure, and there are a couple of things to notice about
it. Firstly, the strings have been included with all their characters, because for the reasons explained
above you can't use a pointer to a string. The TCHAR[] buffer ensures that all the content is stored
sequentially. Secondly, I'm assuming the need to store an icon, and you can't use an HICON as that
also evaluates to a block of memory stored elsewhere. Instead, you need to serialize all the bytes that
form the icon image.

The Shell View
The view object is undoubtedly the most interesting part of any namespace extension. A large part of
the code you write for namespace extensions works in the background, silently communicating with
Explorer. You never see it clearly in action.

However, the view object creates and manages a window — the shell view. A shell view is an ordinary
window, with ordinary styles and a window procedure. The view object is what ends up embedded in
the Explorer's right pane, displaying the contents of the folder selected in the left pane's tree view.

The view object exposes the methods of the IShellView interface to work with the shell view and
deal with anything relating to the folder's user interface, message loop, and merging of menus and
toolbars. The IShellView interface derives from IOleWindow.

The IShellView Interface
The following are the functions you should implement in order to support the IShellView
interface.

Function Description

AddPropertySheetPages() Allows you to add custom pages to the Folder
Options... dialog box.

CreateViewWindow() Creates and returns a window to be embedded in
Explorer's right pane. It should be a borderless dialog.

DestroyViewWindow() Destroys the previous window.

EnableModeless() Not currently used by Explorer. Simply return
E_NOTIMPL.

EnableModelessSV() Not currently not used by Explorer. Simply return
E_NOTIMPL.

GetCurrentInfo() Returns the current settings for the folder through a
FOLDERSETTINGS structure. (See Chapter 5.)

GetItemObject() Returns a pointer to the interface for the context menu
or clipboard, given a set of items. Mostly invoked by
common dialogs.

Refresh() Causes the folder's content to be redrawn.

SaveViewState() Saves the state of the view. (More on this later.)

Namespace Extensions

549

Function Description

SelectItem() Changes the selection state of one or more items.

TranslateAccelerator() Translates any key hit when the focus is on the
extension. Return S_OK to prevent Explorer from
translating again.

UIActivate() Invoked when the activation state changes — when the
folder is activated or deactivated, for example. (See
later.)

GetWindow() Returns the view's window handle. This method is
inherited from IOleWindow.

ContextSensitiveHelp() The folder should enter or exit the context sensitive
help mode and handle all messages differently. Not
usually implemented in a namespace extension. This
method is inherited from IOleWindow.

A view object is sometimes given the opportunity to save its state to persistent storage. When this can
be done, Explorer calls SaveViewState(). Now, this process can be a little tricky, so although you
could probably figure out several other ways of making the settings of a folder persistent, the
recommended one is to save it to a stream. A pointer to an IStream object is returned by the
GetViewStateStream() method of the IShellBrowser interface, but just a minute... where did
that interface come from?

In fact, this interface is implemented by Explorer, but there's no obvious function for getting hold of
it. Instead, a pointer to it is passed to the shell view in CreateViewWindow()'s parameter list, and
it would therefore be sensible to store it for further use in the extensions you write.

The upshot of all this is that in the SaveViewState() function, there will be code something like
the following:

IStream* pstm;
pSB->GetViewStateStream(STGM_WRITE, &pstm);
pstm->Write(&data, sizeof(data), NULL);

With GetViewStateStream(), you can get hold of a stream into which you may write your state
settings, such as column widths, icons, and anything else that may apply to your extension. To read
the state back again, we follow the same approach, but this time open the view stream for reading:

IStream* pstm;
pSB->GetViewStateStream(STGM_READ, &pstm);
pstm->Read(&data, sizeof(data), NULL);

Code like this would normally appear in CreateViewWindow(), after you've constructed the shell
view window itself. There's no need to close this stream yourself, because the task will be
accomplished directly by Explorer.

Chapter 16

550

Talking to Explorer: IShellBrowser
In one of my earlier diagrams, I outlined that Explorer uses the methods of IShellFolder to
initiate the creation process for a new folder. The things it gets from IShellFolder (namely,
pointers to IShellView and other interfaces) can interact with Explorer through IShellBrowser,
which is an interface implemented with the precise goal of making communication between Explorer
and namespace extensions easier.

IShellBrowser exposes several functions (see the documentation for details), but you will use it in
your extensions for two main purposes:

! Getting the view state stream
! Interacting with Explorer's menu and toolbar

We've already considered the first of these, so let's look now at the steps required to modify menus
and toolbars in order to add items specific to our own namespace extensions.

Modifying Explorer's Menu
A folder, even a custom folder, is always a folder. This means that it has the usual menu and toolbar
that any other folder has. Or rather, it has the usual menu and toolbar unless it decides to change
them!

A folder will make its changes to Explorer's menu and toolbar when it gets the focus, and will remove
them whenever it loses it. The activation state for a folder is notified through the UIActivate()
method:

HRESULT IShellView::UIActivate(UINT uState);

The uState argument can assume one of three possible values:

Flag Description

SVUIA_ACTIVATE_FOCUS The folder now has the focus

SVUIA_ACTIVATE_NOFOCUS The folder is selected but doesn't have the focus

SVUIA_DEACTIVATE The folder no longer has the focus

A folder has the focus when the system focus belongs to one of the view's child elements. If the folder
is selected only in the left pane, then we have the circumstances in which
SVUIA_ACTIVATE_NOFOCUS comes into play. For each of these different activation states, you can
have different menus and toolbars to display in the Explorer's user interface, and all these changes
are usually accomplished in UIActivate().

To change the menu — regardless of whether you want to add a brand new popup menu, or simply
add or remove items from existing ones — you always have to create a new, empty, top-level menu.
The code for creating a new menu is simply:

hMenu = CreateMenu();

Namespace Extensions

551

Then you just ask the shell to fill it the normal way. The code required is:

OLEMENUGROUPWIDTHS omw = {0, 0, 0, 0, 0, 0};
m_pShellBrowser->InsertMenusSB(hMenu, &omw);

The OLEMENUGROUPWIDTHS is a data structure, formed by an array of six longs, which comes into
play when a container and an embedded object have to share a menu. (For more information about
this you can refer to the Visual C++ or MSDN documentation about OLE in-place editing.)

Basically, the menu of Explorer (and of every OLE container) is divided into six logical groups, each
of which can contain as many individual popup menus as required. The groups are:

Group Name Position Controlled by

File 0 Explorer (Container)

Edit 1 Namespace Extension (Object)

Container 2 Explorer (Container)

Object 3 Namespace Extension (Object)

Window 4 Explorer (Container)

Help 5 Namespace Extension (Object)

There's not necessarily a one-to-one relationship between group names and popup menus, either for
the number or for the names. In other words, the first menu of the File group can variously contain:

! A single popup menu called File
! A couple of popup menus called, say, Property and Edit
! A popup called File and another one named, say, Directory
! For that matter, any other possible combination

The number of individual popup menus that each group contains is stored at the corresponding
position in the OLEMENUGROUPWIDTHS structure. This is also referred as the width of the menu
group.

By calling InsertMenusSB(), you're asking the shell to fill its own portion of the shared menu. As
the table shows, the container and the object — in this case, Explorer and the namespace extension —
are responsible for three groups each. In the case of Explorer, after calling this:

OLEMENUGROUPWIDTHS omw = {0, 0, 0, 0, 0, 0};
m_pShellBrowser->InsertMenusSB(hMenu, &omw);

Chapter 16

552

The menu is as follows:

Menu Group

File File

Edit File

View Container

Go Container

Favorites Container

Tools Container

Help Window

The OLEMENUGROUPWIDTHS structure contains {2, 0, 4, 0, 1, 0}, and you can use these values
as offsets to place any new popup menu correctly. To add your own items or popups, use traditional
Win32 functions like InsertMenuItem(), DeleteMenu(), or indeed any function that lets you
modify the structure of a menu.

Be aware that AppendMenu(), InsertMenu(), ModifyMenu() and a few other menu
functions have been declared obsolete with the Win32 API. They are still supported and work
fine but code that makes use of them is not guaranteed to continue working with future versions
of Windows. Use the newer InsertMenuItem() function instead.

In general, a hosted object should be a good citizen and not remove items or popups set by the
container. In the same way, it should avoid invading the space reserved for the container by placing
its popups in a group managed by the container. However, these rules are intended to apply to
generic OLE containers, and if Explorer defines, say, an empty Edit menu, then in my opinion there's
no reason to leave it there when your folder gets selected. Another circumstance in which I think you
can break the rules is when you want to add a custom About command. In this case, I'd replace the
standard item with my own, even if this means removing the item added by Explorer.

The shell assigns unique identifiers to its popup menus in order to let you do your editing work by
command instead of by position. The shlobj.h header file defines constants like these to help
identify the Explorer's popups by command:

! FCIDM_MENU_FILE

! FCIDM_MENU_EDIT

! FCIDM_MENU_VIEW

! FCIDM_MENU_FAVORITES
! FCIDM_MENU_TOOLS

! FCIDM_MENU_HELP

As you can see, an analogous constant for the Go menu is missing. If you look at the shlobj.h
header file, you'll find other similar constants, but they aren't relevant to modifying a menu from a
namespace extension.

Namespace Extensions

553

The IDs of the items to be added must lie in the range 0x0000 to 0x7FFF, the extremes of which
evaluate to the constants FCIDM_SHVIEWFIRST and FCIDM_SHVIEWLAST respectively. Once
you've changed the menu according to your needs, you have to save it all with a call to:

m_pShellBrowser->SetMenuSB(hMenu, NULL, hwndView);

Curiously, SetMenuSB() is documented as if it takes only two arguments:

HRESULT SetMenuSB(HMENU hmenuShared, HOLEMENU holemenuReserved);

But it actually requires a third argument:

HRESULT SetMenuSB(
 HMENU hmenuShared, // Shared menu
 HOLEMENU holemenuReserved, // Currently ignored by Explorer
 HWND hwndActiveObject // Handle to the view's window
);

The first argument is the menu that's shared between Explorer and the namespace extension, the
second is currently ignored, while the last is the handle of the window that renders the folder. To
understand why the second argument is currently ignored, I need to make a little digression on how
OLE in-place editing works when it comes to sharing a menu between containers and objects.

The methods of IShellBrowser that work with menus and toolbars stem from similar methods
employed by IOleInPlaceFrame, an interface implemented by OLE containers. From one point of
view, Explorer is a specialized container for namespace extensions, so let's draw some comparisons.
After modifying the menus, a typical object hosted by an OLE container would need to fill out its
own portion of the OLEMENUGROUPWIDTHS structure and then create what's called a 'OLE menu
descriptor'. In fact, there's a function to do exactly this, with the following prototype:

HOLEMENU OleCreateMenuDescriptor(
 HMENU hmenuShared, // Combined menu
 LPOLEMENUGROUPWIDTHS lpMenuWidths // Updated OLEMENUGROUPWIDTHS
)

Next, it passes this HOLEMENU handle to SetMenu(), which is a method very similar to
SetMenuSB(). The prototype is:

HRESULT SetMenu(HMENU hmenuShared, HOLEMENU holemenu);

Inside this function, the container ends up calling OleSetMenuDescriptor(), which is responsible
for setting up the dispatching code for the messages generated by the menus. In practice, the function
installs a hook, detects menu messages, and then dispatches them to the right window — be that the
container's or the object's. To understand which window a given message is targeted to, the hook
simply looks at the position of the menu that generated it. It resolves any doubt by comparing that
position to the values in the OLEMENUGROUPWIDTHS structure referred to by HOLEMENU.

At present, Explorer uses different logic to dispatch messages, and needs neither an HOLEMENU nor
that the client should fill out the OLEMENUGROUPWIDTHS structure completely. When you call
SetMenuSB(), Explorer sets a hook to intercept messages, and the messages to be dispatched to the
active view window (the hwndActiveObject parameter seen above) are recognized via their IDs,
and not through the position of the menu.

Chapter 16

554

You'll make all these changes to the menu when the activation state is different from
SVUIA_DEACTIVATE. When the user deactivates the folder, you have to restore the previous
situation. To do this, just remove the menu by calling into IShellBrowser::RemoveMenusSB():

m_pShellBrowser->RemoveMenusSB(hMenu);
DestroyMenu(hMenu);

Modifying Explorer's Toolbar
To manipulate the toolbar, you first need its window handle, and this is another service that
IShellBrowser can provide — the function you need is called GetControlWindow(), and it just
returns an HWND. However, the documentation discourages sending messages directly to this window,
so for forward-compatibility purposes you should use SendControlMsg(), yet another of
IShellBrowser's methods:

HRESULT IShellBrowser::SendControlMsg(UINT id,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pret);

It looks like an ordinary SendMessage() function, with two differences: the id argument to identify
which control you're addressing (toolbar or status bar), and pret to get the value returned by the
message you're sending. Use the FCW_TOOLBAR constant to address the toolbar.

Refer to the Visual C++ or MSDN documentation for details about the structures and the
messages needed to deal with toolbars.

At this point, you can send messages to add as many buttons you want. Sounds easy? Well, that
depends — adding a button to a toolbar is not a trivial task. A toolbar button has a bitmap, so first of
all you have to register a new bitmap in the toolbar. Here's a code snippet that shows how to do it:

TBADDBITMAP tbab;
tbab.hInst = g_hInstance; // Set the module that contains the bitmap
tbab.nID = IDB_TOOLBAR; // Bitmap ID in the module's resources

m_pShellBrowser->SendControlMsg(FCW_TOOLBAR, TB_ADDBITMAP,
 1, reinterpret_cast<LPARAM>(&tbab), &lNewIndex);

TBADDBITMAP is a structure that contains just two members to identify a bitmap. Once you've set
these to the module that contains the bitmap in its resources and the appropriate ID, you pass the
structure down to the toolbar via a TB_ADDBITMAP message. This message can actually accept a
whole array of structures, so the wParam argument of the message (1 in the snippet above) is the size
of the array, while lParam is a pointer to its first element. lNewIndex is a buffer that will contain
the return value of the message, and this is important because it turns out to be the index of the
image in the toolbar's global bitmap. All the bitmaps that come together to form a toolbar are stored
as a single bitmap in which the small images are concatenated side by side.

Namespace Extensions

555

Exactly the same technique is required for adding a text label to the button. (Text labels are required
for buttons going into Explorer's toolbar.)

m_pShellBrowser->SendControlMsg(FCW_TOOLBAR, TB_ADDSTRING,
 NULL, reinterpret_cast<LPARAM>(szLabel), &lNewString);

The message involved this time is TB_ADDSTRING, whose lParam argument is a pointer to the
string. Here lNewString will contain an index that helps the toolbar to identify the text label.

Once we've registered a new bitmap and a new string with the toolbar, it's time to declare a
TBBUTTON structure that renders a button.

TBBUTTON tbb;
ZeroMemory(&tbb, sizeof(TBBUTTON));
tbb.iBitmap = lNewIndex;
tbb.iCommand = IDM_FILE_DOSOMETHING;
tbb.iString = lNewString;
tbb.fsState = TBSTATE_ENABLED;
tbb.fsStyle = TBSTYLE_BUTTON;

At long last, we can send the message that sets a new button:

m_pShellBrowser->SetToolbarItems(&tbb, 1, FCT_MERGE);

If you're feeling brave, you can follow the low-level road by sending messages directly to the toolbar,
although I should point out once again that Microsoft discourages this technique:

m_pShellBrowser->SendControlMsg(FCW_TOOLBAR, TB_INSERTBUTTON,
 0, reinterpret_cast<LPARAM>(&tbb), NULL);

This line adds a new button to the beginning of the toolbar, as the first button. This approach is
actually somewhat more powerful than the one we've been examining because it allows you to add
buttons anywhere. Adding them with SetToolbarItems() means they're always at the end of the
toolbar.

Even if there's no explicit advice on this subject in the documentation, in my opinion, you should
remove any buttons you've added when the folder loses the focus. The only option you have here is
to use SendControlMsg(), regardless of the technique used to add the button in the first place:

TBBUTTON tbb;
m_pShellBrowser->SendControlMsg(FCW_TOOLBAR, TB_GETBUTTON,
 0, reinterpret_cast<LPARAM>(&tbb), NULL);
if(tbb.idCommand == IDM_FILE_RUN)
 m_pShellBrowser->SendControlMsg(FCW_TOOLBAR, TB_DELETEBUTTON, 0, TRUE, NULL);

Before deleting the button, make sure it's the button you want to remove! Checking against the
command ID is a reliable technique for doing this.

Chapter 16

556

Accessing Explorer's Status Bar
The interface we used above for the toolbar can also be used to set custom text on the status bar; the
ID to identify the status bar during calls to IShellBrowser::SendControlMsg() is
FCW_STATUS. In this way, you are completely free to send messages and format the status bar at your
leisure. However, if you simply want some text to appear there, I suggest that you use another of
IShellBrowser's helper functions, SetStatusTextSB():

m_pShellBrowser->SetStatusTextSB(wszText);

The only drawback of this function (if you're developing ANSI-based software) is that it absolutely
requires Unicode strings, and you have to do the conversion on your own.

Additional Interfaces
While using Explorer, you can activate context menus for each item, drag-and-drop them, or even
copy them to the clipboard. Once again, this is not a behavior built into Explorer, but a feature
provided by the folders themselves. More precisely, it's provided by the namespace extension that
manages the folder's appearance and behavior. Who knows better than the folder itself what its items
actually represent, and how to handle them?

While the folder carries out the specific action of packaging data or preparing the menu, the trigger is
still Explorer. It detects the action of a user, and asks the namespace extension to provide data to be
copied to the clipboard or dragged-and-dropped.

The right pane of Explorer is drawn entirely by the view object, but the namespace extension has no
control over what goes on in the left pane. Nevertheless, even in the tree view, a user can invoke a
context menu or open the sub-tree that displays the list of subfolders inside a given folder. Who is
providing that context menu, and the icons to fill the tree view? As always, it's the namespace
extension acting upon Explorer's requests.

It will come as no surprise at all that the namespace extension does this by implementing a handful of
additional COM interfaces: IContextMenu, IDataObject, and IExtractIcon. Each of the
pieces of functionality I've mentioned depends on one of these interfaces. If the interface is missing,
the functionality isn't available.

Getting Pointers to Additional Interfaces
We saw several examples of shell context menus in the last chapter, so you should already have a
pretty good idea of how to implement the IContextMenu interface. The implementation of
IContextMenu from within a namespace extension is roughly the same as it is for shell extensions —
what changes is the initialization procedure. When the user right-clicks in Explorer's tree view, the
shell attempts to get a pointer to the folder's implementation of IContextMenu. If something valid is
returned, the context menu appears. Otherwise, the operation is rejected.

Namespace Extensions

557

The means by which Explorer gets a pointer to IContextMenu is the
IShellFolder::GetUIObjectOf() method, and here's a typical implementation:

STDMETHODIMP CShellFolder::GetUIObjectOf(HWND hwndOwner, UINT uCount,
 LPCITEMIDLIST* pPidl, REFIID riid, LPUINT puReserved, LPVOID* ppvReturn)
{
 // Clears the buffer to return data
 *ppvReturn = NULL;

 // Fails if the interface is required for >1 PIDLs
 if(uCount != 1)
 return E_FAIL;

 // Check the riid against the additional interfaces implemented
 // IExtractIcon
 if(IsEqualIID(riid, IID_IExtractIcon))
 {
 CExtractIcon* pei;
 pei = new CExtractIcon(pPidl[0]); // First item of pPidl array
 if(pei)
 {
 pei->AddRef(); // Increment the ref count
 pei->QueryInterface(riid, ppvReturn); // QI implies inc ref count
 pei->Release(); // Decrement the ref count
 return S_OK;
 }
 return E_OUTOFMEMORY;
 }

 // IContextMenu
 if(IsEqualIID(riid, IID_IContextMenu))
 {
 CContextMenu* pcm;
 pcm = new CContextMenu(pPidl[0]);
 if(pcm)
 {
 pcm->AddRef();
 pcm->QueryInterface(riid, ppvReturn);
 pcm->Release();
 return S_OK;
 }
 return E_OUTOFMEMORY;
 }

 // Check for other possible interfaces...

 return E_NOINTERFACE;
}

Again, this code snippet comes from the example that we'll start discussing shortly, in which
CShellFolder is the C++ class that implements the IShellFolder interface. Likewise,
CExtractIcon and CContextMenu provide implementations for IExtractIcon and
IContextMenu.

Let's have a look at the prototype of this method. hwndOwner is the handle of the window to be used
as the parent for any dialog or window to be displayed. The method receives an array of PIDLs
(pPidl), the size of which is passed in uCount. The interface required, riid, applies to all the
elements of this array.

Chapter 16

558

There are some interfaces that simply can't work on multiple PIDLs at the same time — a context
menu, for example, always refers to a single item, and the same is true for icons. An IDataObject,
on the other hand, can be used for copying to the clipboard or for dragging a collection of items. In
the above example we're implementing only IContextMenu and IExtractIcon, so we check the
number of PIDLs passed in as a first measure.

In a namespace extension, we don't need to derive the classes that implement shell interfaces from
IShellExtInit or IPersistFile. Within a namespace extension, the interfaces use PIDLs to
identify the items to work on unambiguously. The PIDL is one of the arguments the shell passes to
GetUIObjectOf(), and so the most reasonable thing to do is to have the class constructor accept a
PIDL. In this way, you can initialize your context menu and let it know what item it refers to in one
go.

Context Menus
Of the three functions included in the IContextMenu interface, you need only implement
InvokeCommand() and QueryContextMenu(), avoiding GetCommandString() if you so
choose. The implementation of the methods follows the rules I outlined in the previous chapter.

Custom Icons
Implementing IExtractIcon is suggested if you want to gain control over the icons actually
displayed in the panes of Explorer for the items in the folder. As explained in Chapter 15, you can
use two methods to pass icons to the shell: GetIconLocation() and Extract(). These are
mutually exclusive in that if one succeeds, the other doesn't get called. GetIconLocation() is
expected to return the path name of the file with the icon to extract, and the index of the icon. The
actual extraction is then up to shell. Conversely, Extract() does the job itself and returns an
HICON for both the large and the small icon.

Drag & Drop
If you want to support drag-and-drop for the items of your folder, you just need to implement the
appropriate interfaces. In particular, you'll need IDropTarget in order to decide what to do when
items are dropped.

Copying to Clipboard
Operations that copy to the clipboard and package data to drag and drop all pass through the
IDataObject interface. This is a general interface for providing data in various formats to be
moved between applications across the system, although Windows itself manages the actual storage of
the data. What you have to do is to provide your own format and your own data.

The Concept of Folders
Writing a namespace extension means that you have some kind of content that you want to render
using Explorer's document-centric and hierarchical logic. This means that you have to start thinking
of your content in terms of folders, subfolders, and items. Sometimes, this turns out to be really easy
and straightforward. At other times, it takes a while before you realize how to proceed. In a few cases,
it turns out to be quite impossible to do. The concept of a folder — and having clear in your mind
what a folder is in your context — is central to developing namespace extensions.

Namespace Extensions

559

A namespace extension is the main folder, a kind of root directory. Its content may or may not be
divided up into other subfolders and items. The simplest case is when you have no folders and no
items to display, in which event you are just inserting an application into Explorer's frame. I'll have
more to say on this topic later on.

You have to declare to Explorer what your folders are, and whether they have subfolders. Be sure to
be accurate when doing this, because it may affect the way the shell handles your extension. In
practice, all the items you declare to be folders will be displayed in the tree view as sub-nodes of the
parent folder. If you declare that a folder has subfolders, then Explorer makes it an expandable node
in the tree view.

Explorer asks an extension to enumerate its content by calling IShellFolder::EnumObjects(),
and this function is called every time Explorer needs to enumerate a portion of the folder. It isn't just
called once to get a pointer to the enumerator object. Here's a typical implementation:

STDMETHODIMP CShellFolder::EnumObjects(
 HWND hwndOwner, DWORD dwFlags, IEnumIDList** ppEnumIDList)
{
 *ppEnumIDList = NULL;

 // m_pidl is a member of CShellFolder for storing the PIDL of this
 // folder. You'd have filled it in the class constructor.
 *ppEnumIDList = new CEnumIDList(m_pidl, dwFlags);
 if(*ppEnumIDList == NULL)
 return hr;

 return S_OK;
}

In almost any implementation of IShellFolder, you will define a m_pidl data member to store
the PIDL to the folder. (The shell passes in this PIDL when it binds to the folder via
IPersistFolder.)

What's important here is that EnumObjects() receives a DWORD that denotes what kinds of items
the shell wants the enumerator to provide. In other words, dwFlags works like a filter that the shell
asks to be applied to whatever IEnumIDList::Next() returns.

Of course, it's up to you to decide whether this flag is meaningful for your own custom folder.
Nothing prevents you from simply ignoring the flag, but you do so at your own risk.

Folder Attributes
The values that dwFlags can assume come from the SHCONTF enumerated type, which is defined
like this:

typedef enum tagSHCONTF
{
 SHCONTF_FOLDERS = 32,
 SHCONTF_NONFOLDERS = 64,
 SHCONTF_INCLUDEHIDDEN = 128,
} SHCONTF;

It tells you whether it wants folders, folders and items, and if hidden items should be included too.
Under normal circumstances the shell won't ask your folder to enumerate items only, but if it's
reasonable in your scenario, you can return only items when you think that's appropriate.

Chapter 16

560

What do we have to do to declare our items as folders? Well, we have just to answer properly when
the shell asks for the attributes of a certain item. This is done through the
IShellFolder::GetAttributesOf() method, and the next listing shows a basic implementation
of that:

STDMETHODIMP CShellFolder::GetAttributesOf(
 UINT uCount, LPCITEMIDLIST aPidls[], LPDWORD pdwAttribs)
{
 *pdwAttribs = 0xFFFFFFFF;

 for(UINT i = 0 ; i < uCount ; i++)
 {
 DWORD dwAttribs = 0;
 if(IsThisAFolder(aPidls[i]))
 dwAttribs |= SFGAO_FOLDER;
 if(HasSubFolders(aPidls[i]))
 dwAttribs |= SFGAO_HASSUBFOLDER;
 *pdwAttribs &= dwAttribs;
 }

 return S_OK;
}

Of course, IsThisAFolder() and HasSubFolders() are fictitious functions that you should
replace with your own routines — I just put them there to illustrate the kind of template the code for
GetAttributesOf() should have. The function is called with an array of PIDLs, and you should
specify global attributes for them all.

The attributes you see here aren't the only ones you can set. Refer to Chapter 4 for a complete list
of the SFGAO_XXX constants.

Flavors of Namespace Extensions
A namespace extension is not just about code. Depending on what you actually store in the registry
during installation, it may present itself in slightly different ways. For this reason, you'll often hear of
two types of namespace extensions: rooted and non-rooted.

The difference between the two is not in the code but in the registry entries — the interfaces to
implement and the behavior to follow remain the same. What changes is the Explorer view that hosts
it. In this section we're going to examine rooted and non-rooted extensions in detail, and decide
when to choose each.

Namespace Extensions

561

Rooted Extensions

Basically, a rooted
extension is a custom
folder with its own root.
This means that you
can't navigate to an
upper level, or jump to a
parallel node at the
same depth. A rooted
extension shows just its
own sub-tree, and the
content is completely
isolated from the rest of
Explorer's namespace.
For a concrete example
of this, see the
screenshot shown here.

It shows the window that appears when you're about to change settings in the taskbar's Start menu.
The Start Menu node is the root of the tree, and the Up One Level button is disabled so that you
can't move to a higher level in the overall namespace.

The figure doesn't show a custom extension, but simply a rooted view. A rooted namespace extension
is a custom folder with a rooted view.

Non-rooted Extensions
Non-rooted extensions are exactly the opposite of rooted extensions. They don't have a fixed root,
and allow you to navigate the whole of Explorer's hierarchy. Non-rooted extensions are perfectly and
seamlessly integrated into the shell's namespace. Note that the same namespace extension might be
accessed and used in both ways, providing indirect confirmation of a previous statement: 'rooted' and
'non-rooted' are attributes that apply to the view rather than to the folder, be it custom or not.

Rooted vs. Non-rooted
Let's try to summarize some points. You have a custom folder — that is, a namespace extension. You
have the opportunity to make it accessible through two possible views: rooted and non-rooted. In the
former case, the view shows the folder as a stand-alone object, and you see a limited portion of the
shell's namespace. In the latter case, Explorer's view encompasses all the folders, including our
custom one, and so we can move back and forth among folders.

We can create shortcuts that open the same folder with both views. As explained in Chapter 11, all
we have to do is specify the /root switch on Explorer's command line:

explorer /root, ::{clsid}

Chapter 16

562

This, for example, opens a rooted namespace extension identified by the CLSID. By adding a /e
switch, you can require also the tree view in the left pane.

explorer /e, ::{clsid}

The above command, opens the traditional Explorer view with the specified folder selected and
opened. This is a non-rooted view.

When to use Which
Let me repeat just once more that from the code's point of view, there's absolutely no difference
between writing a rooted extension and writing a non-rooted extension. In fact, the attributes would
be more correctly applied to the view than to the extension itself. But when should you use a rooted
or a non-rooted view for making your namespace extension accessible? I think this topic is open to
debate, but in general you should think about using rooted views when the content of the folder
really does stand alone, almost like an application.

Despite all these extensions you can write, Explorer is still basically a file manager, so you should
consider adopting a rooted view for any extension that doesn't work on file system elements. Non-
rooted views, on the other hand, are a good choice when it comes to presenting information that
relates to files and directories in a custom fashion. A good example of this is the Temporary Internet
Files folder, which collects in four hidden directories all the files you have silently downloaded
during Internet sessions. When you open the folder, you don't see references to the four subfolders,
but only to the files.

Discussing rooted and non-rooted views brings us straight to another important point in the
development of namespace extensions. This aspect, unlike some of the others, has a decisive impact
on how your extension will work and be used.

Namespace Extensions

563

Junction Points
Writing a namespace extension is only half the story; you know that we need to enter some registry
information too. Sometimes, however, we need to do even more than that. Depending on what we set
in the registry, and on what the extension actually does, we may need an odd thing called a junction
point.

In a nutshell, a junction point is the means by which we have to link our folder to the shell's
namespace. This isn't actually a new concept — junction points were around when we were talking
about shell extensions, but I didn't mention them in Chapter 15 because they were dealt with
automatically by the registry information we provided for shell extensions. With namespace
extensions, it's a bit different.

First and foremost, a namespace extension is a COM in-process server, so it needs to be properly
registered under HKEY_CLASSES_ROOT\CLSID. In addition, it may need some specific registration
information (we'll discuss exactly what it looks like later) that serves the purpose of setting the
behavior and the appearance of the folder.

What's still to be clearly defined is how a namespace extension links to the shell. In other words,
where should the folder be located in the shell's hierarchy? We didn't have this problem for shell
extensions (like context menu handlers, for example) because a shell extension is a dynamic object. It
gets called only when it's needed, and unloaded a few seconds after its reference count falls back to
zero.

A namespace extension, on the other hand, is a folder, and a folder should have a location in the shell.
This location is called a junction point. From another point of view, we could say that a junction
point is the means of accessing a namespace extension. There are four ways to do this:

! Associating the namespace extension with a file type (if applicable)
! Using a directory with a very specific content
! Using a directory with a specific name
! Associating it with one of the existing namespaces

Let's examine each option in detail.

Using a File Type
Even though it would be a bit unusual (in my opinion, at least!), you might think of writing a
namespace extension to let your users navigate through the content of your documents. In this case,
your extension will be tied to a file type, and linked to the default item on the context menu.
Consider this as a demonstration that a namespace extension is not really very different from a shell
extension!

Personally, though, I'd say that if you have a type of document that lends itself to being browsed, it's
better to define an external viewer as we did for metafiles in Chapter 14. The clear advantage of
using an external viewer is that you save all the COM jiggery-pokery and the namespace extension
skeleton. The disadvantage is that you create another process, while a namespace extension runs in
the same address space as Explorer. (This might also be seen as an advantage, however, since
separate processes give you better crash-resistance.)

Chapter 16

564

To use a file type as the junction point, you need to create a new verb on the document class's
context menu:

HKEY_CLASSES_ROOT
 \YourDocument
 \ShellEx
 \NewVerb
 \Command

In this tree, YourDocument and NewVerb are both customizable. If you want to add a namespace
extension to walk the content of an HTML file, the registry entries would be:

HKEY_CLASSES_ROOT
 \htmfile
 \ShellEx
 \Browse
 \Command

In this case, we've chosen to call the verb Browse, and this will automatically add an item called
Browse to the .htm context menu. (We saw this in Chapter 14.) To associate the namespace
extension with the HTML files, the command line will be:

explorer /root, {CLSID}, %1

See Further Reading for information on how to get hold of a couple of samples that use this
technique.

There are some kinds of files that work as 'containers' of different types of information, and it's
possible that you might think of these in terms of folders and subfolders. An example of this can be
found in HTML files (containing collections of objects, images, tables, and so on), which you could
browse as if they were directories. What could be better than a namespace extension in this situation?
In this case, though, we must necessarily use a rooted extension, as Explorer doesn't support
browsing into files from the tree view.

Using a Directory
Normally, you link a namespace extension to the shell using a directory. The idea is very simple.
Since a namespace extension is a custom folder, you just create an ordinary folder with an ordinary
name, and associate it with your extension to provide the non-standard behavior. There are two
equivalent ways to get this accomplished.

The desktop.ini File
The first technique requires you to create a new directory wherever you can, and give it the name
you want. Then, make it read-only and create a hidden file called desktop.ini. Typical content for
this file is:

[.ShellClassInfo]
CLSID={CLSID}

Namespace Extensions

565

This is telling Explorer to refer to the CLSID you've specified for any information it may need about
displaying that folder. You can change the display name of this folder by setting the Default key of
the CLSID under this path:

HKEY_CLASSES_ROOT
 \CLSID
 \{CLSID}

Likewise, to set a custom icon, just add a DefaultIcon key under the same path:

HKEY_CLASSES_ROOT
 \CLSID
 \{CLSID}
 \DefaultIcon

The Default value of this key will address the location and the index of the icon using the usual
syntax:

"filename, index"

A Special Folder Name
An even simpler (although probably less well known) technique requires you to create a folder and
give it a particular name. No other operation is needed. The folder is automatically created with the
read-only attribute, and is displayed with the icon and the title you set in the registry as described
above. The name the folder should have has the form:

YourFolderName.{CLSID}

Like this, for example:

Wrox Web Site.{04051965-0fcc-11ce-bcb0-b3fd0e253841}

Here, the visible name of the folder will be 'Wrox Web Site', and the CLSID should of course
reference a valid namespace extension.

Relying on Existing Namespaces
The Windows shell provides a collection of namespace extensions; among them are My Computer,
Network Neighborhood, and a few others. It's possible for you to place your own namespace
extensions beneath one of these existing special folders. In particular, you might want to add it
directly to My Computer, or to the Desktop namespace. Doing this automatically links the extension
to the shell, and you don't need to take any other action. Here's an example of how to add a
namespace extension to the My Computer node:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \MyComputer
 \NameSpace
 \{CLSID}

Chapter 16

566

The Default value of {CLSID} should point to the string you want the Explorer to display. The
other default namespaces you can always rely on to be present are:

! Desktop (Desktop)
! Network Neighborhood (NetworkNeighborhood)
! Internet Explorer (Internet)

By simply replacing the MyComputer entry in the above path with the text in parentheses, you can
move your extension to the desired namespace.

What you can do with a Namespace Extension
So far, we've discussed namespace extensions from an architectural point of view. I've explained how
they work, and some basic ideas to keep in mind when approaching them. We also touched on the
hot topic of installation.

Now it's time to start thinking about concrete and useful applications of this technology. If you look
at the directories in your PC, you'll see many folders with custom icons. There are Subscriptions,
Downloaded Program Files, Temporary Internet Files, Scheduled Tasks, Channels, Software
Updates... the list goes on. Basically, Windows gives us a namespace extension every time there's
some information to be displayed that logically can be represented by one or more nested folders.
The information involved must be collectable in a single, main, folder, and it must relate to the
system. It would be better yet if it were based on files.

This is just one way to think about namespace extensions. Another one moves the focus to
applications. You could think about creating your own folder in the shell and reserving a sub-folder
for each application your company ships. In these sub-folders you could host the entire application,
or information about it, or (more simply still) just an Internet shortcut.

Designing Our Namespace Extension
Following the points outlined in the first part of this chapter, we need to provide consistent answers
to a number of questions. We want to add a node to Explorer that lets us browse the hierarchy of
currently opened windows. If you know Spy++, a utility that comes with Visual C++, then it's easy to
imagine what we're aiming to do: basically, we want much of the Spy++ functionality built into the
Windows shell. By expanding, say, a Windows View node, we want to be able to obtain a complete
list of all the top-level windows. By expanding each of these nodes, we want to be able to find out
about all the constituent windows of the upper-level window.

What we need to determine is:

! Whether this application includes the concept of a 'folder'
! How to build the PIDL
! How to enumerate the items
! How to present the information to the user
! Which additional functionality to provide

In the remainder of the chapter, I'll try to address all these points.

Namespace Extensions

567

What's a Folder Here?
In a windows hierarchy we have just one kind of item: windows. This is different from what the
situation would be if we were writing a namespace extension for viewing the registry. In that case, we
would have folders (the registry keys) and items (the keys' values).

However, a Windows View extension is composed only of windows. If a given window has children,
then it might be considered a folder. What's a sub-folder? A sub-folder is a window with a parent, at
least one child and at least one grandchild.

Designing a Custom PIDL
Designing a PIDL is a very important part of namespace extension development. In this particular
case, though, we get rather lucky. We don't need to concatenate data components to get a unique
identifier to a window, because we've already got HWNDs. We'll be using a straight HWND as our PIDL,
and this makes it absolutely certain that we'll be able to identify any item of the folder
unambiguously.

How to Build a Window Enumerator
Another central item of namespace extensions is the enumerator object that has the task of returning
the various items that the folder or the sub-folder contains. And we're lucky again, because windows
are a system component for which the SDK provides great support. To enumerate windows, we have
just to call EnumChildWindows() and store the result somewhere in a private data structure.

Designing the View
For a programmer, the key pieces of information about a window are its HWND, its title, and above all
its window class name. The view we create should therefore allow you to see all this information at
the same time. A report list view appears to be the best choice; we can give it four columns:

! An indication of whether the window has children
! The HWND of the window
! The name of the class the window belongs to
! The current title of the window

To facilitate viewing, we can adopt different icons to reflect whether the window has children — this is
a way to distinguish between folder windows and item windows. Furthermore, adding some sorting
capability would be helpful.

We also want the folder to provide information about a window through its context menu, which will
require us to implement the IContextMenu interface as well.

Chapter 16

568

Implementing Our Namespace Extension
To create this namespace extension, I used the structure of the source code that Microsoft provides
for the Registry View extension as a basis. The Registry View extension is shown in this figure:

The source code for the RegView example that adds the registry as a new folder in Explorer
comes with the Internet Client SDK, and is available on your Visual C++ disks. You can find it
at Samples\SDK Samples\Windows UI Samples\Shell Samples\RegView, and
I recommend that you dig it out now so that you're better able to follow this discussion.

Common Features of Registry View and Windows View
As mentioned earlier, I've used the Microsoft sample source code as a basis because it really is a rich,
realistic example. It shows you:

! How to design a fairly complex namespace extension that inserts itself into Explorer's namespace
! How to code and manage a PIDL, and embed real-world data in it
! How to handle and organize sub folders
! How to add accessory features like modified menus and different icons
! How to place it on the desktop and store additional and helpful information in the registry

I maintained the structure of the code, trying to make it work with another type of data, with different
features. The example employs pure C++ code, so I maintained it. All the COM paraphernalia is as it
was in the original. Similarly, I kept the management code for PIDLs — encapsulating everything in a
single manager class appeared to be a good choice to me. I just changed the format of the data, and
adapted some class members to it.

Both the extensions (Microsoft's and mine) employ a list view as the window in which to display the
folder's content, although mine is a little simpler. It doesn't support multiple views (large icons, small
icons, and list) but only the report view. On the other hand, it does provide sorting capabilities and
some enhancements to the user interface of the list view (full row selection, auto tracking, column
drag-and-drop).

Namespace Extensions

569

Moving on, both extensions make changes to Explorer's menu and support different icons for
different items. In addition, Windows View implements context menus for both the left and the right
pane. Speaking of user interface features, I should add that mine can be deleted, is visible from
common dialogs, and displays a tooltip when the mouse hovers over it on the desktop.

Apart from the choice of maintaining the C++ skeleton and the organization of PIDL-related code,
what remains — the largest part of the code — has a pretty standard form. The actions it implements
couldn't sensibly be done in a radically different way, and so its suitability as a model for when you
come to writing your own namespace extensions stands.

The Windows View Project
The project is composed of the following main classes, all of which also exist in the Registry View
project:

Class Interfaces Description

CShellFolder IShellFolder,
IPersistFolder

Defines the behavior of the folder manager,
which is the module that implements a
bridge between Explorer and the extension.

CEnumIDList IEnumIDList Enumerates the windows that are part of the
view.

CShellView IShellView Provides the view that will occupy Explorer's
right pane.

CExtractIcon IExtractIcon Returns the icon to be used by Explorer.

CContextMenu IContextMenu Returns the menu items to be used by
Explorer for the context menu.

Aside from these classes that implement the requisite COM interfaces, our project will contain
another important class that will provide the main functions for managing the PIDL: CPidlMgr.

Chapter 16

570

The PIDL Manager Class
As we've discussed, this namespace extension will use window handles as PIDLs, but we still need a
layer of code to wrap the HWND and provide a programming interface that conforms to the PIDL
specification and is consistent with the expectations of the shell.

To accomplish all the tasks that involve PIDLs, we need to define a PIDL manager class. Any class
that needs to handle PIDLs will create an instance of this object.

#ifndef PIDLMGR_H
#define PIDLMGR_H

#include <windows.h>
#include <shlobj.h>

// Data structure for PIDLs
struct PIDLDATA
{
 // Add a signature and a version number here if backward compatibility
 // is a real issue for you. Also add other data that's required to
 // identify the elements of your folder.
 HWND hwnd;
};

typedef PIDLDATA* LPPIDLDATA;

extern HINSTANCE g_hInst;
extern UINT g_DllRefCount;

/*---*/
// CPidlMgr class definition
/*---*/
class CPidlMgr
{
public:
 CPidlMgr();
 ~CPidlMgr();

 LPITEMIDLIST Create(HWND);
 LPITEMIDLIST Copy(LPCITEMIDLIST);
 void Delete(LPITEMIDLIST);
 UINT GetSize(LPCITEMIDLIST);

 LPITEMIDLIST GetNextItem(LPCITEMIDLIST);
 LPITEMIDLIST GetLastItem(LPCITEMIDLIST);

 BOOL HasChildren(HWND);
 BOOL HasChildrenOfChildren(HWND);
 HWND GetData(LPCITEMIDLIST);
 DWORD GetPidlPath(LPCITEMIDLIST, LPTSTR);

private:
 LPMALLOC m_pMalloc;
 HWND GetDataPointer(LPCITEMIDLIST);
 static BOOL CALLBACK WindowHasChildren(HWND, LPARAM);
};

typedef CPidlMgr* LPPIDLMGR;

#endif // PIDLMGR_H

Namespace Extensions

571

The CPidlMgr class defines methods to create, delete, copy, and navigate through a PIDL.
Furthermore, the class includes a data member for storing a reference to the shell allocator object
returned by SHGetMalloc().

The key functions in this class are:

! Create(), to build a new PIDL
! HasChildren(), to decide whether a window is a 'folder'
! GetData(), to disassemble a PIDL in order to extract useful information
! GetPidlPath(), to return the display name of the PIDL

The others are largely helper functions that play a secondary role with respect to the above four. Let's
examine each of these methods in detail.

Creating a PIDL
Associating a PIDL with an HWND doesn't mean that we can simply use an HWND wherever a PIDL is
required. A PIDL is a structure that must expose a standard interface to let Explorer navigate it,
whatever it may contain internally. The HWND is therefore just the content of the PIDL, and
consequently creating the PIDL means building up the wrapper that encloses the handle.

As I explained earlier in the book, a PIDL is a pointer to a list of SHITEMID variables. To start off,
then, we defined a PIDLDATA structure that's the kind of thing pointed to by the abID member of
the SHITEMID structure:

struct PIDLDATA
{
 HWND hwnd;
};

typedef PIDLDATA* LPPIDLDATA;

This is a generic way to proceed: create a custom structure and fill it with any data you need to
identify the item inside the folder that actually contains it. It's not necessary for a single PIDL to be
globally unique, as in the case of HWNDs. The important thing is that each PIDL is unique within its
subfolder. Global uniqueness is achieved by concatenating the various PIDLs that form the path from
the Desktop to the item. In other words, things work in much the same way as they work with files
and directories. You can have two files with the same name in different directories, or with the same
path in different drives, but you're still definitely addressing different objects.

In this specific example, we don't need to use more than an HWND to identify a folder item. In other
circumstances, you might need more information, but that just requires adding new fields to the
PIDLDATA structure you can see here.

When it comes to creating a new PIDL, you must allocate enough memory for it via the IMalloc
interface. This is to make it possible for the shell to free PIDLs. The IMalloc interface is returned
by SHGetMalloc(), which is called in CPidlMgr's class constructor. The actual amount of memory
to allocate must be equal to the size of the PIDL itself, plus the size of an empty structure. The
following line defines the correct size:

USHORT uSize = sizeof(ITEMIDLIST) + sizeof(PIDLDATA);

Chapter 16

572

As you can see, it's given by the size of an ITEMIDLIST, plus the size of the data that represents the
item. In addition, you can't forget the final, null, ITEMIDLIST that lets the shell know that the chain
of PIDLs is finished:

LPITEMIDLIST CPidlMgr::Create(HWND hwnd)
{
 // Global size of the PIDL, including SHITEMID
 USHORT uSize = sizeof(ITEMIDLIST) + sizeof(PIDLDATA);

 // Also allocate memory for the final, null, ITEMIDLIST
 // Note that we must use IMalloc to get new memory
 LPITEMIDLIST pidlOut = reinterpret_cast<LPITEMIDLIST>(
 m_pMalloc->Alloc(uSize + sizeof(ITEMIDLIST)));
 if(pidlOut)
 {
 LPITEMIDLIST pidlTemp = pidlOut;

 // Prepares the PIDL to be filled with actual data
 pidlTemp->mkid.cb = uSize;
 LPPIDLDATA pData = reinterpret_cast<LPPIDLDATA>(pidlTemp->mkid.abID);

 // Fill the PIDL
 pData->hwnd = hwnd;

 //
 // Add more fields here if required...
 //

 // A PIDL of size 0 means the end of the chain
 pidlTemp = GetNextItem(pidlTemp);
 pidlTemp->mkid.cb = 0;
 pidlTemp->mkid.abID[0] = 0;
 }

 return pidlOut;
}

A PIDL must be a flat sequence of bytes, which means that you can't use pointers. If you try to do
this, the pointer will be considered as a 32-bit number, and the reference to the address will be lost.

Extracting Information from a PIDL
All the shell API functions manipulate PIDLs, and every item or folder is referred in terms of PIDLs.
However, it should always be possible to extract from the PIDL the information you actually need to
process. In this case you need to know the HWND, and whether the window has children.

BOOL CPidlMgr::HasChildren(HWND hWnd)
{
 // Determine whether a window has children
 HWND h = GetWindow(hWnd, GW_CHILD);
 return (h != NULL);
}

HWND CPidlMgr::GetData(LPCITEMIDLIST pidl)
{
 if(!pidl)
 return NULL;

Namespace Extensions

573

 // Get the last item of the PIDL to make sure we get the right HWND
 // in case of multiple nesting levels
 LPITEMIDLIST p = GetLastItem(pidl);

 LPPIDLDATA pData = reinterpret_cast<LPPIDLDATA>(p->mkid.abID);
 return pData->hwnd;
}

As you know, a PIDL is a pointer to a list of structures composed of two members, the first of which
indicates the size of the member that follows it. In this way, Explorer knows the exact number of
bytes it needs to skip in order to walk the chain correctly. Likewise, a namespace extension can get
the number of bytes and so interpret the structures properly. To make things simpler, a PIDL
manager class should define some functions to allow 'walking':

LPITEMIDLIST CPidlMgr::GetNextItem(LPCITEMIDLIST pidl)
{
 if(pidl)
 return reinterpret_cast<LPITEMIDLIST>((reinterpret_cast<LPBYTE>(
 const_cast<LPITEMIDLIST>(pidl))) + pidl->mkid.cb);
 else
 return NULL;
}

LPITEMIDLIST CPidlMgr::GetLastItem(LPCITEMIDLIST pidl)
{
 LPITEMIDLIST pidlLast = NULL;

 // Get the PIDL of the last item in the list
 if(pidl)
 {
 while(pidl->mkid.cb)
 {
 pidlLast = const_cast<LPITEMIDLIST>(pidl);
 pidl = GetNextItem(pidl);
 }
 }
 return pidlLast;
}

Another important task for a PIDL manager class is to provide the display name of the object. A
PIDL is just a binary sequence of bytes, and for this reason the shell will, when needed, ask the folder
manager (the object implementing IShellFolder) to provide a display name for each item. It's
therefore reasonable that somewhere (and where if not in a PIDL manager class?) there should be a
piece of code capable of taking a PIDL and returning a displayable string.

In general, this function will walk the list referenced by the PIDLs and create a string incrementally.
If you're browsing into folders and sub-folders, then the innermost item has a PIDL that takes into
account all the parent folders. Normally, then, you should provide an overall string. (Once again,
think about files and directories, and consider the path name as the display name.) The idea is that
you decide what to show for a single PIDL, and then walk the chain concatenating the various pieces,
separating them by commas, semicolons, slashes or whatever.

Chapter 16

574

DWORD CPidlMgr::GetPidlPath(LPCITEMIDLIST pidl, LPTSTR lpszOut)
{
 HWND hwnd = GetData(pidl);

 TCHAR szClass[100], szTitle[100];
 GetWindowText(hwnd, szTitle, 100);
 GetClassName(hwnd, szClass, 100);

 // Add a description to the desktop window (of class "#32769")
 if(!lstrcmpi(szClass, __TEXT("#32769")))
 lstrcpy(szClass, __TEXT("Desktop"));

 // Return a string in the form "title [class]"
 if(lstrlen(szTitle))
 wsprintf(lpszOut, __TEXT("%s [%s]"), szTitle, szClass);
 else
 wsprintf(lpszOut, __TEXT("[%s]"), szClass);

 // Return the size of the string
 return lstrlen(lpszOut);
}

As you can see from the above code, though, things are easier in this case because in returning the
name of the current window, we don't need to take into account the list of the windows we traversed
to reach it. We just discover the HWND and return the proper information. However, we're passed a
PIDL, so the first thing to do is convert it to a window using GetData(). Then we return a formatted
string containing the title and class of the window. This string will be shown in the address and status
bar each time the window is selected. The GetPidlPath() method will be called by the folder
manager in its GetDisplayNameOf() method.

All the classes in our namespace extension need to deal with PIDLs, so each will include a data
member of type LPITEMIDLIST, and an instance of the PIDL manager.

The Windows Enumerator
Let's now examine the major features of the enumerator. This is a class derived from IEnumIDList
that provides access to the list of the windows that are open throughout the system at the time the
class is created. To function, it defines an internal list of PIDLs and uses it to store all the 'folder'
items. When the class constructor is called, all the items in the folder that's passed as an argument are
enumerated and added to the list. It's on this list, then, that interface methods like Next() will work.
Regardless of the implementation details, this is generic behavior for any class implementing the
IEnumIDList interface.

CEnumIDList::CEnumIDList(HWND hwnd, DWORD dwFlags, HRESULT* pResult)
{
 if(pResult)
 *pResult = S_OK;

 m_pFirst = NULL;
 m_pLast = NULL;
 m_pCurrent = NULL;

Namespace Extensions

575

 // Creates the PIDL manager
 m_pPidlMgr = new CPidlMgr();
 if(!m_pPidlMgr)
 {
 if(pResult)
 *pResult = E_OUTOFMEMORY;
 delete this;
 return;
 }

 // Get the shell's memory manager
 if(FAILED(SHGetMalloc(&m_pMalloc)))
 {
 if(pResult)
 *pResult = E_OUTOFMEMORY;
 delete this;
 return;
 }

 // Creates the list of the items
 if(!CreateEnumList(hwnd, dwFlags))
 {
 if(pResult)
 *pResult = E_OUTOFMEMORY;
 delete this;
 return;
 }

 m_ObjRefCount = 1;
 g_DllRefCount++;
}

The above listing shows the code for the class constructor, which receives the handle of the window
to enumerate and the flags to take into account. The flags were specified by the shell in the call to
IShellFolder::EnumObjects(), as I explained earlier in the chapter.

In the CreateEnumList() method, the list is created by enumerating the windows with the
EnumChildWindows() SDK function. If the base window is NULL, then it means that we've been
requested to enumerate the topmost window, which is the Desktop. There are no other windows at
this level, and hence no need to enumerate, so I simply obtain the handle of the desktop window
through GetDesktopWindow() and add a new item to the list. In other cases, I enumerate the child
windows and create new items when necessary:

typedef struct tagENUMWND {
 LPARAM lParam;
 HWND hwndParent;
 DWORD dwFlags;
} ENUMWND, FAR* LPENUMWND;

Chapter 16

576

BOOL CEnumIDList::CreateEnumList(HWND hWndRoot, DWORD dwFlags)
{
 // Get the desktop window
 if(hWndRoot == NULL)
 {
 // If we must consider the root window (the desktop), we don't need to
 // enumerate anything. Just get the desktop HWND and add a new
 // element to the list. This is what's done by NewEnumItem().
 hWndRoot = GetDesktopWindow();
 NewEnumItem(hWndRoot);
 return TRUE;
 }

 // Enumerate the child windows of the specified window
 ENUMWND ew;
 ew.lParam = reinterpret_cast<LPARAM>(this);
 ew.hwndParent = hWndRoot;
 ew.dwFlags = dwFlags;

 // We need a function that only considers immediate children of the
 // specified window. We're not interested in children of children. We'll
 // correct this aspect of EnumChildWindows' behavior in callback code.
 EnumChildWindows(hWndRoot, AddToEnumList, reinterpret_cast<LPARAM>(&ew));
 return TRUE;
}

BOOL CALLBACK CEnumIDList::AddToEnumList(HWND hwndChild, LPARAM lParam)
{
 LPENUMWND lpew = reinterpret_cast<LPENUMWND>(lParam);

 // Avoid windows that aren't children of the specified window's parent.
 // This test is meant to skip over all those windows that aren't
 // immediate children of the window whose children we're enumerating.
 // This check is due to a feature of EnumChildWindows() that enumerates
 // not just children but also grandchildren. We avoid grandchildren.
 HWND h = GetParent(hwndChild);
 if((h != NULL) && (h != lpew->hwndParent))
 return TRUE;

 // We stored the pointer to the class in the lParam argument
 CEnumIDList* pEnumIDList = reinterpret_cast<CEnumIDList*>(lpew->lParam);

 // IMPORTANT: This is where we decide what's a 'folder' and what's a
 // 'leaf'. For windows, this rests on whether they have children.

 // Explorer wants non-folder items
 if(lpew->dwFlags & SHCONTF_NONFOLDERS)
 return pEnumIDList->NewEnumItem(hwndChild);

 // Explorer wants folder items
 if(lpew->dwFlags & SHCONTF_FOLDERS)
 {
 // If it has no children, drop it because it has already been added.
 if(!pEnumIDList->m_pPidlMgr->HasChildren(hwndChild))
 return TRUE;
 else
 pEnumIDList->NewEnumItem(hwndChild);
 }
 return TRUE;
}

Namespace Extensions

577

BOOL CEnumIDList::NewEnumItem(HWND hwndChild)
{
 LPENUMLIST pNew = NULL;
 pNew = reinterpret_cast<LPENUMLIST>(m_pMalloc->Alloc(sizeof(ENUMLIST)));
 if(pNew)
 {
 // Create the new PIDL for the new element
 pNew->pNext = NULL;
 pNew->pidl = m_pPidlMgr->Create(hwndChild);

 // Is this the first item in the list?
 if(!m_pFirst)
 {
 m_pFirst = pNew;
 m_pCurrent = m_pFirst;
 }

 // Add the new item to the end of the list
 if(m_pLast)
 m_pLast->pNext = pNew;

 // Update the last item pointer
 m_pLast = pNew;
 return TRUE;
 }
 return FALSE;
}

For our purposes, the EnumChildWindows() function has a flaw that we should try to work around.
It returns all the windows that are children of a specified window, even if they are actually children of
children, when all we want are the immediate children. However, EnumChildWindows() can be
passed a callback function that will do work on each of the enumerated windows. In our example, this
function (I've called it AddToEnumList()) begins by performing a check against the actual parent of
the enumerated window, and rejects it if the parent doesn't match the expected window.

For each window, we need to create a PIDL and add its address to the list; in the above listing, this is
done by the helper function NewEnumItem(). Notice also that the callback function takes care of
enumerating windows according to what the shell requests: only folders, or folders and items
together.

Getting the Next Items
Once the list of windows has been created, returning the next n items to the caller is as easy as
walking the list and filling an array. Notice that we're required to create and return a new copy of the
PIDL. The shell will use them, and then they'll be freed.

STDMETHODIMP CEnumIDList::Next(
 DWORD dwElements, LPITEMIDLIST apidl[], LPDWORD pdwFetched)
{
 DWORD dwIndex;
 HRESULT hr = S_OK;

 if(dwElements > 1 && !pdwFetched)
 return E_INVALIDARG;

Chapter 16

578

 for(dwIndex = 0 ; dwIndex < dwElements ; dwIndex++)
 {
 // Is this the last item in the list?
 if(!m_pCurrent)
 {
 hr = S_FALSE;
 break;
 }

 // Copy PIDLs
 apidl[dwIndex] = m_pPidlMgr->Copy(m_pCurrent->pidl);
 m_pCurrent = m_pCurrent->pNext;
 }

 // Returns the number of fetched items
 if(pdwFetched)
 *pdwFetched = dwIndex;
 return hr;
}

The Folder Manager
The class that works most tightly with the shell is the one that implements the IShellFolder
interface. It has to create the enumerator and the view, and it must bind to subfolders by creating a
new instance of the CShellFolder class. It has also to provide display names for each PIDL, and
pointers to additional interfaces like IContextMenu and IExtractIcon.

BindToObject() is the method used to bind to a subfolder. It simply creates a new class derived
from IShellFolder and passes the received PIDL as an argument to the constructor. The result is
that a new child shell folder object is created.

STDMETHODIMP CShellFolder::BindToObject(
 LPCITEMIDLIST pidl, LPBC pbcReserved, REFIID riid, LPVOID* ppvOut)
{
 CShellFolder* pShellFolder = new CShellFolder(this, pidl);
 if(!pShellFolder)
 return E_OUTOFMEMORY;

 HRESULT hr = pShellFolder->QueryInterface(riid, ppvOut);
 pShellFolder->Release();
 return hr;
}

The following snippet shows how the folder object creates its view and enumerator objects. For the
enumerator, we first need to extract the HWND of the window to enumerate. Then we can create the
enumerator object:

STDMETHODIMP CShellFolder::CreateViewObject(
 HWND hwndOwner, REFIID riid, LPVOID* ppvOut)
{
 CShellView* pShellView = new CShellView(this, m_pidl);
 if(!pShellView)
 return E_OUTOFMEMORY;

Namespace Extensions

579

 m_pShellView = pShellView;
 HRESULT hr = pShellView->QueryInterface(riid, ppvOut);
 pShellView->Release();
 return hr;
}
STDMETHODIMP CShellFolder::EnumObjects(
 HWND hwndOwner, DWORD dwFlags, LPENUMIDLIST* ppEnumIDList)
{
 // hwndOwner is just the HWND to use as the parent for any message box
 HRESULT hr;
 *ppEnumIDList = NULL;

 HWND hWnd = m_pPidlMgr->GetData(m_pidl);
 *ppEnumIDList = new CEnumIDList(hWnd, dwFlags, &hr);
 if(*ppEnumIDList == NULL)
 return hr;

 return S_OK;
}

For display names, the folder manager ends up calling into the PIDL manager class, but needs to
convert the string to Unicode characters before returning it. GetDisplayNameOf() actually returns
a STRRET, which is a data structure that's a union of three possible data types for rendering a string:
Unicode string, ANSI string, offset to a string (see Chapter 5). In this case, I've chosen to use Unicode
strings:

STDMETHODIMP CShellFolder::GetDisplayNameOf(
 LPCITEMIDLIST pidl, DWORD dwFlags, LPSTRRET lpName)
{
 TCHAR szText[MAX_PATH] = {0};

 // Get the name to display in the left pane, address bar, etc
 m_pPidlMgr->GetPidlPath(pidl, szText);

 // Must convert string to Unicode, so allocate a wide character string
 int cchOleStr = lstrlen(szText) + 1;
 lpName->pOleStr = reinterpret_cast<LPWSTR>(
 m_pMalloc->Alloc(cchOleStr * sizeof(WCHAR)));
 if(!lpName->pOleStr)
 return E_OUTOFMEMORY;

 lpName->uType = STRRET_WSTR;
 mbstowcs(lpName->pOleStr, szText, cchOleStr);
 return S_OK;
}

In my opinion, however, the most interesting part of the folder manager's activity comes when it's
time to compare items, and to return attributes for an item.

Comparing Items
Comparing items is a relatively simple bit of functionality to implement, but it has tremendous
importance. If you can't be absolutely sure to implement it correctly, it's better for you to state
explicitly that you do not support it. At an early stage of the development of this namespace
extension, I used a partial implementation of the IShellFolder::CompareIDs() method, and
you have no idea how many errors and misleading bits of behavior I had to cope with! Worse still,
they seemed to have very little to do with the item comparison routine. Only when I decided to
arrange it properly did things — almost magically — suddenly start to work properly.

Chapter 16

580

The CompareIDs() member function receives two PIDLs from the shell, and must return a value
denoting which item is greater. A (non-zero) positive value indicates that the first is greater than the
second, while a negative value denotes the opposite. A null value should be returned when the items
are equal.

As you can easily verify yourself from the online documentation, CompareIDs()also takes a third
parameter, lParam, which is meant to denote the sorting rule to apply. By convention, a value of 0
means that you have to sort the folder's content by name, while non-zero values denote folder-specific
rules. In this application, CompareIDs() gets called when the user clicks on any column of the
header control at the top of the list view. (This is typical behavior for Explorer-like user interfaces.)
We're handling this event in shell view code, so it's completely up to us decide what to pass through
lParam.

In this implementation, I've decided to ignore lParam, opting instead to use a data member of the
CShellFolder class (m_uSortField) to denote how to sort the content. The reason for this is that
I need to keep track of the currently sorted field, so a data member would be needed anyway.
Furthermore, I want to be able to sort in either ascending or descending order — if a column is
already sorted, then clicking to sort again will reverse the order. This listing shows exactly how I did
it:

STDMETHODIMP CShellFolder::CompareIDs(
 LPARAM lParam, LPCITEMIDLIST pidl1, LPCITEMIDLIST pidl2)
{
 // This function is always called with lParam set to 0. By convention,
 // this means "sort by name"; other non-zero values are usually meant to
 // indicate specific folder-sorting rules. Note that here I'm using the
 // m_uSortField data member as a 'replacement' for lParam.

 HWND hwnd1 = m_pPidlMgr->GetData(pidl1);
 HWND hwnd2 = m_pPidlMgr->GetData(pidl2);

 // Sorting by CHILDREN
 if(m_uSortField == 1 || m_uSortField == -1)
 {
 int fChildren1 = m_pPidlMgr->HasChildren(hwnd1);
 int fChildren2 = m_pPidlMgr->HasChildren(hwnd2);

 if(fChildren1 < fChildren2)
 return m_uSortField;
 else if(fChildren1 > fChildren2)
 return m_uSortField * -1;
 else
 return 0;
 }

 // Sorting by CLASS
 if(m_uSortField == 2 || m_uSortField == -2)
 {
 // BUFSIZE is a symbolic constant set to 100
 TCHAR szClass1[BUFSIZE];
 TCHAR szClass2[BUFSIZE];
 GetClassName(hwnd1, szClass1, BUFSIZE);
 GetClassName(hwnd2, szClass2, BUFSIZE);
 return m_uSortField * lstrcmpi(szClass1, szClass2);
 }

Namespace Extensions

581

 // Sorting by TITLE
 if(m_uSortField == 4 || m_uSortField == -4)
 {
 TCHAR szTitle1[BUFSIZE];
 TCHAR szTitle2[BUFSIZE];
 GetWindowText(hwnd1, szTitle1, BUFSIZE);
 GetWindowText(hwnd2, szTitle2, BUFSIZE);
 return m_uSortField * lstrcmpi(szTitle1, szTitle2);
 }

 // sorting by HWND
 if(hwnd1 < hwnd2)
 return m_uSortField;
 else if(hwnd1 > hwnd2)
 return m_uSortField * -1;
 else
 return 0;
}

This function will let us sort the items in the view in four ways: by children, by class, by handle and
by title. Furthermore, by making m_uSortField negative or positive and multiplying the result of
the comparison by its value, we can alter the order of sorting. Depending on the logic of the
comparison in question, we either compare HWNDs or resort to lstrcmpi() to compare strings.

Folder Attributes
Returning the correct folder attributes is vital to having your namespace extension work properly
within Explorer. When you open the main node, for example, you expect to see all the folders it
contains. In terms of windows, when you expand the node that relates to the desktop window, you
should see all the top-level windows and all the windows with no parent, but no others. When you then
click on one of this second set of windows, you want to see all the children of that window.

The GetAttributesOf() method is expected to return the correct attributes for a group of items
identified by their PIDLs. To assign attributes, use the SFGAO_XXX constants that we met in Chapter
4. Remember that you might be passed several PIDLs at a time, and the attributes apply to them all.

STDMETHODIMP CShellFolder::GetAttributesOf(
 UINT uCount, LPCITEMIDLIST aPidls[], LPDWORD pdwAttribs)
{
 *pdwAttribs = -1;

 for(UINT i = 0 ; i < uCount ; i++)
 {
 DWORD dwAttribs = 0;

 // Is this item a window?
 HWND hwnd = m_pPidlMgr->GetData(aPidls[i]);
 if(IsWindow(hwnd))
 {
 // Assign here all the styles you want the items to have in common
 // Of course, it's then up to you to manage them properly.
 if(m_pPidlMgr->HasChildren(hwnd))
 {
 dwAttribs |= SFGAO_FOLDER;
 if(m_pPidlMgr->HasChildrenOfChildren(hwnd))
 dwAttribs |= SFGAO_HASSUBFOLDER;

Chapter 16

582

 }
 }
 *pdwAttribs = dwAttribs;
 }
 return S_OK;
}

The GetAttributesOf() function receives a list of PIDLs for which to retrieve the attributes. I
said that every window that has child windows is a folder, so it's easy to determine when the
SFGAO_FOLDER attribute should be indicated. If we stop there, though, the shell neglects to make the
node expandable, making it impossible to browse beyond the first level. Thus, we need to indicate
not only if a specified node has children, but also if any of these children has its own children. If the
answer to this question is yes, we can set the SFGAO_HASSUBFOLDER flag as well.

Leaping back into the PIDL manager class for a moment, the HasChildrenOfChildren()
function simply enumerates the child windows and checks whether any of them has children:

BOOL CPidlMgr::HasChildrenOfChildren(HWND hWnd)
{
 // Determine whether a window has children
 BOOL b = FALSE;

 EnumChildWindows(hWnd, WindowHasChildren, reinterpret_cast<LPARAM>(&b));
 return b;
}

BOOL CPidlMgr::WindowHasChildren(HWND hwnd, LPARAM lParam)
{
 BOOL* pB = reinterpret_cast<BOOL*>(lParam);

 // If the window is a child window then the returned HWND isn't NULL
 HWND h = GetWindow(hwnd, GW_CHILD);
 *pB = (h != NULL); // TRUE if at least one grandchild exists
 return(h == NULL); // Needs to return FALSE to stop enumeration
}

There are a few points to clarify about this code. To check whether a given window has
grandchildren, I have to enumerate all its child windows. EnumChildWindows() is the API function
that does just this. Like any other enumeration, it starts with the first window and finishes with the
last one. Each window found is passed for further processing to the specified callback function, which
in this case is WindowHasChildren().

The point is that we need to know whether or not there's at least one grandchild, so once we've found
the first one, we can stop the enumeration by returning FALSE from the callback function. On the
other hand, we also need a way to notify the calling function HasChildrenOfChildren() that the
enumeration finished because a grandchild has been found. The Boolean value passed to
EnumChildWindows() serves as a return buffer for this result:

 EnumChildWindows(hWnd, WindowHasChildren, reinterpret_cast<LPARAM>(&b));

Namespace Extensions

583

A simpler approach
would require us always
to set the
SFGAO_HASSUBFOLDER
flag each time we set
SFGAO_FOLDER, and
things would work
perfectly well but for a
little bug: all the nodes
would appear to be
expandable, whether or
not they had subfolders.
By doing things
properly, we'll have a
tree view that looks like
this:

The Window View
Essentially, a view is a window. Normally, you create a pair of windows: a parent window containing
a child. The child is what the user sees, and what they interact with. The view we create here will be a
window of a custom class, in order to avoid subclassing. Another technique you can use requires you
to define a modeless dialog with some constituent controls.

In this case, the child window is a list view, which I chose in order to try and make it look like the
traditional folder views. It takes care of responding to some of messages coming from the system,
including such important messages as WM_CREATE, WM_SIZE, WM_SETFOCUS, and WM_NOTIFY.

Note that when you create the class that implements the view, WndProc() (the window-procedure of
the view window) must be a static member. Of course, a static member doesn't get the this pointer,
and therefore can't access other members of the class, so we need to find another way to pass the
this pointer down to the WndProc() code. My solution was to pass this as the last argument to
CreateWindowEx() when creating the view window in IShellView::CreateViewWindow():

hWnd = CreateWindowEx(0, NS_CLASS_NAME, NULL,
 WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS,
 prcView->left, prcView->top,
 prcView->right - prcView->left,
 prcView->bottom - prcView->top,
 m_hwndParent, NULL, g_hInst, this);

This causes the pointer to be passed to the window procedure through the WM_NCCREATE message.
However, accessing this in a static member of the class isn't enough: we also need to make it
'persistent' across the various calls we're going to make to the window procedure. A typical solution
to this problem is to store the pointer in the window's extra bytes — a 32-bit buffer associated with
each window and at the full disposal of the programmer. This code shows how to set it:

SetWindowLong(hWnd, GWL_USERDATA, reinterpret_cast<LONG>(pThis));

Chapter 16

584

While the next line shows how to read it back:

CShellView* pThis = reinterpret_cast<CShellView*>(
 GetWindowLong(hWnd, GWL_USERDATA));

Once we have the pThis pointer, we can start calling all the public members of the class from within
a procedure that is not a class member. (A static class member belongs to the class from a syntactical
point of view, but it's actually a global function attached to the class.) Here's the code for the view's
window procedure:

LRESULT CALLBACK CShellView::WndProc(
 HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 CShellView* pThis = reinterpret_cast<CShellView*>(
 GetWindowLong(hWnd, GWL_USERDATA));

 switch(uMsg)
 {
 case WM_NCCREATE:
 {
 LPCREATESTRUCT lpcs = reinterpret_cast<LPCREATESTRUCT>(lParam);
 pThis = reinterpret_cast<CShellView*>(lpcs->lpCreateParams);
 SetWindowLong(hWnd, GWL_USERDATA, reinterpret_cast<LONG>(pThis));
 pThis->m_hWnd = hWnd;
 }
 break;

 case WM_CONTEXTMENU:
 return pThis->OnContextMenu();

 case WM_MENUSELECT:
 return pThis->OnMenuSelect(LOWORD(wParam));

 case WM_SIZE:
 return pThis->OnSize(LOWORD(lParam), HIWORD(lParam));

 case WM_CREATE:
 return pThis->OnCreate();

 case WM_SETFOCUS:
 return pThis->OnSetFocus();

 case WM_KILLFOCUS:
 return pThis->OnKillFocus();

 case WM_ACTIVATE:
 return pThis->OnActivate(SVUIA_ACTIVATE_FOCUS);

 case WM_COMMAND:
 return pThis->OnCommand(GET_WM_COMMAND_ID(wParam, lParam),
 GET_WM_COMMAND_CMD(wParam, lParam),
 GET_WM_COMMAND_HWND(wParam, lParam));

 case WM_NOTIFY:
 return pThis->OnNotify(wParam, reinterpret_cast<LPNMHDR>(lParam));
 }
 return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

Namespace Extensions

585

To guarantee perfect alignment between selected items and the status of both menus and toolbars,
dealing with WM_SETFOCUS and WM_KILLFOCUS is particularly important:

LRESULT CShellView::OnSetFocus()
{
 // Tell the browser we have the focus
 m_pShellBrowser->OnViewWindowActive(this);

 OnActivate(SVUIA_ACTIVATE_FOCUS);
 return 0;
}

// OnKillFocus
LRESULT CShellView::OnKillFocus()
{
 OnActivate(SVUIA_ACTIVATE_NOFOCUS);
 return 0;
}

We create the list view during the WM_CREATE message, and resize it properly during WM_SIZE in
order to have the view cover the entire available area.

Style of the List View
The list view has the following styles set upon creation in response to WM_CREATE:

 WS_TABSTOP WS_VISIBLE WS_CHILD WS_BORDER
 LVS_SINGLESEL LVS_REPORT LVS_SHAREIMAGELISTS

In addition, since we're addressing Windows 95 with Active Desktop as our minimum platform, we
can add some of the new list view styles. These must be set through a new macro, and are called
extended styles.

BOOL CShellView::CreateList()
{
 DWORD dwStyle = WS_TABSTOP | WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_SINGLESEL | LVS_REPORT | LVS_SHAREIMAGELISTS;

 // Create the list view
 m_hwndList = CreateWindowEx(WS_EX_CLIENTEDGE, WC_LISTVIEW, NULL, dwStyle,
 0, 0, 0, 0, m_hWnd,
 reinterpret_cast<HMENU>(ID_LISTVIEW),
 g_hInst, NULL);

 if(!m_hwndList)
 return FALSE;

 // Set some extended styles
 DWORD dwExStyle = LVS_EX_TRACKSELECT | LVS_EX_UNDERLINEHOT |
 LVS_EX_FULLROWSELECT | LVS_EX_HEADERDRAGDROP;
 ListView_SetExtendedListViewStyle(m_hwndList, dwExStyle);
 return TRUE;
}

Chapter 16

586

The new styles set by these flags mean that the selection now follows the mouse, the entire line is
selected (not just the first item), and we can move the columns using drag-and-drop. Here's the source
code that runs after the creation of the list view. It defines four columns and fills the list with the
items:

BOOL CShellView::InitList()
{
 TCHAR szString[MAX_PATH] = {0};

 // Empty the list view
 ListView_DeleteAllItems(m_hwndList);

 // Initialize the columns
 LV_COLUMN lvColumn;
 lvColumn.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.pszText = szString;

 lvColumn.cx = g_nColumn1;
 LoadString(g_hInst, IDS_COLUMN1, szString, MAX_PATH);
 ListView_InsertColumn(m_hwndList, 0, &lvColumn);
 RECT rc;
 GetClientRect(m_hWnd, &rc);

 lvColumn.cx = g_nColumn2;
 LoadString(g_hInst, IDS_COLUMN2, szString, MAX_PATH);
 ListView_InsertColumn(m_hwndList, 1, &lvColumn);

 lvColumn.cx = g_nColumn3;
 LoadString(g_hInst, IDS_COLUMN3, szString, MAX_PATH);
 ListView_InsertColumn(m_hwndList, 2, &lvColumn);

 lvColumn.cx = g_nColumn4;
 LoadString(g_hInst, IDS_COLUMN4, szString, MAX_PATH);
 ListView_InsertColumn(m_hwndList, 3, &lvColumn);

 ListView_SetImageList(m_hwndList, g_himlSmall, LVSIL_SMALL);
 return TRUE;
}

The list view is then filled by getting the information from the folder's enumerator and using its
Next() method. The enumerator is built through the view's m_pSFParent member, a pointer to
IShellFolder that was acquired and stored during construction.

void CShellView::FillList()
{
 LPENUMIDLIST pEnumIDList = NULL;

 // Get the enumerator object for the folder. EnumObjects() is called
 // through the pointer received via the CShellView constructor.
 HRESULT hr = m_pSFParent->EnumObjects(
 m_hWnd, SHCONTF_NONFOLDERS | SHCONTF_FOLDERS, &pEnumIDList);
 if(SUCCEEDED(hr))
 {
 LPITEMIDLIST pidl = NULL;

 // Stop redrawing to avoid flickering
 SendMessage(m_hwndList, WM_SETREDRAW, FALSE, 0);

Namespace Extensions

587

 // Add items
 DWORD dwFetched;
 while((pEnumIDList->Next(1, &pidl, &dwFetched) == S_OK) && dwFetched)
 {
 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM;
 lvi.iItem = ListView_GetItemCount(m_hwndList);

 // Store PIDL to the HWND, using the lParam member for each item
 HWND h = m_pPidlMgr->GetData(pidl);
 lvi.lParam = reinterpret_cast<LPARAM>(m_pPidlMgr->Create(h));

 // Column 1: state (set image too)
 TCHAR szState[30] = {0};
 if(m_pPidlMgr->HasChildren(h))
 {
 lvi.iImage = 0;
 LoadString(g_hInst, IDS_CHILDREN, szState, 30);
 }
 else
 {
 lvi.iImage = 1;
 LoadString(g_hInst, IDS_NOCHILDREN, szState, 30);
 }
 lvi.pszText = szState;

 // Add the item
 int i = ListView_InsertItem(m_hwndList, &lvi);

 // Fill the subitem 2: HWND
 TCHAR szBuf[MAX_PATH] = {0};
 wsprintf(szBuf, __TEXT("0x%04X"), h);
 ListView_SetItemText(m_hwndList, i, 2, szBuf);

 // Fill the subitem 3: Title
 GetWindowText(h, szBuf, MAX_PATH);
 ListView_SetItemText(m_hwndList, i, 3, szBuf);

 // Fill the subitem 1: Class
 GetClassName(h, szBuf, MAX_PATH);
 ListView_SetItemText(m_hwndList, i, 1, szBuf);
 }

 // Sort the items by HWND initially
 ListView_SortItems(
 m_hwndList, CompareItems, reinterpret_cast<LPARAM>(m_pSFParent));

 // Redraw the list view
 SendMessage(m_hwndList, WM_SETREDRAW, TRUE, 0);
 InvalidateRect(m_hwndList, NULL, TRUE);
 UpdateWindow(m_hwndList);
 pEnumIDList->Release();
 }
}

Notice that we're taking a copy of the PIDL of an item in the list view, and storing it in the lParam
member of that item. If you're wondering why we need to do that, well, just be patient... we'll need it
later!

Chapter 16

588

Sorting by Columns
When we click on one of the headers in the list view, we want to cause items in the view to be sorted
using the IShellFolder::CompareIDs() method in the background. It's possible to sort on any
of the columns, but actually arranging for it to get done is another task for us. Firstly, we need to
detect when the user clicks on any of the columns, but that's the easy part: the event is notified to the
view through a WM_NOTIFY message. We can intercept it in the main window procedure and handle
it using the following code.

LRESULT CShellView::OnNotify(UINT CtlID, LPNMHDR lpnmh)
{
 switch(lpnmh->code)
 {
 case NM_SETFOCUS:
 OnSetFocus();
 break;

 case NM_KILLFOCUS:
 OnDeactivate();
 break;

 case HDN_ENDTRACK:
 g_nColumn1 = ListView_GetColumnWidth(m_hwndList, 0);
 g_nColumn2 = ListView_GetColumnWidth(m_hwndList, 1);
 g_nColumn3 = ListView_GetColumnWidth(m_hwndList, 2);
 g_nColumn4 = ListView_GetColumnWidth(m_hwndList, 3);
 return 0;

 case HDN_ITEMCLICK:
 {
 NMHEADER* pNMH = reinterpret_cast<NMHEADER*>(lpnmh);

 // Have we to reverse the order?
 if(m_pSFParent->m_uSortField == 1 + pNMH->iItem)
 m_pSFParent->m_uSortField = (-1) * (1 + pNMH->iItem);
 else
 m_pSFParent->m_uSortField = 1 + pNMH->iItem;

 ListView_SortItems(m_hwndList, CompareItems,
 reinterpret_cast<LPARAM>(m_pSFParent));
 }
 return 0;

 case LVN_ITEMACTIVATE:
 {
 LV_ITEM lvItem;
 ZeroMemory(&lvItem, sizeof(LV_ITEM));
 lvItem.mask = LVIF_PARAM;

 LPNMLISTVIEW lpnmlv = reinterpret_cast<LPNMLISTVIEW>(lpnmh);
 lvItem.iItem = lpnmlv->iItem;
 ListView_GetItem(m_hwndList, &lvItem);
 m_pShellBrowser->BrowseObject(
 reinterpret_cast<LPITEMIDLIST>(lvItem.lParam),
 SBSP_DEFBROWSER | SBSP_RELATIVE);
 return 0;
 }
 }
 return 0;
}

Namespace Extensions

589

The WM_NOTIFY message is mainly used to handle the resizing of the columns (HDN_ENDTRACK),
clicks on the column headings (HDN_ITEMCLICK), and even double-clicks (or single clicks if you
have set the Web-style option for all folders) on a single item (LVN_ITEMACTIVATE).

To sort on a particular field, we have just to click the heading. What the system then passes to our
procedure is the 0-based index of the column. If this value (pNMH->iItem) coincides with the value
of m_uSortField (that is, with the 1-based index of the column currently sorted), then we reverse
the order. In our code, this is simply a matter of multiplying the value of m_uSortField by –1. In
combination with the IShellFolder::CompareIDs() method I showed you earlier, this simple
operation will give us the desired result.

 if(m_pSFParent->m_uSortField == 1 + pNMH->iItem)
 m_pSFParent->m_uSortField = (-1) * (1 + pNMH->iItem);
 else
 m_pSFParent->m_uSortField = 1 + pNMH->iItem;

In order to actually sort the list view, we must call

 ListView_SortItems(m_hwndList, CompareItems,
 reinterpret_cast<LPARAM>(m_pSFParent));

Here, CompareItems() is a user-defined, global function that ends up calling
IShellFolder::CompareIDs():

int CALLBACK CompareItems(LPARAM lParam1, LPARAM lParam2, LPARAM lpData)
{
 CShellFolder* pFolder = reinterpret_cast<CShellFolder*>(lpData);
 if(!pFolder)
 return 0;

 return pFolder->CompareIDs(0, reinterpret_cast<LPITEMIDLIST>(lParam1),
 reinterpret_cast<LPITEMIDLIST>(lParam2));
}

The next figure shows a view in which items are sorted by HWND in descending order:

Chapter 16

590

By clicking on, say, the Class Name column, we get the following result:

Browsing for Windows
In any given folder view, you will usually have sub-folders and 'leaf' windows. When it's dealing with
'real' folders, Explorer's user interface lets you browse into a sub-folder by double-clicking it. Now
that we're writing a namespace extension, however, even this feature is not automatic and we have to
implement it ourselves. There are two points to resolve:

! Getting the PIDL for the selected list view item
! Opening a new folder

The PIDL of the item is easy to get, because we deliberately stored it with the item. (I told you that
would come in handy!) Here's how to get it, in code that again comes from the LVN_ITEMACTIVATE
handler in the CShellView::OnNotify() function:

 LV_ITEM lvi;
 ZeroMemory(&lvi, sizeof(LV_ITEM));
 lvi.mask = LVIF_PARAM;

 LPNMLISTVIEW lpnmlv = reinterpret_cast<LPNMLISTVIEW>(lpnmh);
 lvi.iItem = lpnmlv->iItem;
 ListView_GetItem(m_hwndList, &lvi);
 m_pShellBrowser->BrowseObject(
 reinterpret_cast<LPITEMIDLIST>(lvi.lParam),
 SBSP_DEFBROWSER | SBSP_RELATIVE);

First, we prepare a LV_ITEM structure to be filled by ListView_GetItem(). In the mask member,
we set a flag that denotes the type of information we need — the lParam value associated with the
item. Once we have that, we can call IShellBrowser::BrowseObject(), passing the PIDL to
browse to. Notice particularly the second parameter of the method:

HRESULT IShellBrowser::BrowseObject(LPCITEMIDLIST pidl,
 UINT wFlags);

This UINT number is intended to drive the behavior of BrowseObject(). The first flag we
specified, SBSP_DEFBROWSER, means that we want the new folder opened with the same options as
the current view: no new window, no different view settings. This is certainly the most common
option for functions calling this method.

Namespace Extensions

591

The second flag, SBSP_RELATIVE, instructs the function to consider the PIDL as being relative to
the current folder. In this case, this is the only sensible option because we stored a relative PIDL in
the item's lParam member — it refers only to a specific window, and forgets any information that
relates to its parents. For this reason, using SBSP_ABSOLUTE would produce a new, empty folder.

Giving it a User Interface
Once our namespace extension has the focus, it may change both the menu and the toolbar of
Explorer. The changes should be issued when the extension receives the focus, and dismissed when it
loses the focus.

The IShellView::UIActivate() method gets called by the shell to notify your extension that it
has been activated or deactivated, and so it's in this function that we'll make the changes to the menu
and modify other user interface settings. In the code below, we also take care of the status bar, and
this would be the right place to enter the changes to the toolbar that I covered earlier in the chapter.

STDMETHODIMP CShellView::UIActivate(UINT uState)
{
 // Exit if the state hasn't changed since last time
 if(m_uState == uState)
 return S_OK;

 // Modify the menu
 OnActivate(uState);

 // Modify the status bar
 if(uState != SVUIA_DEACTIVATE)
 {
 TCHAR szName[MAX_PATH] = {0};

 // Add more parts if needed... as is, it's equivalent to SB_SIMPLE
 int aParts[1] = {-1};

 // Set the number of parts
 m_pShellBrowser->SendControlMsg(FCW_STATUS, SB_SETPARTS, 1,
 reinterpret_cast<LPARAM>(aParts), NULL);

 m_pPidlMgr->GetPidlPath(m_pidl, szName);
 m_pShellBrowser->SendControlMsg(FCW_STATUS, SB_SETTEXT, 0,
 reinterpret_cast<LPARAM>(szName), NULL);
 }
 return S_OK;
}

The status bar is a strip that's usually placed at the bottom of a top-level window — in this case,
Explorer. It can be divided into parts, each with their own appearance settings (inset, flat, raised). To
set the parts of the status bar, use the SB_SETPARTS message that takes an array of integers to denote
the right edges of the various parts (the lParam argument) and another integer to denote the number
of parts to deal with (the wParam argument).

Chapter 16

592

The values for the array represent the right edge of each section expressed in client coordinates. If one of
the values is –1 (as in our example), then that part is meant to extend up to the right edge of the host
window. A status bar with a single part is actually more simply defined with the SB_SIMPLE message
that causes any existing part to be removed. Using an array of parts like this:

 int aParts[1] = {-1};

and sending the SB_SIMPLE message would produce the same effect as the above code. However, if
I'd done that here, you wouldn't have seen the details!

Menu Modifications
Modifying the menu is an operation that requires three steps, as I outlined earlier. First, you need to
create a new menu, and then you pass it to Explorer together with a menu descriptor. The shell then
fills the menu in a standard way, and at this point you're given a chance to modify it.

In our case, we need to add a new Windows View top-level menu. Furthermore, we don't want the
Edit menu (because that wouldn't make any sense for a list of open windows), and we want to change
the Help | About... window.

LRESULT CShellView::OnActivate(UINT uState)
{
 // Has state changed since the last time we were called?
 if(m_uState == uState)
 return S_OK;

 // Destroy all our previous changes to the menu
 OnDeactivate();

 // If active...
 if(uState != SVUIA_DEACTIVATE)
 {
 // Step 1: create a new menu
 m_hMenu = CreateMenu();
 if(m_hMenu)
 {
 // Step 2: Share it with the shell through a menu group descriptor
 OLEMENUGROUPWIDTHS omw = {0, 0, 0, 0, 0, 0};
 m_pShellBrowser->InsertMenusSB(m_hMenu, &omw);

 // Step 3: Change the menu
 // Step 3.1: Build and insert the 'Windows View' top level menu
 TCHAR szText[MAX_PATH] = {0};
 LoadString(g_hInst, IDS_MI_WINVIEW, szText, MAX_PATH);

 MENUITEMINFO mii;
 ZeroMemory(&mii, sizeof(MENUITEMINFO));
 mii.cbSize = sizeof(mii);
 mii.fMask = MIIM_SUBMENU | MIIM_TYPE | MIIM_STATE;
 mii.fType = MFT_STRING;
 mii.fState = MFS_ENABLED;
 mii.dwTypeData = szText;
 mii.hSubMenu = BuildWinViewMenu();
 if(mii.hSubMenu)
 InsertMenuItem(m_hMenu, FCIDM_MENU_HELP, FALSE, &mii);

Namespace Extensions

593

 // Step 3.2: Get the Help menu and merge
 ZeroMemory(&mii, sizeof(MENUITEMINFO));
 mii.cbSize = sizeof(MENUITEMINFO);
 mii.fMask = MIIM_SUBMENU;
 if(GetMenuItemInfo(m_hMenu, FCIDM_MENU_HELP, FALSE, &mii))
 MergeHelpMenu(mii.hSubMenu);

 // Step 3.3: Remove the Edit menu
 DeleteMenu(m_hMenu, FCIDM_MENU_EDIT, MF_BYCOMMAND);

 // Step 3.4: If we have the focus, add items to the File menu
 if(uState == SVUIA_ACTIVATE_FOCUS)
 {
 // Get the File menu and merge
 ZeroMemory(&mii, sizeof(MENUITEMINFO));
 mii.cbSize = sizeof(MENUITEMINFO);
 mii.fMask = MIIM_SUBMENU;
 if(GetMenuItemInfo(m_hMenu, FCIDM_MENU_FILE, FALSE, &mii))
 MergeFileMenu(mii.hSubMenu);
 }

 // Set the new menu
 m_pShellBrowser->SetMenuSB(m_hMenu, NULL, m_hWnd);
 }
 }

 // Save the current state
 m_uState = uState;
 return 0;
}

Notice how we have to refer to system menus by using the predefined constants from shlobj.h. For
example, to add a new menu before the Help menu, I used:

 InsertMenuItem(m_hMenu, FCIDM_MENU_HELP, FALSE, &mii);

With this call, InsertMenuItem() inserts a new item before the menu specified in the second
parameter. BuildWinViewMenu() is a helper function that looks like this:

HMENU CShellView::BuildWinViewMenu()
{
 HMENU hSubMenu = CreatePopupMenu();
 if(hSubMenu)
 {
 TCHAR szText[BUFSIZE] = {0};
 MENUITEMINFO mii;

 // Add "Properties" to "Windows View"
 LoadString(g_hInst, IDS_MI_PROPERTIES, szText, BUFSIZE);
 ZeroMemory(&mii, sizeof(MENUITEMINFO));
 mii.cbSize = sizeof(MENUITEMINFO);
 mii.fMask = MIIM_TYPE | MIIM_ID | MIIM_STATE;
 mii.fType = MFT_STRING;
 mii.fState = MFS_ENABLED;
 mii.dwTypeData = szText;
 mii.wID = IDM_WIN_PROPERTIES;

Chapter 16

594

 // Add at the end of the menu
 InsertMenuItem(hSubMenu, static_cast<UINT>(-1), TRUE, &mii);

 // Add "Process View" to "Windows View"
 LoadString(g_hInst, IDS_MI_PROCESSVIEW, szText, BUFSIZE);
 ZeroMemory(&mii, sizeof(MENUITEMINFO));
 mii.cbSize = sizeof(MENUITEMINFO);
 mii.fMask = MIIM_TYPE | MIIM_ID | MIIM_STATE;
 mii.fType = MFT_STRING;
 mii.fState = MFS_ENABLED;
 mii.dwTypeData = szText;
 mii.wID = IDM_WIN_PROCESS;

 // Add at the end of the menu
 InsertMenuItem(hSubMenu, static_cast<UINT>(-1), TRUE, &mii);
 }
 return hSubMenu;
}

By default, the new items under the File menu (and any toolbar buttons we create) must appear only
if the extension has the focus. If the item is selected only in the right pane, it still doesn't have the
focus, so you have to wait before merging your custom items into the File menu. When the extension
loses the focus, good manners dictate that we should remove all our footprints:

void CShellView::OnDeactivate()
{
 if(m_uState != SVUIA_DEACTIVATE)
 {
 if(m_hMenu)
 {
 m_pShellBrowser->SetMenuSB(NULL, NULL, NULL);
 m_pShellBrowser->RemoveMenusSB(m_hMenu);
 DestroyMenu(m_hMenu);
 m_hMenu = NULL;
 }
 m_uState = SVUIA_DEACTIVATE;
 }
}

Displaying Help Text
The following figure shows the new menu in Explorer when the Windows View extension is active.

Namespace Extensions

595

Notice the help text that appears in the status bar. To enable this feature, you simply have to handle
the WM_MENUSELECT message in your window procedure, just as you would in good old SDK
Windows programming. There are two methods to set text on the status bar. You can send messages
directly to the window using SendControlMsg(), or you can set text yourself by calling
SetStatusTextSB(). IShellBrowser exposes both of these functions, although the
documentation recommends that you use the latter. While this is reasonable (the method is a wrapper
for the bare status bar messages and won't change in the future), it also poses a problem, and is
actually inadequate when you have to deal with status bars with multiple parts:
SetStatusTextSB() doesn't allow you to specify which part you want to set. In addition, as I
mentioned earlier in the chapter, SetStatusTextSB() requires Unicode strings.

Associating a Context Menu with Items

The shell searches for a context menu
automatically, by looking for the
IContextMenu interface. For this example I
implemented it and added two items, the first of
which copies the display name of the window to
the clipboard, while the second shows a dialog
with some window properties:

As you can see, the information that this dialog conveys includes the name of the executable that
created the window, and the icon. To get the icon, in particular, I used the following code:

// Returns a copy of the large/small icon for the specified window, or a
// standard icon if there's no icon for the window class it belongs to.
HICON GetWindowIcon(HWND hwnd, BOOL fBig)
{
 HICON hIcon = NULL;

 // First search for the icon assigned to the window class. If no icon is
 // found, then I try to get the icon assigned to the specific window via
 // WM_SETICON. In case of further failure, a standard icon is returned.
 if(fBig)
 {
 // A large icon is required
 hIcon = reinterpret_cast<HICON>(GetClassLong(hwnd, GCL_HICON));
 if(hIcon == NULL)
 hIcon = reinterpret_cast<HICON>(
 SendMessage(hwnd, WM_GETICON, ICON_BIG, 0));
 }
 else
 {
 hIcon = reinterpret_cast<HICON>(GetClassLong(hwnd, GCL_HICONSM));
 if(hIcon == NULL)
 hIcon = reinterpret_cast<HICON>(
 SendMessage(hwnd, WM_GETICON, ICON_SMALL, 0));
 }

Chapter 16

596

 if(hIcon == NULL)
 hIcon = LoadIcon(g_hInst, MAKEINTRESOURCE(IDI_PARWND));

 // Return a copy of the icon
 return CopyIcon(hIcon);
}

First, we check the icon of the class, but if no icon is found then we try sending a WM_GETICON
message to the window instead. If this approach also fails, then we use a standard icon. Whatever the
result, we return a copy of the icon rather than the original. The caller is then responsible for freeing
the icon.

As for finding out the name of the executable that created a given window, we're using a trick that
was presented in an article of mine that appeared in WDJ. (See Further Reading for more details.) It
makes use of the ToolHelp API under Windows 9x, and the PSAPI library under Windows NT 4.0.
This topic was also touched upon in Chapter 15.

Associating a context menu with the items is as easy as implementing the functions of the
IContextMenu interface:

STDMETHODIMP CContextMenu::InvokeCommand(LPCMINVOKECOMMANDINFO lpcmi)
{
 WORD wCmd = LOWORD(lpcmi->lpVerb);

 switch(wCmd)
 {
 case 1: // Properties
 ShowProperties();
 break;

 case 0: // Copy
 CopyTextToClipboard();
 break;
 }

 return S_OK;
}

STDMETHODIMP CContextMenu::GetCommandString(UINT, UINT, UINT*, LPSTR, UINT)
{
 return E_NOTIMPL;
}

STDMETHODIMP CContextMenu::QueryContextMenu(HMENU hmenu,
 UINT indexMenu, UINT idCmdFirst, UINT idCmdLast, UINT uFlags)
{
 UINT idCmd = idCmdFirst;

 // Add the new items, loading strings from resources
 TCHAR szItem[BUFSIZE] = {0};

Namespace Extensions

597

 LoadString(g_hInst, IDS_MI_COPY, szItem, BUFSIZE);
 InsertMenu(hmenu, indexMenu++, MF_STRING | MF_BYPOSITION, idCmd++, szItem);
 LoadString(g_hInst, IDS_MI_PROPERTIES, szItem, BUFSIZE);
 InsertMenu(hmenu, indexMenu++, MF_STRING | MF_BYPOSITION, idCmd++, szItem);

 return MAKE_SCODE(SEVERITY_SUCCESS, FACILITY_NULL, idCmd - idCmdFirst);
}

All this works fine in Explorer's left pane. If you want to catch right clicks on the view (that is, the
right pane), then you have to do it all by yourself. Detecting the WM_CONTEXTMENU message in the
view window procedure is the way to go. Once you've detected this message, you can create a menu
on the fly, loading the template from the resources. Alternatively, if you have the IShellFolder
pointer available in the view class, you can call GetUIObjectOf() and have the IContextMenu
interface help you to compose the menu to display. In this case, however, you now have to
distinguish which pane has called the menu: left or right. In general, I think that the solution adopted
in our example — creating a new menu on the fly if the view is right-clicked on — is better. Note that
there's no support for context menus in Microsoft's Registry View sample.

Code for a Better Context Menu
Although the above code certainly works, it doesn't consider all the possible attributes of the file
object to which the menu applies. For example, if the folder item has the SFGAO_CANRENAME bit set,
then the context menu should provide a Rename command (localized if needed).

The uFlags argument of the IContextMenu::QueryContextMenu() method can assume a
number of values, which we partially considered in Chapter 15. Some of them now need revisiting in
the light of namespace extensions.

Flag Description

CMF_EXPLORE The menu is displayed in Explorer's tree view window. Add
an Explore command

CMF_RENAME The file object can be renamed. Add a Rename command.

CMF_DEFAULTONLY A namespace extension should add only the default item, if
any.

CMF_NODEFAULT A namespace extension shouldn't define any item as the
default.

More precise code can be obtained by adding little code snippets to the previous
QueryContextMenu() implementation like this one, which checks for the CMF_CANRENAME flag
and then adds a new command to the menu.

 if(uFlags & CMF_CANRENAME)
 {
 LoadString(g_hInst, IDS_MI_RENAME, szItem, BUFSIZE);
 InsertMenu(
 hmenu, indexMenu++, MF_STRING | MF_BYPOSITION, idCmd++, szItem);
 }

Chapter 16

598

To handle this command, you can send messages directly to the tree view using
SendControlMsg() and the constant FCW_TREE. For the Explore command's implementation, on
the other hand, you can use ShellExecuteEx(), passing the file object PIDL as the target file
object.

In general, your implementation of QueryContextMenu() should take all the possible flags into
account, but they don't always all make sense. In our example, it's a bit of a problem to figure out
what should be 'edited' for windows — only the window title comes to my mind.

Associating an Icon with Items
IExtractIcon is a useful interface that lets you associate icons with folder items, but once again it
only works for the icons to be displayed in the left pane. The reason is the same as it was for context
menus: the shell can't know when the custom view may need an icon. The icons that appear in the list
view are decided explicitly by the code that fills in the list view.

For the icons to be shown in the address bar and in the nodes of the tree view, you need to
implement the functions of IExtractIcon:

STDMETHODIMP CExtractIcon::GetIconLocation(UINT uFlags,
 LPTSTR szIconFile, UINT cchMax, LPINT piIndex, LPUINT puFlags)
{
 *puFlags = GIL_DONTCACHE | GIL_PERINSTANCE;
 return S_FALSE;
}

STDMETHODIMP CExtractIcon::Extract(LPCTSTR pszFile, UINT nIconIndex,
 HICON* phiconLarge, HICON* phiconSmall, UINT nIconSize)
{
 HWND hwnd = m_pPidlMgr->GetData(m_pidl);
 if(hwnd == GetDesktopWindow() ||
 hwnd == FindWindow(__TEXT("shell_traywnd"), NULL))
 {
 *phiconLarge = LoadIcon(NULL, MAKEINTRESOURCE(IDI_WINLOGO));
 *phiconSmall = LoadIcon(NULL, MAKEINTRESOURCE(IDI_WINLOGO));
 return S_OK;
 }

 *phiconLarge = LoadIcon(g_hInst, MAKEINTRESOURCE(IDI_WINVIEW));
 *phiconSmall = LoadIcon(g_hInst, MAKEINTRESOURCE(IDI_WINVIEW));
 return S_OK;
}

We use the same icon in all cases but two: when the window is the desktop, or the taskbar. In these
cases, we use an icon that looks like the Windows logo. As explained in Chapter 9, the window class
for the taskbar is shell_traywnd, which I discovered after a little rummaging with Spy++.

When using icons in a namespace extension, you should also consider using IShellIcon rather
than IExtractIcon, since it is the fastest way to get icons. Unfortunately, though, it doesn't have
the power to go with it. IShellIcon exposes a single function called GetIconOf():

HRESULT IShellIcon::GetIconOf(LPCITEMIDLIST pidl,
 UINT flags,
 LPINT lpIconIndex);

Namespace Extensions

599

The flags argument plays the same role as the first argument of the GetIconLocation() method
of the IExtractIcon interface. The legal values are GIL_FORSHELL and GIL_OPENICON. (See
Chapter 15.) The function is expected to return an index in its lpIconIndex parameter that must be
relative to the system's icon image list. If the icon to return is not in the system's image list, it's the
responsibility of the developer to insert it before returning the index. Of course, you should make
sure that you only add it once!

What makes IShellIcon competitive is that you don't need to create an instance of it every time an
icon is needed. Instead, when you implement it you automatically have the shell asking it to return an
index in the system image list for a given PIDL. There's only one instance of it running in the entire
session, working as a kind of server that takes a PIDL and returns an icon index.

With IExtractIcon, on the other hand, you have an interface that renders a single, individual icon
to appear somewhere in the shell folders. This means that you need a new instance of it each time
you deal with a different icon. When it comes to drawing the icon of an item in the tree view,
Explorer first searches for IShellIcon and resorts to IExtractIcon through GetUIObjectOf()
only if it fails to find it.

Installing a Namespace Extension
At this point of the discussion, we've finished and compiled our namespace extension. The next step
is installing and putting it to work. We need to do a few things:

! Register the namespace extension as a COM server, specifying the apartment threading model,
the icon, and the name of the extension

! Register it as an approved extension, to have it to work under Windows NT too
! Define your junction point with the rest of the system

The first two points are easy to cope with:

REGEDIT4

; It's absolutely necessary that you write the registry entries on the same line...

; Register the server and its threading model
[HKEY_CLASSES_ROOT\CLSID\{F778AFE0-2289-11d0-8AEC-00A0C90C9246}\InProcServer32]
@= "C:\\WinView\\winview.dll"
"ThreadingModel" = "Apartment"

; Register the name of the extension
[HKEY_CLASSES_ROOT\CLSID\{F778AFE0-2289-11d0-8AEC-00A0C90C9246}]
@= "Windows View"

; Register the icon
[HKEY_CLASSES_ROOT\CLSID\{F778AFE0-2289-11d0-8AEC-00A0C90C9246}\DefaultIcon]
@= "C:\\WinView\\winview.dll,0"

; Register the extension under NT
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellExtensions\Appr
ved\{F778AFE0-2289-11d0-8AEC-00A0C90C9246}]
@= "Windows View"

Chapter 16

600

Here, {F778AFE0-2289-11d0-8AEC-00A0C90C9246} is the CLSID of our namespace extension,
as defined in Guid.h.

The last of the three items
in my list is really up to
you. In this case, our
extension has nothing to do
with files, so it wouldn't
make sense to register it for
a given document class. A
much better idea would be
to use a directory as the
junction point; by creating a
folder called
My Windows.{F778AFE0-
2289-11d0-8AEC-
00A0C90C9246}, you
could achieve the following
result:

In the end, though, I decided on another approach: putting the extension inside the Desktop
namespace.

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Desktop
 \NameSpace
 \{F778AFE0-2289-11d0-8AEC-00A0C90C9246}

I've simply created a new key under NameSpace with the CLSID of the extension. This is sufficient
to have an icon appear on the desktop as well as a new node in Explorer's tree view.

Namespace Extensions

601

There is, however, another setting that we should save: the default flags for the folder. We do this by
storing a new ShellFolder key under this path:

HKEY_CLASSES_ROOT
 \CLSID
 \{F778AFE0-2289-11d0-8AEC-00A0C90C9246}
 \ShellFolder

The Attributes entry then assumes the value of SFGAO_FOLDER | SFGAO_HASSUBFOLDER:

This is just the beginning of the things you can do with this ShellFolder key; I'll tell you about
more of them in a moment.

A Node on the Desktop
The Windows desktop contains some icons that refer to special system folders. With the above
technique, you too can add a brand new system folder that behaves however you want it to. The
Windows View icon is neither a shortcut nor a program copied directly into the Desktop directory.
It's just a custom, system folder that's located on the desktop. If we open it now, we get a rooted view:

Chapter 16

602

Adding an InfoTip

You have certainly noticed that almost all the
system folders that appear on the desktop can
have a tooltip (we're supposed to call it an infotip)
when the mouse lingers over them for a moment.
The figure shows what I mean for Network
Neighborhood:

In case you're wondering exactly how an infotip is different from a tooltip, I'll tell you: it's
simply a matter of naming. The word 'tooltip' is composed of 'tool' and 'tip', and the effect is
meant to be of a help string for a tool. 'Datatip', 'titletip', and 'infotip' are all synonyms for
tooltips that address tips for data in a window, titles in a report view or a tree view, and items
in a list view.

Is it possible to add infotips to our own namespace extensions? Of course it is! After reading the
documentation available I formed the opinion that the means of getting such infotips must be the new
IQueryInfo interface, but in fact there's a far simpler and more reliable technique. All you have to
do is add a new value to the CLSID key in the registry. In our case, this means:

HKEY_CLASSES_ROOT
 \CLSID
 \{F778AFE0-2289-11d0-8AEC-00A0C90C9246}

Namespace Extensions

603

The value must be called InfoTip, and its content is the string that will be displayed:

I didn't find any Knowledge Base article, official or any documentation (official or unofficial) about
this. I simply reasoned it out by looking at the registry values for My Computer — a desktop
namespace extension that sports this feature. The same namespace extension also has the feature that
I'm going to describe in the next section.

Adding a Removal Message
While developing this extension, there was a point at which I wanted to remove it from my desktop
and reinstall it. Automatically, I right-clicked the icon on the desktop searching for a Delete
command... but there was nothing there! Never mind (I thought), I'll drop it onto the Recycle Bin
instead. Again, no joy. Since I really wanted it removed, manual intervention in the registry was in
order.

Before removing the {CLSID} key in the above path, I had a look at the information stored for the
other system folders on my PC's desktop: Inbox, Registry View, and Recycle Bin. In particular, the
Inbox item had defined an interesting value string: Removal Message. Immediately, I turned back
to the desktop and right-clicked on Inbox. It had the Delete command, and selecting it produced a
dialog box containing the removal message that had been set in the registry.

Making a Folder Deletable
Now we know how to set up a custom deletion message, but how is the Delete command on the
folder's context menu enabled? Once again, it's all to do with folder attributes and the Attributes
key in the registry that we discussed just a couple of sections ago. To make a folder deletable, just tell
the shell about it by adding the SFGAO_CANDELETE attribute! I changed the default value for the
folder attributes to be stored in the registry, and re-registered the extension to apply the changes
immediately. The figure illustrates the final result.

Chapter 16

604

Additional Attributes for a Folder
It didn't take much extra research to realize that you can make the folder support Rename and
Properties context menu items by adding other values to the Attributes entry, such as
SFGAO_CANRENAME and SFGAO_HASPROPSHEET. Renaming is completely handled by the system —
all the user has to do is click the icon or press F2 while keeping the icon selected.

Implementing a Properties command is a little more work. What's needed is a COM module that
provides an IShellPropSheetExt interface, just like the shell extensions we saw in Chapter 15.
When you click on the standard Properties item, the system automatically searches for that interface
on the clicked object. You need to register it in the typical Shellex\PropertySheetHandlers
key under:

HKEY_CLASSES_ROOT
 \CLSID
 \{CLSID}

Browsing a Custom Folder

A custom folder rendered through
a namespace extension is not
necessarily displayed in an Open
or a Save As common dialog. To
make this possible, you need to
declare the folder as being part of
the file system, because these
dialogs only allow file system
folders to be displayed. The trick
is to add another couple of
SFGAO_XXX constants:
SFGAO_BROWSABLE and
SFGAO_FILESYSTEM.

However, even if we succeed in displaying the folder in the standard Open dialog, it's not much use
because the folder doesn't respond to solicitations and never goes further than one level. Worse still,
the dialog is completely deaf to double clicking and the Enter key.

There's an interface that seems to be involved with displaying custom folders in common dialogs with
the same power and capability as an ordinary file folder: ICommDlgBrowser. However, it's
implemented by the common dialogs. Unfortunately, at this time, Microsoft doesn't support any third
party namespace being browsed by these dialogs. To see and select items from a custom folder, then,
you need to resort to the SHBrowseForFolder() function we met in Chapter 5.

Namespace Extensions

605

Putting this Example to Work
Once you've successfully downloaded and recompiled this sample from the web site, all you have to
do to install the extension is register the component. The necessary settings have been hard-coded
into the module's DllRegisterServer() function. After calling regsvr32.exe on the DLL
generated by the compiler, refreshing Explorer should be enough to make everything work as
described.

Uninstalling the Sample
If you want to uninstall the example, the simplest method is to right click the icon on the desktop and
choose Delete. This will remove the CLSID key from the Desktop node in the registry. If you wish,
you can also do it manually through the Registry Editor:

HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Desktop
 \NameSpace
 \{F778AFE0-2289-11d0-8AEC-00A0C90C9246}

Remove the last item in the above key, then turn back to the desktop and press F5 to refresh the
screen. I have to say, though, that following the menu-driven approach is preferable. When you select
Delete, the following message will appear:

Confirm, and the icon will disappear from the desktop. Notice that the deletion procedure looks
absolutely like any other system folder deletion. What happens is identical to the sequence of events
when you try to remove the Internet Explorer 4.0 icon from your desktop, for example.

Summarizing Namespace Extensions
Namespace extensions were introduced in the retail versions of Windows 95 and Windows NT 4.0,
and the rules for writing them haven't changed with the advent of the Active Desktop. However,
starting with shell version 4.71, you can write namespace extensions that are capable of switching
between two view modes: classic and web view.

The classic view is the typical, standard view that you see on machines where version 4.0 of the shell
is installed. In case of file folders, the system renders the classic view through a list view. A Web
view, on the other hand, is an HTML-based view of the same content. The challenge for the
programmer is not only to create these two views, but also to make them interchangeable.

Chapter 16

606

When you're writing namespace extensions, you should consider adding the capability of supporting
web views. The means that allows the users to toggle between classic and web views is Explorer's
View | as Web Page menu.

In the remainder of this chapter, I'll describe two techniques to combine your folders with HTML.
Firstly, I'll provide you with an overview of web views and the design issues they pose when it comes
to planning and realizing a web view namespace extension. Secondly, I'll show how you can use the
existing shell view architecture to customize the template used for displaying data in an ordinary
folder. This is a feature enabled by the Customize this Folder… command on the folder's context
menu.

What's a Web View?
With Active Desktop on Windows 95 and Windows NT 4.0, and in Windows 98 and later, the web
view for folders has been introduced. Basically, this is a Dynamic HTML page that includes the
classic view as a component, plus some other sundries like a GIF image and a thumbnail view
control. Trying to produce a more formal definition, I'd say firstly that:

A 'classic view' for a namespace extension is the window used to show the contents of
the folder.

Now we have that definition, a web view is:

A 'web view' for a namespace extension is a browser window showing a Dynamic
HTML page that includes the classic view as a component.

Once you have a working namespace extension, adding web view support is a matter of exposing its
view window (the classic view) as a component to be embedded in a Dynamic HTML page.
Furthermore, you must be ready to switch between the two views, and as if that weren't enough it
could be that in the future, the number of views to consider might be more than two.

The typical shell view already provides four different views of the same data: large and small icons,
details and list. However, these are just capabilities of the common control used to present the data —
the list view — and aren't strictly due to the code that provides the folder's behavior. A web view is a
bit different because it really requires different windows and components to come into play. These
new actors must fit into the existing scenario and integrate with it well.

From the standpoint of namespace extensions, using a web view requires a couple of updated
interfaces: IShellView2 and IPersistFolder2. Today, these are completely supported only in
the version of the shell that comes with Internet Explorer 4.01 and Windows 98 or higher. A Web-
enabled namespace extension has all the characteristics we've seen so far, plus the ability to support
the View | as Web Page menu command. When this command is issued, the extension is expected to
show the same content as before, but using a HTML template to do so.

The ability to switch between two views poses a number of additional problems and slightly modifies
the global architecture of a namespace extension. At the time of writing, documentation on this
subject is only just beginning to appear. For the best of it, refer to the Platform SDK editions released
in late 1998. In this section, I'll try to give an annotated overview of what's going on with web views.

Namespace Extensions

607

I expect a great deal of documentation to be produced about this topic in the months to come, and
I should stress that what I'm covering here is compatible with shell version 4.71. Even more
changes are in order with Windows 2000, so stay tuned and check both MSDN and the Platform
SDK frequently!

The Shell View ID
If you look at the source code of the latest shlobj.h header file, you'll find the following
declaration:

typedef GUID SHELLVIEWID;

It doesn't look much, but this refers to a new concept in namespace extensions: the shell view ID.
This is a unique number that identifies a kind of shell view, and in most cases it will be the same as
the CLSID of the COM object implementing the extension.

This new identifier is used by the functions of the IShellView2 interface to switch among the
possible views. In practice, when you check and uncheck the Web View option on the browser's
menu or toolbar, Explorer calls IShellView2::CreateViewWindow2() with a different shell
view ID to let you have a classic or a web view.

The Default View
Internally, CreateViewWindow2() must distinguish and actually create different view windows.
Interestingly, though, it can't return different window handles to the Explorer. In other words,
Explorer won't talk to the specific view, regardless of whether it's the list view or an instance of the
WebBrowser control. Instead, it always deals with the same window, which is called the default view.
This window is of the SHELLDLL_DefView class.

The next picture shows the difference between the piles of windows that are involved when the same
folder is viewed through a classic or a web view. Notice that the default view appears in both:

The left picture involves a classic view, while the one on the right is a web view of the same folder.
Internet Explorer_Server is the window class name of the WebBrowser control. We can
deduce that a Web-enabled namespace extension must create its web view window as a sister of the
classic view window. The next picture shows the relationship between Explorer and the views:

Chapter 16

608

The default view should begin by hosting one of the available views (typically, the classic view). From
then on, each time that Explorer calls into CreateViewWindow2(), the namespace extension
should get the shell view ID and display the specific view identified by that ID inside the default view
window.

New Functions in IShellView2
There are four new functions in IShellView2:

Function Description

CreateViewWindow2() Allows you to switch among different views, including
the web view and the classic view.

GetView() Returns the shell view ID of a view specified by a
predefined constant. At the moment there are only two
possibilities for this constant: the default view
SV2GV_DEFAULTVIEW and the current view
SV2GV_CURRENTVIEW.

HandleRename() Allows you to change the PIDL of a given item. It
receives a PIDL and replaces it with the new one.

SelectAndPositionItem() This function takes a PIDL, some flags, and a pointer
to a POINT structure. It serves the purpose of letting
you select an item and place it wherever you want in
the view. This is reasonable if you have a completely
custom, HTML-based view for the folder.

Namespace Extensions

609

For input, the CreateViewWindow2() method takes only a pointer to a structure called
SV2CVW2_PARAMS, defined as follows:

typedef struct _SV2CVW2_PARAMS
{
 DWORD cbSize;
 IShellView* psvPrev;
 FOLDERSETTINGS const* pfs;
 IShellBrowser* psbOwner;
 RECT* prcView;
 SHELLVIEWID const* pvid;
 HWND hwndView;
} SV2CVW2_PARAMS;

Let's compare this to the parameter list of IShellView::CreateViewWindow().

HRESULT CreateViewWindow(LPSHELLVIEW pPrevView,
 LPCFOLDERSETTINGS lpfs,
 LPSHELLBROWSER psb,
 LPRECT prcView,
 HWND* phWnd);

As you can see, the structure includes arguments of exactly the same types, plus the shell view ID and
the typical cbSize member. Clearly, CreateViewWindow2() is a refinement of the
CreateViewWindow() that has been made in light of the introduction of web view support. Apart
from the cbSize field, which mostly serves Microsoft's internal purposes, the shell view ID is the
only relevant change.

What's New in IPersistFolder2
The IPersistFolder2 interface extends IPersistFolder by adding a new function called
GetCurFolder(). It has the following prototype:

HRESULT IPersistFolder2::GetCurFolder(LPITEMIDLIST* ppidl);

It uses its single 'out' parameter to return the PIDL of the current object, making available to the
outside world the PIDL of the folder currently being viewed. In practice, it will be the same PIDL
that was passed to the IPersistFolder::Initialize() method when the namespace extension
was initially loaded.

How a Web View is Structured
If you want to arrange a web view of a given folder, you must do at least the following:

! Define a default view object as a container of other view objects
! Define a classic view object to provide the standard view with folder items
! Define a web view object that includes the classic view as a component

Chapter 16

610

Your default view should be ready to return a classic or a web view object, according to the shell
view ID it receives. Furthermore, the web view must contain a WebBrowser control that navigates to
the Dynamic HTML page providing the template. This template should include the classic view
object as an ActiveX component. If that sounds confusing, here's a figure that should clear things up a
little:

Getting in Touch with the Classic View Object
As the diagram shows, the web view object hosts a WebBrowser control that points to a Dynamic
HTML page. This page, in turn, hosts the classic view as a component via its CLSID. The thing is, the
web view needs to be able to drive the classic view object. For example, it needs to instruct the view
to show the correct folder content. To manage this, the web view object needs to get the Document
property from the WebBrowser by calling IWebBrowser2::get_Document().

HRESULT IWebBrowser2::get_Document(IDispatch** ppDisp);

The Document object is the root of the Dynamic HTML object model. When an ActiveX document
is hosted in an ActiveX container like WebBrowser, the Document property returns the entry point
to the document's object model. (Internet Explorer 4.x treats HTML files like ActiveX documents.)

By enumerating the collection of <OBJECT> tags in the page, you should be able to get the
IDispatch interface pointer for the classic view object. The classic view is embedded in the
Dynamic HTML template by the means of an <OBJECT> tag, more or less like this:

<object classid="clsid:{...}"></object>

Since the web view object knows the CLSID of the classic view object, it can easily determine which
of the enumerated objects is the right one. Once you've got the IDispatch pointer, you have the
means to let the web view and the classic view communicate. (See Further Reading for a couple of
references about Web views and Dynamic HTML programming from C++.)

Namespace Extensions

611

The Template of a Web View
A web view is characterized by an HTML page. This page can reside wherever you find it
comfortable: it could be a file located in same path as the DLL that actually implements the
extension, or it could be stored in a system folder. There's a system folder for templates that we saw
in Chapter 5, and we'll meet it again in a moment. The common feature, though, is that you have to
deal with a separate file that may cause problems if for any reason it goes missing.

A better solution for web views is to embed the HTML file in the extension's resources, and then
create temporary local copies or read it directly from there by exploiting the power of the res://
protocol. This URL protocol lets you load an HTML file (and in general, any Win32 resource)
directly from an executable's resources. In this way, you can embed the HTML template in the
resources and forget any problem with it. For example, if in the namespace extension's resources you
have a line like this:

MYTEMP.HTT HTML "myTemp.htt"

you can ask WebBrowser to navigate to a URL called:

res://<dll_path>/MYTEMP.HTT

At this point, though, there's another potential problem: How do you handle all the sundries like
GIFs, controls, and scriptlets? The simple rule is that everything that can be identified through a
separate filename is embedded in the resources and can be referred to in an HTML page through the
res:// protocol. See Further Reading for more references about res://.

The res:// protocol is also used under the hood by the version of MFC that comes with Visual
C++ 6 to implement some features of the CHtmlView class, which is a wrapper for
WebBrowser.

Firing Events
Unless your namespace extension is very unusual, its user interface always has something to select.
This is a typical situation in which a classic and a web view need to communicate. Due to HTML,
things are normally resolved as follows. The classic view is embedded as a component that fires
events — say, SelectionChanged. The script code defined in the template for the web view
intercepts these notifications and responds appropriately.

From Custom to Customized Folders
A web view is a way to render a folder in a custom manner. The person who changes the way a given
folder is rendered is the programmer, and once the extension has been installed, the user can only
switch between the classic and the web view.

Ordinary file folders have their web views provided by the system, and interestingly these views can
be customized. In other words, once you've switched to the web view for a normal directory, you can
change the template of the web view radically. This process is called folder customization.

If you want to allow folder customization on your own extensions, then simply keep visible the
HTML templates that drive them. Otherwise, hide them by embedding the files in the executables'
resources and use the res:// protocol to retrieve them later.

res://
res://protocol
res://protocol
res://protocol

Chapter 16

612

Folder customization in itself is not a namespace extension, but it could be seen as an over-simplified
imitation. Actually, that's a little harsh: sometimes, a customized folder may really work as a console
for presenting data in a custom fashion. However, don't forget that a customized folder is based on a
simple HTML template, and that relies entirely on the file folder web view extension to live and
work.

Folder Customization

With shell version 4.71, any user is
given the opportunity to customize the
layout of each folder. If you right-click
on the folder and choose the Customize
this Folder… item, what appears is the
following picture:

The Wizard is
very simple and
ends up
opening
Notepad with a
file called
folder.htt.
A .htt file is
an HTML file
that defines the
layout of the
folder. If you
accept and save
the contents of
the standard
file, the view
will look like
this:

Namespace Extensions

613

The structure of this page is rendered in the diagram below:

As you can imagine, the page is not static: a large part of its content is determined dynamically. The
directory name, the icon, the file information, and the preview are all generated at runtime. In
particular, the page embeds three ActiveX controls: one for extracting the icon, one for providing a
preview of the currently selected file (only a few types are supported), and one for the actual file list.
The directory name, on the other hand, is given by the macro %THISDIRNAME% that is expanded at
runtime. (More later.)

I wasn't able to reuse the FileList component outside this context, but I succeeded in
importing the thumbnail viewer into Visual Basic applications.

The Default Template
At the end of the customization process, each folder contains a hidden file called folder.htt that is
responsible for the look and the behavior of the folder itself. What the Wizard copies to the specified
directory is only the default template, which follows the schema outlined above. You can modify and
even rewrite it from scratch, introducing any HTML element you want: frames, tables, images,
scriptlets, Java applets, and so forth.

The default template is taken from the Windows\Web directory, where all the standard HTML
templates are located. If you look there, you'll find templates for some system folders that are used to
show a slightly different layout: My Computer (mycomp.htt), Printers (printers.htt), Control
Panel (controlp.htt), the Desktop (deskmvr.htt) and template of the page (safemode.htt)
used when Active Desktop is cautiously turned off due to a system error. (If you've never seen that
page, you've been really lucky!)

From this, you can deduce that a name of folder.htt is not a hard-and-fast rule for all folders.
Let's see in a bit more detail what's going on in the folder once you've completed the customization
Wizard.

The Desktop.ini File
Initially, the Wizard creates two hidden files in the folder: folder.htt and desktop.ini. I've
already talked about the former, so let's have a closer look at the latter. Desktop.ini is not a new
name for us because we met it earlier in this chapter, while covering the junction points for a
namespace extension.

Chapter 16

614

In general, desktop.ini is a folder-based informational file where Explorer and programmers add
what they need to remember for that folder. Here's a typical content for that file:

[ExtShellFolderViews]
Default={5984FFE0-28D4-11CF-AE66-08002B2E1262}
{5984FFE0-28D4-11CF-AE66-08002B2E1262}={5984FFE0-28D4-11CF-AE66-08002B2E1262}

[{5984FFE0-28D4-11CF-AE66-08002B2E1262}]
PersistMoniker=file://folder.htt

[.ShellClassInfo]
ConfirmFileOp=0

The exact meanings of the various entries are still to be announced by Microsoft, but one thing is
certain: if you change the name of the .htt file, Explorer will search the new one. That CLSID must
identify the modules that load the HTT file.

The contents of this file aren't fixed. For
example, try checking the Enable thumbnail
view box on the folder's Properties dialog:

The content of desktop.ini will change like this:

[ExtShellFolderViews]
Default={5984FFE0-28D4-11CF-AE66-08002B2E1262}
{5984FFE0-28D4-11CF-AE66-08002B2E1262}={5984FFE0-28D4-11CF-AE66-08002B2E1262}
{8BEBB290-52D0-11d0-B7F4-00C04FD706EC}={8BEBB290-52D0-11d0-B7F4-00C04FD706EC}

[{5984FFE0-28D4-11CF-AE66-08002B2E1262}]
PersistMoniker=file://folder.htt

[.ShellClassInfo]
ConfirmFileOp=0

[{8BEBB290-52D0-11d0-B7F4-00C04FD706EC}]
MenuName=T&humbnails
ToolTipText=T&humbnails
HelpText=Displays items using thumbnail view.
Attributes=0x60000000

file://folder.htt
file://folder.htt

Namespace Extensions

615

Furthermore, a new Thumbnails menu item appears under View. This item sets a new view like the
one in this figure:

When the web view is on, Explorer searches in the current directory for the file specified in the
PersistMoniker entry of desktop.ini. In case of failure the view is reset. You can give the file
any name, provided that the extension is .htt. Curiously, if you use another extension — .htz, say
— then you'll experience a side effect:

The name of the directory — the macro %THISDIRNAME% — isn't expanded if the template file has an
extension other than .htt. This happens even if you simply rename a file without touching its source
code.

Note that you can specify any protocol to access the .htt file, not just the file:// indicated
in the desktop.ini file. For example, you might want to use a file located somewhere on
your intranet, in which case you should use http://.

file://indicated

Chapter 16

616

Creating a New Template

To see folder customization in practice,
let's see an example of some completely
custom code that replaces the standard
folder.htt template. The picture
illustrates the structure of the HTT file:

The page is split into two parts. The top part is further subdivided into four areas by the means of a
2x2 table that contains a GIF image and the directory name on the first row, and a bitmap button and
a horizontal line on the second.

The bottom part of the page is entirely occupied by the file list, or by some other information. What's
important is that these two sections are mutually exclusive. The bitmap button decides which to
display accordingly to the user's clicks. In practice, the button toggles the file list on and off. You
aren't always required to include the file list, and if necessary you can completely hide the actual
contents of a folder, obtaining a result that looks like a namespace extension is in operation.

The template I'm using is nothing special, except for the use of a few Dynamic HTML techniques. In
more detail, I'm going to employ:

! Image fading
! 3D graphics effects
! Event handling
! Hot-tracking text (changing color when the mouse passes over it)

Namespace Extensions

617

The picture shows
the final intended
result:

Let's have a look at the source code for wrox.htt:

<html>
<head>
<style>
.Title {font-Size: 38; font-Family: Verdana; font-Weight: bold; color: #808080;
 text-align: center;filter:Shadow(Color=#909090, Direction=135);}
.Small {font-Size: 10; font-Family: Verdana;}
.BookInfo {font-Size: 16; font-Family: Verdana;}
.HiliteSmall {font-Size: 10; font-Family: Verdana; color=red; cursor: hand;}
.Panel {background-color: #C0C0C0;}
.Fade {filter: alpha(opacity=0);}
</style>
</head>

<script language="JScript">
var strHide = "Hide the file list below.";
var strShow = "Show below the file list.";

// Activate the fading
function init()
{
 logo.flashTimer = setInterval("fade()", 100);
}

// Actually varies the opacity of the image producing fade-in effects
function fade()
{
 if (logo.filters.alpha.opacity < 100)
 logo.filters.alpha.opacity = logo.filters.alpha.opacity + 10;
 else
 clearInterval(logo.flashTimer);
}

Chapter 16

618

// When the mouse exits a page component...
function mouseout()
{
 obj = event.srcElement
 if(obj.id == "msg")
 obj.className = "Small";
}

// When the mouse is over a page component...
function mouseover()
{
 obj = event.srcElement
 if(obj.id == "msg")
 obj.className = "HiliteSmall";
}

// When the mouse is clicked...
function mouseclk()
{
 // If the event isn't due to certain elements...
 if(event.srcElement.id != "toggle" && event.srcElement.id != "msg")
 {
 return;
 }

 // Toggle on/off the file list
 if(toggle.visible == 1)
 {
 toggle.src = "closed.gif";
 msg.innerHTML = toggle.outerHTML + strShow;
 toggle.visible = 0;
 FileList.width = 1;
 FileList.height = 1;
 book.style.display = "";
 }
 else
 {
 toggle.src = "opened.gif";
 msg.innerHTML = toggle.outerHTML + strHide;
 toggle.visible = 1;
 FileList.width = "100%";
 FileList.height = 200;
 book.style.display = "none";
 }
}
</script>

<body onload="init()" onmouseover="mouseover()"
 onmouseout="mouseout()" onclick="mouseclk()">
 <table><tr>
 <td width=20%>

 </td>
 <td class=Title>%THISDIRNAME%</td>
 </tr>

Namespace Extensions

619

 <tr>
 <td class="Small" id="msg">
 <img src="opened.gif" visible=1 align=left
 alt="Toggles the file list" id="toggle">

 Hide the file list below.
 </td>
 <td><hr></td>
 </tr>
 </table>

 <div class="Panel">
 <div id="book" style="display:none">

 Visual C++ Windows Shell Programming

 <i>Dino Esposito</i>
1-861001-84-3
Wrox Press, 1998

 </div>
 <object id="FileList"
 width=100% height=200
 classid="clsid:1820FED0-473E-11D0-A96C-00C04FD705A2">
 </object>
 </div>
</body>
</html>

The file list is exposed as an ActiveX control called FileList. It has its own set of properties,
methods and events that I completely ignored in this example, but the standard folder.htt file
makes considerable use of them. This object is documented in the Platform SDK; search for an object
called WebViewFolderContents.

Although this book certainly isn't about Dynamic HTML, a few words about some of the techniques
used in this code are in order. The fade-in effect is obtained by assigning a special style to the
tag, which defines an opacity coefficient that is incremented every 100 milliseconds. The shadowed
text isn't a bitmap, but just a string drawn with some graphic effects. Again, it's just a style whose
parameters require the color and the direction of the light.

By assigning IDs to page elements, you can control each of them via script code very well. This
means that you can also detect and handle events for a specific element — say, a click on a particular
bitmap. Finally, the hot-tracking effect is just a matter of detecting the right events. I've simply
written two procedures to change the text color (more accurately, to change the class name for the
style) when the mouse enters and exits the area of the elements for which highlighting is important.

Hosting Applications through Namespace Extensions
To conclude this chapter on namespace extensions, let's see how we can take advantage of them to
host real applications in Windows Explorer. Frankly, there's nothing new to learn: a namespace
extension is a module that allows you to customize a folder, and we've already seen how to create
special folders and link them to namespace extensions. All that's missing is the application.

Chapter 16

620

The key is the view object. A view object is a window, and sometimes it can be a dialog template.
Given this, any dialog-based application is eligible to be embedded in a custom folder. This is even
more reasonable if you consider that you can modify both menus and toolbars at your leisure.

This kind of namespace extension really is simple, because you don't have to worry about items,
PIDLs, icons, context menus and the like. All the functionality will be delivered by the application
that's hosted in the view; the namespace extension must provide only the folder manager, and the
basic behavior to create the view.

The URL Folder Example
An example of this minimal approach is the URL Folder example that you can download from our
Web site. It is a dialog with a button that opens a browser window onto the Wrox Press web site.
However, it's a dialog whose controls are handled in a custom window procedure, and therefore a
prototype of an embeddable application. The next figure shows how it will look once you've installed
it by running the .reg file that's included:

Summary
In this chapter we've examined the aspects of a namespace extension. In my opinion, namespace
extensions are the very essence of shell programming: they allow your code to work tightly with
Explorer, and allow an unmatched level of customization.

For all that, namespace extensions are quite complex too. It's not so much their intrinsic trickiness
that's the problem, as it is the combination of several other factors. Among these are the number of
interfaces you have to implement, as well as all the interfaces (and the functions within those
interfaces) you aren't strictly required to support, but that are necessary to have a module work
properly. The continuous updates to the Windows shell (I really hope that Windows 98 improves
matters), and the lack of documentation, complete this awkward scenario.

Yet again, the documentation is worth a little more discussion. Often, I've blamed it for being poor or
incomplete, but in this case the major thing that has been lacking for a long time is not so much good
explanations but worthwhile examples. Only since the creation of the Internet Client SDK, have we
had a truly interesting and insightful example of a non-rooted extension.

Namespace Extensions

621

This chapter has covered:

! All the interfaces necessary to have a namespace extension work properly
! How to create and manage PIDLs
! How to map all the theory to a concrete and non-trivial scenario
! How to modify Explorer's user interface
! How to enrich a namespace extension with undocumented features such as infotips and removal

messages
! An overview of web view extensions
! Tips on how to host applications inside Explorer
! Folder customization and HTML template files
! Employing Dynamic HTML to get interactive folders in a snap

Further Reading
The first article I ever read about namespace extensions was Extending the Windows Explorer with
Namespace Extensions by David Campbell, which appeared in the July 1996 issue of MSJ. This is a
good article that provides an overview of all the aspects you must know about. It includes one of
Microsoft's standard samples (CabView), but doesn't discuss it thoroughly, so you aren't given the
possibility to apply the theory to source code immediately.

Moving on, I wrote an article on namespace extensions for the February 1998 edition of MIND,
entitled Shell Support for DHTML. It presents an example in which I walk into the content of an
HTML file, exploiting the DHTML object model. In practice, I did what you need to do to
implement communication between the views in a web view extension.

These articles, however, have a common peculiarity that might almost be described as a flaw: they
present namespace extensions that work only on a specific file type. They have the structure of a
namespace extension, but they could have been implemented as external viewers as well. The
drawback is that examples like these don't explain clearly enough how to add a new, expandable and
hierarchical node to the Explorer, when this is probably the main reason to write a namespace
extension.

The CabView example I mentioned earlier opens a .cab file like a folder, and lets you navigate into
it. It now comes as one of the Win32 SDK examples, and you can find it on the MSDN library disks
that come with Visual C++. The first really great example of namespace extensions is the RegView
example that comes with the Internet Client SDK. It adds the registry as a new folder in the Explorer,
and you can find it at Samples\SDK Samples\Windows UI Samples\Shell
Samples\RegView. A similarly worthwhile demo is SampView, in the latest Platform SDK.

Todd Daniell, Brian Daigle, Doug Bahr, and Dave Mims wrote the excellent Implementing a Web View
Namespace Extension Using Active Directory Services in MSJ, August 1998, and I recommend it if you
have dealing with web view extensions in mind. Despite the title, the article really has little to do with
ADSI; it's just that the authors attempt to provide a custom view of an ADSI folder. In other words,
ADSI in that article plays the same, secondary role as the EnumChildWindows() API does in our
Windows View demonstration.

Chapter 16

622

Furthermore, let me point you to another couple of articles of mine whose content relates to topics
touched upon in this chapter. The first one is Pluggable Protocols (MIND, January 1999), in which I
show how to take advantage of the Internet Explorer pluggable protocols and discuss in detail the
res:// protocol. The second article, Active Desktop: The Shell and Beyond (MIND, March 1998),
contains a discussion of what you can do with Active Desktop's folder customization.

The final part of the chapter revolved around a bit of Dynamic HTML. If you'd like to learn more
about that, I recommend Professional IE4 Programming or for more advanced topics, my Instant
DHTML Scriptlets (both Wrox Press). To conclude, as usual, here are some interesting Knowledge
Base articles:

! Knowledge Base ID Q183860: Support Dropping of Items on Your Namespace Root
! Knowledge Base ID Q179911: Implement Explore and Open in a Namespace Extension
! Knowledge Base ID Q179900: Support Renaming of Items in the Windows Explorer Tree
! Knowledge Base ID Q182379: Support Toolbar Item Text in a Shell Namespace Extension

Final Thoughts
This is the end of the book. In these 16 chapters, I've tried to address all the topics that are relevant
to a Win32 programmer when he or she has to cope with the Windows shell. How successful have I
been? Asked a similar question, someone once answered that real expertise only comes when you
have made all the possible mistakes. Working with the Windows shell over the last couple of years
has taught me a lot. Several times, I have thought that I was in front of the world's biggest bug in the
system code. Almost as many times, it turned out to be a bug of my own. In these pages, I have
collected all the problems I've had, and all the solutions I've found.

There's no doubt that working with the shell is hard. It's a mixture of COM and API, C and C++,
and some of the documentation has been written only with Visual Basic in mind. The documentation
isn't great, but it's not that poor, and I'm increasingly of the opinion that this is mostly due to the
combined effect of vague descriptions and complex behaviors.

I really do hope that you stuck with this book, passing intrepidly from cover to cover. The final thing
I'll do by way of explanation is to answer a question that was asked by a couple of my reviewers, and
that may have crossed your mind too: Why is this book a mixture of C and C++, with a pinch of
ATL, but no MFC? Well, my goal was to be faithful to a famous sentence by Albert Einstein, who
recommended that things should always be kept as simple as possible, but no simpler. MFC has its
merits, to be sure, but in the end you just have to trust that it knows what it's doing. Presenting code
at a lower level allowed me to touch on all the steps required, case by case. I don't know how you feel
about it, but I believe that once you have grasped the underlying technology — whatever it is — you're
capable of facing anything that's been constructed upon it.

Things never stop where they are. There's always a new goal to achieve. The shell is evolving, and
hopefully this book will evolve too. When I was ten or so, I used to watch UFO and Martians on TV.
"Windows 2000 Enterprise" was more likely to be the name of a futuristic spaceship than an
operating system, but then who cares about operating systems when he's ten? I imagined the year
2000 as a time when we'd be living in an all-automatic world, eating colorful pills, and moving by the
power of thought.

res://protocol

Namespace Extensions

623

In the same way, Windows 2000 has been touted as the mother (or the father?) of all operating
systems: fully plug-and-play, fast as light, with built-in support for thought-reading devices. All or
none of that may be true, but we can be sure that Windows 2000 will bring us lots of new things to
study, enhancements, some bug fixes, and other changes. Inevitably, some of these things will affect
the shell, so stay tuned for reading more in the next millennium!

A Programmer's Toolkit

Many of the examples in this book use the Active Template Library (ATL), which has a Wizard of its
own for generating repetitive or boilerplate code automatically. In many other cases, however, such
as testing API functions, we don't use ATL because there is no need for templates and frameworks.
This fact doesn't mean it wouldn't be helpful to have a Wizard for generating the code for a simple
dialog-based applet, or for the world's simplest dynamic-link library. To that end, I decided to build
my own AppWizard — after all, it's quite an easy task, and the benefits are considerable.

The Custom AppWizard
Since version 4.0, Visual C++ has allowed us to write our own AppWizards. We can either modify
the existing Wizards or write a new one from scratch, specifying the number of steps and the options
that best suit our needs.

Custom AppWizards can only be created using the Professional and Enterprise editions of Visual
C++. The Standard edition does not support this feature, but never fear: if you have this version
of the software, you can download the compiled code for the AppWizard we'll generate in this
chapter from the Wrox web site.

The user interface of Windows 95 has many Wizards. They're used to detect your hardware, to add a
printer, to connect to the Internet, and so on. However, these Wizards are a bit different from the
AppWizards in Visual C++, and it's interesting to compare the two.

Appendix A

626

In both cases, we're faced with a sequence of dialogs, but an AppWizard is completely integrated with
the surrounding infrastructure, so you can't use it outside Visual C++. You can't use the MFC
AppWizard as a stand-alone program, nor can you connect it to another vendor's Win32 IDE. Worse
than that, though, you can't even connect an AppWizard created with Visual C++ 5.0 to one
generated by a previous version! This means that what I shall create here will need to be recompiled
in order to be successfully attached to Visual C++ 4.2 or lower. An AppWizard generated with Visual
C++ 5.0 should compile under Visual C++ 6.0, as our WroxWiz project demonstrates. The reverse is
also true, although Visual C++ 6.0 provides a slightly richer programming interface that may affect
backwards compatibility. So far, however, I haven't experienced any problems.

A traditional Wizard, on the other hand, is an instance of one of the Windows 95 common controls —
namely, the Property Sheet — that is simply a sequence of windows that you can call and create
anywhere that a Win32 dialog is acceptable. A Property Sheet control is the same as a Tab Control
except that you access its child tabs sequentially and in a predefined order, rather than all tabs being
available at the same time.

Why Can't an AppWizard Stand Alone?
Having an AppWizard live only in the Visual C++ IDE is not really a problem. These Wizards come
into play when you hit Ctrl-N or select the File | New... menu. That is, they are expected to run in the
middle of a sequence of steps. You choose the type of the project, type in the name and the folder,
and go to the next step. At that point, you see the first page of the Wizard with its familiar navigation
bar (Back, Next, etc.).

The steps before the first page of the Wizard, and after the last, transfer control of Visual C++ to the
AppWizard and then return control to Visual C++ once the AppWizard has completed its task.
Because of this, the C++ class that implements an AppWizard relies heavily on the framework, and
this makes it difficult — impossible, even — to make such code run in a stand-alone manner. After all,
the final goal of the Wizard is simply to generate a new Visual C++-compliant project.

A Quick Tour of a Custom AppWizard
An AppWizard is a DLL with the rather unusual extension .awx. They are commonly located in the
Common\MSDev98\Bin\IDE subdirectory of Visual Studio, although custom AppWizards are stored
in Common\MSDev98\Template. If you have the Standard edition of Visual C++, this is where you
should install the file you can download.

The first step to creating your own AppWizard
is to generate a new project using the Custom
AppWizard, as shown:

A Programmer's Toolkit

627

There are three ways to create a new AppWizard. You can clone an existing custom AppWizard, base
your Wizard on the standard MFC AppWizard, or define a completely new one from scratch. I've
chosen the third option.

Once you've worked your way through the Wizard, a new project opens up, which should look like
the one shown in the following screenshot:

I've chosen to create a Wizard that has two custom steps. The files Cstm1Dlg.cpp and
Cstm2Dlg.cpp, which you can see in the FileView shown above, render the dialogs for these steps.

At this point, our work begins. Basically, we're required to customize the look of the various steps,
and define the options that control the code to be generated. An option is a kind of environment
variable that stores one or more of the user's preferences. If you wanted comments in the code, for
example, or certain functionality to be included, an option would be set to indicate this. From the
implementation's point of view, an option is just an entry in a dictionary. The main AppWizard class,
CWroxWizAppWiz, inherits a data member from CCustomAppWiz that's an instance of the MFC
class CMapStringToString. This member, called m_Dictionary, is used to store all the options.

Aside from the dictionary, templates play an important role. In this context, a template is a custom
resource type that contains the basis of a file (whether binary or text-based) to be generated by the
AppWizard. In practice, for each file you want to create, you need a template. These files are then
parsed by Visual C++ and added to the new project.

Appendix A

628

The important feature of the templates is that they can contain macros that the parser (a component
of the compiler) will expand. This is the means by which the options that you have selected are
incorporated into the final code. There is also basic support for conditional statements, to make the
process of generating the source code straightforward, easy to understand, and simple to modify.

The Wrox AppWizard
What we need to do now is add to this skeleton in order to create the Wrox AppWizard that will be
available from the Projects tab of the Visual C++ New dialog, as shown below:

In this section I shall be focussing on the features required by the Wrox AppWizard. If you require
more information about using the Custom AppWizard please refer to the Further Reading section.

The following listing is the main header file, WroxWizAw.h. It defines the CWroxWizAppWiz class,
which will be used by Visual C++ to invoke our AppWizard. The Custom AppWizard generated
most of the code; we've just added some Wizard-wide data members:

// WroxWizAw.h : header file
//

class CDialogChooser;

// All function calls made by mfcapwz.dll to this custom AppWizard (except for
// GetCustomAppWizClass - see WroxWiz.cpp) are through this class. You may
// choose to override more of the CCustomAppWiz virtual functions here to
// further specialize the behavior of this custom AppWizard.
class CWroxWizAppWiz : public CCustomAppWiz
{
public:
 virtual CAppWizStepDlg* Next(CAppWizStepDlg* pDlg);
 virtual CAppWizStepDlg* Back(CAppWizStepDlg* pDlg);

 virtual void InitCustomAppWiz();
 virtual void ExitCustomAppWiz();
 virtual void CustomizeProject(IBuildProject* pProject);

A Programmer's Toolkit

629

 // Custom data
 CBitmap m_bmpPicture;
 CBitmap m_bmpLogo;

protected:
 CDialogChooser* m_pChooser;
};

// This declares the one instance of the CWroxWizAppWiz class. You can access
// m_Dictionary and any other public members of this class through the
// global WroxWizaw. (Its definition is in WroxWizaw.cpp.)
extern CWroxWizAppWiz WroxWizaw;

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before //
the previous line.

#endif
// !defined(AFX_WROXWIZAW_H__39CCE78B_3CDB_11D2_9DAF_00104B4C822A__INCLUDED_)

The class declared above is the main class of our Wizard. Everything you want the Wizard to
preserve from page to page, and any information or custom data that you wish to associate with the
class, can be defined here as additional data members. For example, I've defined a couple of
CBitmap members so that the Wrox logo and the Wizard picture (the image that is often placed on
the left-hand side of the dialog) can be used. You'll need to make sure they get loaded into the
process at runtime by placing these calls the CWroxWizAppWiz::InitCustomAppWiz() function
in WroxWizAw.cpp:

 // TODO: Add any other custom AppWizard-wide initialization here.
 // Load pictures
 m_bmpPicture.LoadBitmap(IDB_IMAGE);
 m_bmpLogo.LoadBitmap(IDB_WROXLOGO);

CDialogChooser is another class generated by the Custom AppWizard; it takes care of moving
back and forth among the pages of your AppWizard. The dialog chooser is the component that calls
the correct method as you click on the <Back or Next> buttons. The main Wizard class doesn’t
handle such events directly — it relies on this intermediate class. Usually, you don't need to change
anything about it, unless you need to impose a completely custom logic for progressing through the
Wizard.

You should concentrate your efforts on the files
that provide the actual implementations for the
various dialogs, the first of which looks something
like this:

Appendix A

630

The two radio buttons are called IDC_DIALOG and IDC_DLL, while the edit boxes are
IDC_APPNAME (for the title bar) and IDC_AUTHOR (for the author's name). I'm going to arrange that
the entries you can see above are the defaults, so add these lines to WroxWiz.h:

// TODO: You may add any other custom AppWizard-wide declarations here.
const TCHAR AW_DEFAULT_APPNAME[] = _T("Wrox AppWizard");
const TCHAR AW_DEFAULT_AUTHOR[] = _T("D. Esposito");

These will become entries in the dictionary with the names APPNAME and AUTHOR. The other two
options to be set on this step will be represented by the names TYPE_DIALOG and TYPE_DLL. I have
chosen to use Boolean entries instead of having a single TYPE because the parser won't allow us to
test against a value, only whether a given entry exists or not.

Those files that implement the steps of the Wizard are named CstmXDlg.cpp, where X identifies the
xth step. Here's the start of the code behind the first step (Cstm1Dlg.cpp):

// Cstm1Dlg.cpp : Implementation File
//

#include "stdafx.h"
#include "WroxWiz.h"
#include "cstm1dlg.h"
#include "WroxWizaw.h"
#include "Chooser.h" // For LAST_DLG

#ifdef _PSEUDO_DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CCustom1Dlg dialog

CCustom1Dlg::CCustom1Dlg()
 : CAppWizStepDlg(CCustom1Dlg::IDD)
{
 //{{AFX_DATA_INIT(CCustom1Dlg)
 m_szAppName = AW_DEFAULT_APPNAME;
 m_szAuthor = AW_DEFAULT_AUTHOR;
 //}}AFX_DATA_INIT

 WroxWizaw.m_Dictionary[_T("APPNAME")] = AW_DEFAULT_APPNAME;
 WroxWizaw.m_Dictionary[_T("AUTHOR")] = AW_DEFAULT_AUTHOR;
 WroxWizaw.m_Dictionary[_T("TYPE_DIALOG")] = _T("Yes");
}

void CCustom1Dlg::DoDataExchange(CDataExchange* pDX)
{
 CAppWizStepDlg::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CCustom1Dlg)
 DDX_Text(pDX, IDC_APPNAME, m_szAppName);
 DDV_MaxChars(pDX, m_szAppName, 40);
 DDX_Text(pDX, IDC_AUTHOR, m_szAuthor);
 DDV_MaxChars(pDX, m_szAuthor, 40);
 //}}AFX_DATA_MAP
}

A Programmer's Toolkit

631

// This is called whenever the user presses Next, Back, or Finish with this step
// present. Do all validation & data exchange from the dialog in this function.
BOOL CCustom1Dlg::OnDismiss()
{
 if (!UpdateData(TRUE))
 return FALSE;

 // TODO: Set template variables based on the dialog's data.
 WroxWizaw.m_Dictionary[_T("APPNAME")] = m_szAppName;
 WroxWizaw.m_Dictionary[_T("AUTHOR")] = m_szAuthor;

 return TRUE; // return FALSE if the dialog shouldn't be dismissed
}

As you can see, I've used ClassWizard to add data members for the two edit boxes, and altered the
lines in the constructor to initialize them to my default values. I've also written code to create entries
in the dictionary that are set in the constructor and altered when the dialog is dismissed.

Next, you need to add handlers for the radio buttons, and perform some trivial initialization in
OnInitDialog(). Here's the code for the second half of Cstm1Dlg.cpp, with the important
aspects highlighted:

BEGIN_MESSAGE_MAP(CCustom1Dlg, CAppWizStepDlg)
 //{{AFX_MSG_MAP(CCustom1Dlg)
 ON_BN_CLICKED(IDC_DIALOG, OnDialog)
 ON_BN_CLICKED(IDC_DLL, OnDll)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CCustom1Dlg message handlers

BOOL CCustom1Dlg::OnInitDialog()
{
 CAppWizStepDlg::OnInitDialog();

 // Local data
 CStatic* pStatic = NULL;

 // Bitmap initialization
 pStatic = static_cast<CStatic*>(GetDlgItem(IDC_IMAGE));
 pStatic->SetBitmap(static_cast<HBITMAP>(WroxWizaw.m_bmpPicture));
 pStatic = static_cast<CStatic*>(GetDlgItem(IDC_WROXLOGO));
 pStatic->SetBitmap(static_cast<HBITMAP>(WroxWizaw.m_bmpLogo));

 // Radio button initialization
 CheckRadioButton(IDC_DIALOG, IDC_DLL, IDC_DIALOG);
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

void CCustom1Dlg::OnDialog()
{
 WroxWizaw.m_Dictionary.RemoveKey(_T("PROJTYPE_DLL"));
 WroxWizaw.m_Dictionary[_T("TYPE_DIALOG")] = _("Yes");
 WroxWizaw.m_Dictionary.RemoveKey(_T("TYPE_DLL"));
 GetDlgItem(IDC_APPNAME)->EnableWindow(TRUE);

Appendix A

632

 // We make sure the chooser knows the Wizard has 2 steps
 // This is in case we passed for the next handler.
 SetNumberOfSteps(LAST_DLG);
}

void CCustom1Dlg::OnDll()
{
 WroxWizaw.m_Dictionary[_T("PROJTYPE_DLL")] = _T("Yes");
 WroxWizaw.m_Dictionary[_T("TYPE_DLL")] = _T("Yes");
 WroxWizaw.m_Dictionary.RemoveKey(_T("TYPE_DIALOG"));

 GetDlgItem(IDC_APPNAME)->EnableWindow(FALSE);

 // Tell the chooser the Wizard now has just 1 step. This
 // causes the Next> button to gray, skipping the Common Controls page.
 SetNumberOfSteps(1);
}

The code in OnInitDialog() just deals with displaying the bitmaps that add a little color to the
Wizard, and setting the initial state of the radio buttons. The button handlers set and remove the
appropriate entries in the dictionary. If you're watching carefully, you'll have noticed an extra entry
called PROJTYPE_DLL, — I'll talk about this a little later on.

The second step will let you choose whether you want the code to include built-in support for the
Windows common controls. If so, the Wizard will generate a project that includes the necessary
header file (commctrl.h), import library (comctl32.lib), and the code to initialize the DLL. You
can arrange for the code to deal with the Windows 95 controls alone, or with the new ones
introduced with Active Desktop and Windows 98 as well.

You'll have noticed that in the OnDll() and OnDialog() handlers for the first step, I included a
call to SetNumberOfSteps(), which is a global function declared in customaw.h. As the name
suggests, this function informs the dialog chooser of the total number of steps the Wizard should
have. When the dialog chooser's internal counter reaches the last page, the Next> button is grayed.
My design for this AppWizard dictates that if you choose to create a DLL you can't set any options
on the second page, and judicious use of SetNumberOfSteps() allows us to fool the chooser and
skip that step. As soon as you select the DLL option, the Next> button will gray and you must either
finish the process or change the option.

A Programmer's Toolkit

633

Returning now to the second step, the states of the first three of these controls are stored in the
dictionary with entries called USECC, USECC95 and USECC98. USECC is tied to the checkbox, while
the others are linked to the radio buttons.

Also on this step you can ask the Wizard to generate a #include for shellapi.h, and to add some
helper functions for handling error messages to the project. These functions will be written around
well-known APIs such as FormatMessage() and MessageBox(), and are covered in detail in
Chapter 3.

The first part of the source code for Cstm2Dlg.cpp (the second step) is shown below:

// Cstm2Dlg.cpp : Implementation File
//

#include "stdafx.h"
#include "WroxWiz.h"
#include "cstm2dlg.h"
#include "WroxWizaw.h"

#ifdef _PSEUDO_DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CCustom2Dlg dialog

CCustom2Dlg::CCustom2Dlg()
 : CAppWizStepDlg(CCustom2Dlg::IDD)
{
 //{{AFX_DATA_INIT(CCustom2Dlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 WroxWizaw.m_Dictionary[_T("USECC")] = _T("Yes");
 WroxWizaw.m_Dictionary[_T("USECC95")] = _T("Yes");
 WroxWizaw.m_Dictionary[_T("ADDUTILS")] = _T("Yes");
 WroxWizaw.m_Dictionary[_T("ADDSHELLAPI")] = _T("Yes");
}

void CCustom2Dlg::DoDataExchange(CDataExchange* pDX)
{
 CAppWizStepDlg::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CCustom2Dlg)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

// This is called whenever the user presses Next, Back, or Finish with this step
// present. Do all validation & data exchange from the dialog in this function.
BOOL CCustom2Dlg::OnDismiss()
{
 if (!UpdateData(TRUE))
 return FALSE;

 return TRUE; // return FALSE if the dialog shouldn't be dismissed
}

Appendix A

634

This part of the code is even easier than for the first step — it simply involves setting entries in the
dictionary appropriately. However, there are more button handlers this time around, and
OnInitDialog() has to be implemented to perform the same tricks as before:

BEGIN_MESSAGE_MAP(CCustom2Dlg, CAppWizStepDlg)
 //{{AFX_MSG_MAP(CCustom2Dlg)
 ON_BN_CLICKED(IDC_WIN95, OnWin95)
 ON_BN_CLICKED(IDC_WIN98, OnWin98)
 ON_BN_CLICKED(IDC_USECC, OnUsecc)
 ON_BN_CLICKED(IDC_UTILS, OnUtils)
 ON_BN_CLICKED(IDC_SHELLAPI, OnShellapi)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CCustom2Dlg message handlers

BOOL CCustom2Dlg::OnInitDialog()
{
 CAppWizStepDlg::OnInitDialog();

 // Local data
 CStatic* pStatic = NULL;

 // Bitmap initialization
 pStatic = static_cast<CStatic*>(GetDlgItem(IDC_IMAGE));
 pStatic->SetBitmap(static_cast<HBITMAP>(WroxWizaw.m_bmpPicture));
 pStatic = static_cast<CStatic*>(GetDlgItem(IDC_WROXLOGO));
 pStatic->SetBitmap(static_cast<HBITMAP>(WroxWizaw.m_bmpLogo));

 // Radio and check button initialization
 CheckDlgButton(IDC_USECC, TRUE);
 CheckDlgButton(IDC_UTILS, TRUE);
 CheckDlgButton(IDC_SHELLAPI, TRUE);

 CheckRadioButton(IDC_WIN95, IDC_WIN98, IDC_WIN95);
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

void CCustom2Dlg::OnWin95()
{
 WroxWizaw.m_Dictionary[_T("USECC95")] = _T("Yes");
 WroxWizaw.m_Dictionary.RemoveKey(_T("USECC98"));
}

void CCustom2Dlg::OnWin98()
{
 WroxWizaw.m_Dictionary[_T("USECC98")] = _T("Yes");
 WroxWizaw.m_Dictionary.RemoveKey(_T("USECC95"));
}

void CCustom2Dlg::OnUsecc()
{
 BOOL bState = IsDlgButtonChecked(IDC_USECC);

 GetDlgItem(IDC_WIN95)->EnableWindow(bState);
 GetDlgItem(IDC_WIN98)->EnableWindow(bState);

A Programmer's Toolkit

635

 if(bState)
 WroxWizaw.m_Dictionary[_T("USECC")] = _T("Yes");
 else
 WroxWizaw.m_Dictionary.RemoveKey(_T("USECC")); // Key must be removed
}

void CCustom2Dlg::OnUtils()
{
 BOOL bState = IsDlgButtonChecked(IDC_UTILS);

 if(bState)
 WroxWizaw.m_Dictionary[_T("ADDUTILS")] = _T("Yes");
 else
 WroxWizaw.m_Dictionary.RemoveKey(_T("ADDUTILS")); // Key must be removed
}

void CCustom2Dlg::OnShellapi()
{
 BOOL bState = IsDlgButtonChecked(IDC_SHELLAPI);

 if(bState)
 WroxWizaw.m_Dictionary[_T("ADDSHELLAPI")] = _T("Yes");
 else
 WroxWizaw.m_Dictionary.RemoveKey(_T("ADDSHELLAPI"));
}

You'll see at once that none of these handlers is particularly tricky — it's always just a matter of
manipulating the dictionary, and checking and enabling controls.

System Macros
Apart from the dictionary entries that you can define yourself, there are a few made available by the
Visual C++ environment. As I explained earlier, the main custom AppWizard main class inherits
from CCustomAppWiz. This class is the one that actually takes care of defining the dictionary object
that, upon construction, contains the mappings for a standard set of environmental strings. Amongst
others, there are:

Macro Description

ROOT The name of the project.

FULL_DIR_PATH The full path to the project.

PROJTYPE_DLL "Yes" if you want a DLL to be generated. By default, Visual C++
creates a project for an executable.

Interestingly, the ROOT entry can be expressed with lower case letters: Root and root. I'll show you
how this can be useful later on.

Appendix A

636

The backward compatibility of custom AppWizards is affected by the fact that Visual C++ 6 defines
many new macros. However, almost all of these macros are only useful if your AppWizard is based
on the MFC AppWizard. In the other two cases I mentioned earlier, backward compatibility with
Visual C++ 5 should be guaranteed. Among the new Visual C++ 6.0-specific macros, those in the
following table are worthy of note. All render Boolean values and address various types of project.

Macro Description

PROJTYPE_OCX "Yes" if your project creates an ActiveX control

PROJTYPE_CON "Yes" if your project creates a Win32 console application

PROJTYPE_LIB "Yes" if your project creates a static library

Finalizing the Process
After you've completed the Wizard and clicked
on Finish, you'll be presented with a dialog
that summarizes what you've done so far:

The text for this message is entirely up to you. The Visual C++ engine looks for a "TEMPLATE"
custom resource named confirm.inf in your project's RC file. The content of this file is then
parsed and displayed in the above dialog, so you can embed macros in order to reflect the options the
user selected. This is the file that was used to generate the above dialog — it's not hard to see how it
works:

$$IF(TYPE_DLL)
The Wizard is about to generate source code for a project called $$ROOT$$.dll.
The author is $$AUTHOR$$.
$$ELSE
The Wizard is about to generate source code for a project called $$ROOT$$.exe.
The author is $$AUTHOR$$ and the program is named "$$APPNAME$$".
$$ENDIF

A Programmer's Toolkit

637

The module generated is:

$$IF(TYPE_DIALOG)
+ a dialog-based Win32 application
$$IF(USECC)
 with built-in support for the common controls
$$IF(USECC98)
 (Windows 98)

$$ELIF(USECC95)
 (Windows 95)
$$ENDIF
$$ENDIF
$$ENDIF

$$IF(TYPE_DLL)
+ a Win32 DLL
$$ENDIF

confirm.inf is one of two files that are absolutely central to custom AppWizards; the other is
newproj.inf. The latter is a kind of 'makefile' that assembles the various template resources and
builds a Visual C++ project. The content of newproj.inf serves as input for the parser. From it,
the parser will know which files are to be parsed, added to the project, or simply moved to the project
folder verbatim. By embedding macros in newproj.inf, you can control the way the files are
generated.

To show you what I mean, here's the newproj.inf file to be used by our Wizard:

$$// newproj.inf = template for list of template files
$$// format is 'sourceResName' \t 'destFileName'
$$// The source res name may be preceded by any combination of
 '=', '-', '!', '?', ':', '#', and/or '*'
$$// '=' => the resource is binary
$$// '-' => the file should not be added to the project
 (all files are added to the project by default)
$$// '!' => the file should be marked exclude from build
$$// '?' => the file should be treated as a help file
$$// ':' => the file should be treated as a resource
$$// '#' => the file should be treated as a template (implies '!')
$$// '*' => bypass the custom AppWizard's resources when loading
$$// if name starts with / => create new subdir

$$// Dialog-based Win32 app
$$IF(TYPE_DIALOG)

a_main.cpp $$root$$.cpp
+a_main.rc $$root$$.rc
$$IF(ADDUTILS)
a_utils.cpp utils.cpp
a_utils.h SPBUtils.h
$$ENDIF
a_main.h $$root$$.h
:=a_main.ico $$root$$.ico

$$// Win32 DLL
$$ELIF(TYPE_DLL)

Appendix A

638

d_main.cpp $$root$$.cpp
d_main.def $$root$$.def
d_main.h $$root$$.h

$$ENDIF

The comments that were placed in the file explain that each line intended for the parser must have the
format:

[symbols]TemplateName \t FileName

That is, the name of the template followed by a single tab character, and then the name of the target
file. The symbols go at the beginning of each line, either individually or in combination; the
following table provides a fuller explanation of the commands implied by each:

Symbol Action

'' The empty string means, "Parse and add the resulting file to the project."

- The file won't be added to the project, but it will be copied and used correctly.

= The file is intended to be binary. It must not be parsed but just copied.

! The file won't be included in the list of files to build.

? The file is treated as a help file, built differently, and added to the Help Files folder
of the project.

: The file is considered as a resource and added to the Resource Files folder.

The file is considered as a template and added to the Template Files folder. In
addition, this flag implies '!'

* The resource actually processed is not taken from the current project resources but
from the MFC AppWizard resources (provided that a resource with the relevant
name exists).

Visual C++ 5 syntax is slightly different but still supported by Visual C++ 6 for backward
compatibility purposes. For instance, the + symbol (not mentioned in the documentation but still
supported, with the same meaning) denoted that the specified resource must be added to the project.
With Visual C++ 6.0 the perspective has changed: all the files are added by default, unless you
explicitly prohibit this by using the – flag. New Wizards should avoid using +, but if it is used the
project will be generated correctly.

Similarly, it is not strictly necessary to prefix resources such as icons or bitmaps with :. If you omit it,
the file still goes in the Resource Files folder and gets treated as a resource. Again, this has been
done for the sake of backward compatibility, but new Wizards should use : to denote a resource.

Of course, the most important aspects of any AppWizard are the files that it actually produces. In the
case of our Wizard, we have two options: a Win32 dialog-based application, or a DLL. Let's take a
look at the output of the Wizard, and how we can alter it using templates and macros.

A Programmer's Toolkit

639

A Minimal Dialog-based Application
If you choose the Dialog-based option from the first page of the Wizard, then you can expect it to
build a Win32 project with no MFC support. The files generated will be:

! [Root].cpp

! [Root].h

! [Root].ico

! [Root].rc

And potentially:

! utils.cpp

! SPBUtils.h

Obviously, [Root] stands for the actual name of the project. As I stated earlier, we can write 'Root'
in either upper or lower case, or with only the first letter capitalized — if 'Root' is not all capitals the
project name will be printed in lower case letters. At least four files will be generated, so we must
have (at least) four templates in the Wrox AppWizard resource file, WroxWiz.rc.

Here's the code that will produce [Root].cpp, which is contained in the template resource called
"A_MAIN.CPP":

/***
*
* Project.....: $$APPNAME$$
* Application.: $$ROOT$$.exe
* Module......: $$ROOT$$.cpp
* Description.: Application main module
* Compiler....: MS Visual C++
* Written by..: $$AUTHOR$$
* Environment.: Windows 9x/NT
*
**/

/*---*/
// PRAGMA section
/*---*/
// Force the linker to add the following libraries.
#ifdef _MSC_VER

#pragma comment(lib, "kernel32.lib")
#pragma comment(lib, "user32.lib")
#pragma comment(lib, "gdi32.lib")
#pragma comment(lib, "shell32.lib")
$$IF(USECC)
#pragma comment(lib, "comctl32.lib")
$$ENDIF

#endif

Appendix A

640

/*---*/
// INCLUDE section
/*---*/
#include "$$root$$.h"
$$IF(USECC)
#include <commctrl.h>
$$ENDIF
$$IF(ADDSHELLAPI)
#include <shellapi.h>
$$ENDIF

/*---*/
// GLOBAL section
/*---*/
// Data
HICON g_hIconLarge;
HICON g_hIconSmall;

// Functions
void OnInitDialog(HWND);
void OnOK(HWND);

// Callbacks
BOOL CALLBACK APP_DlgProc(HWND, UINT, WPARAM, LPARAM);

/*---*/
// Procedure....: WinMain()
// Description..: Entry point in any Windows program
// Input........: HINSTANCE, HINSTANCE, LPSTR, int
// Output.......: int
/*---*/
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevious,
 LPTSTR lpsz, int iCmd)
{
 // Save global data
 g_hIconLarge = static_cast<HICON>(
 LoadImage(hInstance, "APP_ICON", IMAGE_ICON,
 GetSystemMetrics(SM_CXICON), GetSystemMetrics(SM_CXICON), 0));
 g_hIconSmall = static_cast<HICON>(
 LoadImage(hInstance, "APP_ICON", IMAGE_ICON,
 GetSystemMetrics(SM_CXSMICON), GetSystemMetrics(SM_CXSMICON), 0));

$$IF(USECC)
$$IF(USECC98)
 // Enable common controls
 INITCOMMONCONTROLSEX iccex;
 iccex.dwSize = sizeof(INITCOMMONCONTROLSEX);
 iccex.dwICC = ICC_WIN95_CLASSES;
 InitCommonControlsEx(&iccex);
$$ELIF(USECC95)
 // Enable common controls
 InitCommonControls();
$$ENDIF
$$ENDIF

A Programmer's Toolkit

641

 // Run main dialog
 BOOL b = DialogBox(hInstance, "DLG_MAIN", NULL, APP_DlgProc);
 // Exit
 DestroyIcon(g_hIconLarge);
 DestroyIcon(g_hIconSmall);
 return b;
}

/*---*/
// Procedure....: APP_DlgProc()
// Description..: Responds to all messages sent to the dialog
// Input........: HWND, UINT, WPARAM, LPARAM
// Output.......: BOOL
/*---*/
BOOL CALLBACK APP_DlgProc(HWND hDlg, UINT uiMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uiMsg)
 {
 case WM_INITDIALOG:
 OnInitDialog(hDlg);
 break;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDOK:
 OnOK(hDlg);
 return FALSE;

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return FALSE;
 }
 break;
 }

 return FALSE;
}

/***
*
* Internals:
* - OnOK()
* - OnInitDialog()
*
**/

/*---*/
// Procedure...: OnOK()
// Description.: Do something
// INPUT.......: HWND
// OUTPUT......: void
/*---*/
void OnOK(HWND hDlg)
{
 return;
}

Appendix A

642

/*---*/
// Procedure...: OnInitDialog()
// Description.: Initialize the dialog
// INPUT.......: HWND
// OUTPUT......: void
/*---*/
void OnInitDialog(HWND hDlg)
{
 // Set the icons (T/F as to Large/Small icon)
 SendMessage(hDlg, WM_SETICON, FALSE, reinterpret_cast<LPARAM>(g_hIconSmall));
 SendMessage(hDlg, WM_SETICON, TRUE, reinterpret_cast<LPARAM>(g_hIconLarge));
}

/* End of file: $$root$$.cpp */

The other template files that make up this AppWizard are shown at the end of the appendix, though
you can, of course, download the project (along with the rest of the book's source code) from the
Wrox Press web site.

As you can see, there are a number of macros within the code, enclosed between $$ symbols. The
parser replaces these macros with their content before including them in the target file. In the case of
conditional statements, the syntax is $$IF(macro), where the macro must simply exist for the
expression to be true. To remove a macro, just use the RemoveKey() method of the dictionary.

If we now use our Wizard to create a new project called Demo, checking the option for the Windows
98 common controls, the result will be similar to that shown in the next figure:

You can see how $$AUTHOR$$, $$ROOT$$, and $$APPNAME$$ are correctly expanded. Note also
the presence of the #include line for commctrl.h. All that remains to be done is compiling the
code!

A Programmer's Toolkit

643

A Generic DLL
The Wrox AppWizard also allows you to create a minimal, generic DLL, composed only of the
DllMain() function, the header (.h), and the definition file (.def). The files generated will be:

! [Root].cpp

! [Root].h

! [Root].def

The [Root].cpp template is significantly simpler than the equivalent one for the Win32 dialog-
based application. It can be found in the "D_MAIN.CPP" template resource.

/***
*
* Application.: $$ROOT$$.dll
* Module......: $$root$$.cpp
* Description.: DLL main module
* Compiler....: MS Visual C++
* Written by..: $$AUTHOR$$
*
*******************************/

/*---*/
// PRAGMA section
/*---*/
#ifdef _MSC_VER
 #pragma comment(lib, "kernel32.lib")
 #pragma comment(lib, "user32.lib")
 #pragma comment(lib, "gdi32.lib")
 #pragma comment(lib, "shell32.lib")
#endif

/*---*/
// INCLUDE section
/*---*/
#include "$$root$$.h"

/*---*/
// GLOBAL section
/*---*/
HINSTANCE g_hThisDll;

/*---*/
// Procedure....: DllMain()
// Description..: Library main function
// Input........: HINSTANCE, DWORD, LPVOID
// Output.......: int
/*---*/
int APIENTRY DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 switch(dwReason)
 {
 case DLL_PROCESS_ATTACH:
 g_hThisDll = hInstance;
 break;
 }
 return TRUE;
}

/* End of module: $$Root$$.cpp */

Appendix A

644

In the last few sections, I've attempted to provide you with an understanding of what a Custom
AppWizard is in the context of Visual C++, and how you can create your own. However, the
AppWizard isn't central to the topic of this book, and while you should now have a good idea of how
it works, there are certainly a number of points that are worthy of further coverage. For suitable
references, take a look at the Further Reading section at the end of the appendix.

To close here, the screenshot shows a list of all the template
resources in the WroxWiz project.

The Rest of the Code
The code for each of the templates (other than those already shown) is given below. Don't forget to
add an icon file as well, though!

"A_MAIN.H":

/***
*
* Project.....: $$APPNAME$$
* Application.: $$ROOT$$.exe
* Module......: $$ROOT$$.h
* Description.: Application main header
* Compiler....: MS Visual C++
* Written by..: $$AUTHOR$$
* Environment.: Windows 9x/NT
*
*******************************/

// Prevent multiple inclusions
#define WIN32_LEAN_AND_MEAN
#define STRICT

#ifndef _APP_DEFS_
#define _APP_DEFS_

A Programmer's Toolkit

645

/*---*/
// INCLUDE section
/*---*/
#include <windows.h>
#include <windowsx.h>
$$IF(ADDUTILS)
#include "SPBUtils.h"
$$ENDIF

#endif // _APP_DEFS_

/* End of file: $$root$$.h */

"A_MAIN.RC":

/***
*
* Project.....: $$APPNAME$$
* Application.: $$ROOT$$.exe
* Module......: $$ROOT$$.rc
* Description.: Application resources
* Compiler....: MS Visual C++
* Written by..: $$AUTHOR$$
* Environment.: Windows 95
*
*******************************/

/*---*/
// INCLUDE section
/*---*/
#ifndef __BORLANDC__
#include <winres.h>
#endif

/*---*/
// Version
/*---*/
VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L

Appendix A

646

BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "CompanyName", "\0"
 VALUE "FileDescription", "\0"
 VALUE "FileVersion", "1.00.001\0"
 VALUE "InternalName", "$$ROOT$$\0"
 VALUE "LegalCopyright", "\0"
 VALUE "LegalTrademarks", "\0"
 VALUE "OriginalFilename", "$$ROOT$$.exe\0"
 VALUE "ProductName", "$$APPNAME$$\0"
 VALUE "ProductVersion", "1, 0, 0, 1\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

/*---*/
// Icon
/*---*/
APP_ICON ICON DISCARDABLE "$$root$$.ico"

/*---*/
// Design Info
/*---*/
#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
 "DLG_MAIN", DIALOG
 BEGIN
 LEFTMARGIN, 7
 RIGHTMARGIN, 234
 TOPMARGIN, 7
 BOTTOMMARGIN, 103
 END
END
#endif // APSTUDIO_INVOKED

/*---*/
// DLG_MAIN
/*---*/
DLG_MAIN DIALOGEX 0, 0, 240, 110
STYLE DS_MODALFRAME | DS_CENTER | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "$$APPNAME$$"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,184,7,50,14
 PUSHBUTTON "Cancel",IDCANCEL,184,24,50,14
END

/* End of file: $$root$$.rc */

A Programmer's Toolkit

647

"A_UTILS.CPP":

#include "spbutils.h"

/*---*/
// Procedure....: Msg()
// Description..: Show a message box
/*---*/
void WINAPI Msg(char* szFormat, ...)
{

 va_list argptr;
 char szBuf[MAX_PATH];
 HWND hwndFocus = GetFocus();

 // init va_ functions
 va_start(argptr, szFormat);

 // format output string
 wvsprintf(szBuf, szFormat, argptr);

 // read title and show
 MessageBox(hwndFocus, szBuf, NULL, MB_ICONEXCLAMATION | MB_OK);
 // close va_ functions
 va_end(argptr);
 SetFocus(hwndFocus);
}

/*---*/
// Procedure....: SPB_SystemMessage()
// Description..: Formats a standard error message
/*---*/
void WINAPI SPB_SystemMessage(DWORD dwRC)
{
 LPVOID lpMsgBuf;
 DWORD rc;

 rc = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL, dwRC,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 reinterpret_cast<LPTSTR>(&lpMsgBuf), 0, NULL);

 Msg("%s: %ld.\n\n\n%s:\n\n%s", "This is the error code", dwRC,
 "This is the system's explanation", (rc == 0 ? "<unknown>" : lpMsgBuf));
 LocalFree(lpMsgBuf);
}

Appendix A

648

"A_UTILS.H":

/***
*
* Project.....: Shell Programming Book Utility Library
* Application.: SPBUTIL.dll
* Module......: SPBUtils.h
* Description.: Utility header
* Compiler....: MS Visual C++
* Written by..: D. Esposito
* Environment.: Windows 9x/NT
*
**/

// Prevent multiple inclusions
#define WIN32_LEAN_AND_MEAN
#define STRICT

#ifndef _SPB_UTILS_
#define _SPB_UTILS_
#ifdef __cplusplus
extern "C" {
#endif

/*---*/
// INCLUDE section
/*---*/
#include <windows.h>
#include <windowsx.h>

/*---*/
// PROTOTYPE section
/*---*/
// Error Messages
#include <stdarg.h>

void WINAPI Msg(char* szFormat, ...);
void WINAPI SPB_SystemMessage(DWORD dwRC);

#ifdef __cplusplus
}
#endif

#endif // _SPB_UTILS_

"D_MAIN.DEF":

LIBRARY $$ROOT$$

EXPORTS
; function number

A Programmer's Toolkit

649

"D_MAIN.H":

/***
*
* Application.: $$ROOT$$.dll
* Module......: $$root$$.cpp
* Description.: Library header
* Compiler....: MS Visual C++
* Written by..: $$AUTHOR$$
*
*******************************/

/*---*/
// INCLUDE section
/*---*/
#define WIN32_LEAN_AND_MEAN
#define STRICT

#include <windows.h>
#include <windowsx.h>

/*---*/
// INCLUDE section
/*---*/
extern HINSTANCE g_hThisDll;

/*---*/
// PROTOTYPES section
/*---*/
// TODO:: list here all the constants, macros, typedefs, ...
// TODO:: list here all the exported functions

/* End of file: $$Root$$.h */

Further Reading
To learn more about AppWizards I recommend that you read an article by Walter Oney that
appeared in the Microsoft Systems Journal (MSJ), in March 1997. Its title is Pay No Attention to the Man
Behind the Curtain! Write Your Own C++ AppWizards.

I too have written an article on the subject, and curiously it was published in the same month as
Walter Oney's (March 1997). It appeared in the now defunct Windows Tech Journal, under the title A
New Assistant.

If you're interested in the wider field of customizing the Visual C++ environment, then you can take
a look at Steve Zimmerman's Extend Developer Studio 97 with Your Own Add-Ins, Macros, and Wizards,
which appeared in MSJ, September 1997.

All these articles address the Visual C++ 5.0 environment, but much of the information is still
relevant to Visual C++ 6.

Index A

Symbols
_makepath(), 235
_NewEnum(), 368
_splitpath(), 235

A
ActiveXObject(), 389
AddChannel(), 371
AddDesktopComponent(), 372
AddFavorite(), 372
AddPages(), 472, 474, 475, 482, 483, 484
AddTab(), 286, 287
alert(), 414
APP_DlgProc(), 75, 112, 156, 168, 280, 284,

301, 374

B
BindImageEx(), 495
BindImageEx()(), 496
BindToObject(), 113, 115, 578
BitBlt(), 204
BrowseForFolder(), 358, 360, 375
BrowseObject(), 590

C
Clone(), 546
CloseHandle(), 164
CoCreateInstance(), 141
CoInitialize(), 141, 153
CompareIDs(), 110, 579, 580, 588, 589
confirm(), 414
ContextMenu(), 182
Control_RunDLL(), 335, 336
ControlPanelItem(), 359
CopyCallBack(), 512
CopyFile(), 38

CopyHere(), 367
CoUninitialize(), 153, 185, 358
CPlApplet(), 332, 334, 335, 336
CreateDC(), 228
CreateDesktop(), 274
CreateDialog(), 181
CreateFiber(), 511
CreateIcon(), 256
CreateIconFromResource(), 256
CreateIconIndirect(), 256
CreateObject(), 389, 400
CreateProcess(), 222, 223, 224, 229, 231, 238,

239, 247
CreateRemoteThread(), 511
CreateViewWindow(), 549, 609
CreateViewWindow2(), 607, 608, 609
CreateWindow(), 287

D
DeleteFile(), 38, 302
DeleteMenu(), 552
DialogBox(), 153, 181
DialogBoxParam(), 444
DllCanUnloadNow(), 184, 185, 464, 480
DllGetClassObject(), 184, 189, 211, 464
DllGetVersion(), 294, 296, 298
DllMain(), 184
DllRegisterServer(), 186, 187, 188, 464, 605
DllUnregisterServer(), 189, 464
DoIt(), 370
DoSearchPath(), 112
DragEnter(), 517
DragFinish(), 149, 156
DragLeave(), 517
DragOver(), 517
DragQueryFile(), 149, 156, 470, 475, 521
DragQueryPoint(), 149, 156
DrawIcon(), 204, 258
DrawIconEx(), 258
Drop(), 517, 518, 520, 521, 523

Index A

 652

E
EnumChildWindows(), 567, 575, 577, 582
EnumObjects(), 117, 547, 559, 575
EnumThreadWindows(), 212
EnumWindows(), 446
Execute(), 247, 252
ExpandEnvironmentStrings(), 389, 390
Explore(), 359
Extract(), 120, 504, 505, 506, 507, 558
ExtractAssociatedIcon(), 258, 259
ExtractIcon(), 84, 258, 259, 261, 266
ExtractIconEx(), 84, 120, 258, 259, 261
ExtTextOut(), 204

F
FindCloseChangeNotification(), 164, 167
FindComputer(), 360
FindExecutable(), 232, 233, 234, 236, 243
FindFirstChangeNotification(), 164, 165, 166,

167
FindNextChangeNotification(), 164, 165, 166,

167
FindWindow(), 191, 212, 282
FindWindowEx(), 191
FindWindows(), 446
FlashWindow(), 276
FlashWindowEx(), 277
FMExtensionProc(), 465
FormatMessage(), 55

G
get_Application(), 360
get_Document(), 610
get_Parent(), 360
get_Title), 376
GetAttributesOf(), 80, 560, 581, 582
GetClassID(), 543
GetClassInfo(), 197
GetCommandString(), 466, 485, 492, 558
GetControlWindow(), 554
GetCurFolder(), 609
GetCurrentDirectory(), 40, 56, 178
GetData(), 471
GetDesktopWindow(), 575
GetDetailsOf(), 367
GetDisplayNameOf(), 118, 119, 544, 574, 579
GetDlgItem(), 100
GetHotkey(), 151
GetIconInfo(), 257
GetIconLocation(), 120, 504, 505, 508, 558, 599

GetIconOf(), 598
GetImportTable(), 495
GetImportTableSize(), 495
GetLastError(), 243
GetOpenFileName(), 92, 148, 346, 453, 459
GetPinnedWindow(), 531
GetProcAddress(), 144, 311, 434
GetSite(), 211
GetStartMenuPosition(), 200, 289
GetUIObjectOf(), 119, 557, 558, 597, 599
GetVersionEx(), 396
GetViewStateStream(), 549

H
HandleMenuMsg(), 501
HandleMenuMsg2(), 501
HandleResults(), 208

I
ImageList_AddIcon(), 83
ImageList_Create(), 83, 257
ImageList_Destroy(), 83
ImageList_Draw(), 82, 258
ImageList_GetIcon(), 257
ImageList_GetIconSize(), 79
ImageList_Merge(), 83, 84
ImageList_SetOverlayImage(), 82
InitCommonControls(), 96
InitCommonControlsEx(), 96
InitCustomAppWiz(), 629
Initialize(), 469, 470, 474, 482, 492, 502, 543,

609
InputBox(), 413
InsertMenuItem(), 552, 593
InsertMenusSB(), 551
InstallDevice_Rundll(), 328
InternetAutoDial(), 338
InternetGoOnline(), 339
InternetQueryOption(), 339
InvokeCommand(), 466, 485, 486, 492, 499, 558
InvokeVerb(), 369, 370
IsSubscribed(), 372
IsWindow(), 100
Item(), 366, 367
Items(), 367, 368

L
Load(), 142, 147, 504, 529
LoadIcon(), 258, 259, 260, 261, 456

Index A

 653

LoadImage(), 192, 258, 260, 261
LoadLibrary(), 144, 311, 327, 489
LoadMenu(), 180
lstrcmpi(), 581

M
MessageBox(), 47, 55, 256, 512
MonitorFromPoint(), 245
MoveFile(), 38
MoveFileEx(), 511
MoveHere(), 368
MsgWaitForMultipleObjects(), 167

N
NameSpace(), 359, 360, 365, 366, 377
NewFolder(), 368
Next(), 546, 559, 574, 586

O
OleCreateMenuDescriptor(), 553
OleSetMenuDescriptor(), 553
OnBrowse(), 75
OnDialog(), 632
OnDll(), 632
OnInitDialog(), 46, 58, 107, 157, 170, 288, 318,

344, 493, 631, 634
OnOK(), 46, 48, 51, 59, 61, 73, 80, 84
Open(), 359
OpenScrap_RunDLL(), 341
OpenWithIE(), 231

P
ParseCommandLine(), 445, 446
ParseDisplayName(), 105, 115, 545
ParseName(), 368
PathCompactPathEx(), 308, 494
PathFindExtension(), 521
PathQuoteSpaces(), 308, 523
PathRemoveArgs(), 236
PathSetDlgItemPath(), 308
PathUnquoteSpaces(), 308
PostMessage(), 317
PrintTo(), 530
prompt(), 414

Q
QueryContextMenu(), 466, 485, 487, 488, 558,

597, 598
QueryInterface(), 211, 513

R
ReadDirectoryChangesW(), 171, 510
RegDeleteKey(), 188, 395
RegDeleteValue(), 395
RegEnumKeyEx(), 407
RegEnumValue(), 407
RegisterClass(), 194, 261
RegisterClassEx(), 194, 261
RegisterDragDrop(), 516
RegisterServiceProcess(), 434
RegisterWindowMessage(), 168
Release(), 358, 531
ReleaseStgMedium(), 475
Remove(), 392
RemoveKey(), 642
RemoveMenusSB(), 554
ReplacePage(), 472
Reset(), 546
Resolve(), 145, 146
Run(), 389, 390, 411

S
Save(), 142, 392, 393
SaveViewState(), 549
SendControlMsg(), 554, 555, 556, 595, 598
SendMessage(), 98, 192, 269, 554
SetClassLong(), 261
SetDlgItemMessage(), 315
SetDlgItemText(), 315
SetForegroundWindow(), 272
SetIDList(), 159
SetMenu(), 553
SetMenuDefaultItem(), 272
SetMenuSB(), 553
SetNumberOfSteps(), 632
SetPath(), 159
SetPinnedWindow(), 531
SetProp(), 517
SetSite(), 211, 214
SetStatusTextSB(), 556, 595
SetToolbarItems(), 555
SetVolumeLabel(), 311
SetWindowLong(), 175
SetWindowPos(), 100, 192
SetWindowText(), 100
SHAddToRecentDocs(), 160, 452
SHAppBarMessage(), 199, 277, 278
SHBrowseForFolder(), 92, 93, 94, 95, 96, 97,

Index A

 654

98, 101, 103, 106, 107, 346, 604
SHChangeNotify(), 171, 172, 173, 174
SHCreateShortcut(), 142
Shell_NotifyIcon(), 267, 268
ShellExecute(), 208, 224, 226, 228, 229, 231,

232, 236, 237, 238, 239, 240, 241, 242, 244,
245, 246, 247, 252, 354, 385, 411, 449, 485,
523

ShellExecuteEx(), 240, 241, 242, 245, 246, 247,
385, 390, 411, 485, 487, 598

SHEmptyRecycleBin(), 304, 305
SHEnumKeyEx(), 407, 409
SHEnumValue(), 408, 409
SHFileOperation(), 37, 38, 39, 40, 42, 43, 44,

45, 46, 47, 49, 50, 52, 53, 56, 57, 58, 59, 60,
64, 131, 302, 304, 367, 512, 515

SHFormatDrive(), 310, 311, 312, 313, 314, 315,
316, 404, 405

SHFreenameMapping(), 59
SHGetDataFromIDList(), 72
SHGetDesktopFolder(), 105
SHGetFileInfo(), 67, 68, 69, 70, 71, 72, 73, 75,

76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 94,
95, 233, 255, 258, 259, 260, 261, 456

SHGetMalloc(), 22, 110, 571
SHGetNewLinkInfo(), 144
SHGetPathFromIDList(), 101
SHGetSettings(), 72, 128, 132
SHGetSpecialFolderLocation(), 79, 104, 125,

127
SHGetSpecialFolderPath(), 127, 147, 337, 393
SHInvokePrinterCommand(), 337, 338
SHLoadInProc(), 175, 183, 185, 186, 189, 209,

210, 211, 282
Show(), 530, 531
ShowHTMLDialog(), 414
ShowInitialize(), 530, 531
showModalDialog(), 414
ShowWindow(), 130, 287
SHQueryRecycleBin(), 304, 305
Skip(), 546

StrFormatByteSize(), 307
StrTimeFromInterval(), 307
SwitchDesktop(), 274
SysFreeString(), 404
SystemParametersInfo(), 279

T
TabCtrl_GetItemRect(), 290
TrackPopUpMenu(), 198, 200, 208, 272, 288
TrackPopUpMenuEx(), 272
TrayIcon(), 182, 270

U
UIActivate(), 550, 591

V
Verbs(), 370

W
WaitForMultipleObjects(), 167
WaitForSingleObject(), 167
Windows(), 360
WinExec(), 222, 223, 224, 229, 239, 247
WinMain(), 116, 153, 180, 182, 270, 280, 286,

342, 374, 444, 445, 446
WndEnumProc(), 212
WndProc(), 583
WritePrivateProfileString(), 412
WScript.CreateObject(), 388, 389, 400, 401
WScript.Echo(), 388, 414
WScript.GetObject(), 388
WshShell.CreateShortcut(), 390, 392
WshShell.Popup(), 414
WshShell.RegDelete(), 394, 395
WshShell.RegRead(), 394, 395
WshShell.RegWrite(), 394, 397

Index B

A
Active Desktop

settings, 130, 140
shell, 30
shell extensions, 463
Shell Lightweight API, 305
shell view object, 31
shortcuts, 140
taskbar, 34
version number

DllGetVersion(), 295
WebBrowser, 33

Active Setup
FlashWindow(), 276

Active Template Library
see ATL

AddChannel() function
prototype, 371

AddDesktopComponent() function
prototype, 372

AddFavorite() function
prototype, 372

AddPages() function
IShellPropSheetExt, 472
prototype, 472

address space
shell, 22

accessing, 175
DllGetClassObject(), 184
injecting code, 182
SHLoadInProc(), 183

AddTab() function
ITaskbarList, 286

API functions
shell, 15, 23, 30

programming, 11
SHGetFileInfo(), 67

APP_DlgProc() function
ITaskbarList, 284

APPBARDATA structure
SHAppBarMessage(), 278

AppWizard
building, 625
compared to other Wizards, 626
Custom AppWizard, 625, 626

generating code, 628
macros, 636
not supported by Standard VC++, 625

DLL, 626
not stand-alone, 626
templates, 627
Wrox AppWizard, 628

generic DLL, 643
ATL, 625

Automation server
Windows Scripting Host, 402

IShellExecuteHook, 248
recommended for shell extensions, 468

Automatic execution, 431
Automation server

Windows Scripting Host, 400

B
batch files, 381

Windows Scripting Host, 382
BindImageEx() function

prototype, 495
BindToObject() function

IShellfolder, 578
BitBlt() function

bitmaps, 204
bitmaps, 191

BitBlt(), 204
compared to icons, 257
replacing, 192
shell extensions, 463

bookmarks, 455
BrowseForFolder() function

prototype, 358

Index B

 658

BROWSEINFO structure
SHBrowseForFolder(), 93, 96

BrowseObject() function
IShellfolder, 590

browser helper objects, 22
CLSIDs, 211
COM objects, 210, 211
compared to SHLoadInProc(), 209
creating, 211
require Explorer or Internet Explorer, 210
require shell 4.71, 209
self registering, 216
source code, 213
use Unicode for Windows NT, 217

C
C++

CLSIDs, 364
NameSpace(), 365
shell

objects, 356
Visual Basic has advantages over, 365

callback functions
SearchText(), 122
SHEnumFolderContent(), 122
ShowFolderContent(), 122

CCustomAppWiz class, 635
Check() macro

PostMessage(), 317
CloseHandle() function

not required with notification objects, 164
CLSID_ShellLink, 140

creating shortcuts, 141
CLSIDs, 186

browser helper objects, 211
C++, 364
COM objects, 209
Explorer, 565
file extensions, 529
icons, 509
namespace extensions, 542, 600

deleting, 603
shell extensions, 502
special folders, 325
Web view, 610

CMINVOKECOMMANDINFO structure
InvokeCommand(), 486

COM interfaces
creating shortcuts, 140, 159
DataHandler extensions, 526
Explorer, 466, 556
file viewers, 528

IContextMenu, 488
IEnumIDList, 541
IExtractIcon, 120, 256
IPersistFolder, 541
IShellExecuteHook, 246, 247, 248
IShellFolder, 540, 541
IShellView, 541
ITaskbarList, 282
namespace extensions, 569
PIDL, 541
shell, 15, 27, 30, 358

programming, 11
shell extensions, 464

types, 467, 476
Windows Scripting Host, 383, 400

COM objects
browser helper objects, 210, 211
CLSIDs, 209
creating, 184
DllGetClassObject(), 184, 211
DllRegisterServer(), 186, 188
DLLs, 184
DllUnregisterServer(), 189
namespace extensions, 539
self-deregistering, 188
SHLoadInProc(), 183, 209, 210

COM_INTERFACE_ENTRY_IID() macro, 512,
513

command lines
shell

integrated applications, 443
commands

New, 426
Open, 422
Open With, 422
Send To, 422

COMMON folders
special folders, 126

SHGetSpecialFolderPath() requires Windows
NT, 127

CompareIDs() function
IShellFolder, 579, 588, 589
PIDL, 580

context help button
removing, 98

context menu, 271
bugs, 272
Explorer, 466
IContextMenu, 558, 595
shell extensions, 485, 489, 498

control libraries, 294
Control Panel

CPlApplet(), 332

Index B

 659

DLLs, 332
My Computer, 332
not a physical folder, 335

Control_RunDLL() function
Control Panel, 335
rundll32.exe, 335

ControlPanelItem() function
prototype, 359

coolbars, 294
CopyCallBack() function

compared to SHFileOperation(), 512
ICopyHook, 512
prototype, 512

CopyHere() function
prototype, 367
SHFileOperation(), 367
similar to MoveHere(), 368

copying files, 41
CPlApplet() function

Control Panel, 332
prototype, 332

CreateDC() function
prototype, 228

CreateProcess() function
limitations, 223
prototype

compared to WinExec(), 222
ShellExecute(), 224, 238
ShellExecute() preferred, 238
WinExec(), 222

CreateViewWindow() function
compared to CreateViewWindow2(), 609
IShellView, 609

CreateViewWindow2() function
compared to CreateViewWindow(), 609
Explorer, 607, 608
IShellView2, 607, 609

cursors
modifying, 194

Custom AppWizard, 625, 626
generating code, 628
macros, 636
not supported by Standard VC++, 625

custom folders, 16
special folders, 125

custom options
adding to standard dialog, 133

CWroxWizAppWiz class, 627
WroxWizAw.cpp file, 629
WroxWizAw.h file, 628

D
DataHandler extensions

COM interfaces, 526
shell extensions, 525

default browser
FindExecutable(), 236
ShellExecute(), 237

deleting files
Recycle Bin, 51
SHFileOperation(), 50

desktop
namespace extensions, 601
shell, 8
shortcuts, 9
toolbars, 277

dialog boxes
icons, 261

Dial-Up Networking
InternetAutoDial(), 338
My Computer, 338
RnaDial(), 338
RnaWizard(), 338
virtual folder, 338

directories
missing, 43

creating, 43
namespace extensions, 564

disk labels
SHFormatDrive(), 315

dispatch identifiers
see DISPIDs

DISPIDs, 360
display name, 72

relationship to PIDL, 118
wrapper functions, 118

DllCanUnloadNow() function
Explorer, 185

DllGetClassObject() function
COM objects, 184, 211
expanding code, 189
Explorer, 184
shell

address space, 184
DllGetVersion() function

Active Desktop
version number, 295

DLLVERSIONINFO structure, 296
prototype, 296
version number, 296

DllRegisterServer() function
COM objects, 186, 188

DLLs

Index B

 660

Active Desktop
DllGetVersion(), 296

COM objects, 184
Control Panel, 332
File Manager, 465
LoadLibrary(), 489
rundll32.exe, 326, 327, 347
shell

integrated applications, 429
shell extensions, 479
system DLLs, 294

version number, 295
version information, 294

DllUnregisterServer() function
COM objects, 189

DLLVERSIONINFO structure
DllGetVersion(), 296

documents
creating, 426
definition, 221
functions, 421
registered types, 423
shell, 421
shell extensions, 425
shell interfaces, 424

DragEnter() function
prototype, 517

DragLeave() function
prototype, 517

DragOver() function
prototype, 517

DrawIconEx() function
icons

animated, 258

E
early binding

Visual Basic, 360
e-mail mesages

sending, 237
EnumObjects() function

defects, 577
Explorer, 559
IShellFolder, 547, 559, 575

error messages, 54
Execute() function

IShellExecuteHook, 247
SHELLEXECUTEINFO structure, 247

Explore() function
prototype, 359
similar to Open(), 359

Explorer

CLSIDs, 565
COM interfaces, 466, 556
command line, 324
context menu, 466
CreateViewWindow2(), 607, 608
DllCanUnloadNow(), 185
DllGetClassObject(), 184
EnumObjects(), 559
extensions, 10

namespace, 10
shell, 10

Extract(), 505
GetCommandString(), 466
GetIconLocation(), 505
IContextMenu, 557
Internet Explorer, 331
InvokeCommand(), 466
IShellBrowser, 550
My Briefcase, 331
My Computer, 331
namespace extensions, 581
Network Neighborhood, 331
notification objects, 167, 170
objects, 331
QueryContextMenu(), 466
Recycle Bin, 331
resolving shortcuts, 145
resources, 192
SHChangeNotify(), 171
shell, 7, 164, 323
shell extensions, 464, 466
ShellExecute(), 252
structure, 541
switches, 324

root, 325
select, 324

testing
shell extensions, 478

toolbar
modifying, 554

discouraged by Microsoft, 555
extended styles, 98

list view, 585
Extract() function

compared to ExtractIconEx(), 120
Explorer, 504

ExtractAssociatedIcon() function
compared to ExtractIconEx(), 260
compared to SHGetFileInfo(), 259

ExtractIcon() function
compared to ExtractIconEx(), 84
prototype, 259

ExtractIconEx() function

Index B

 661

compared to Extract(), 120
compared to ExtractAssociatedIcon(), 260
compared to ExtractIcon(), 84
prototype, 259
small icons

extracting, 261

F
file classes

file extensions, 21
file extensions, 129

CLSIDs, 529
file classes, 21

file folders, 17
special folders, 125

file functions, 25
file handlers, 229
File Manager

DLLs, 465
shell, 7, 37
shell extensions, 465

file mapping, 58
file name mapping objects, 57, 59

problems in using, 60
SHFILEOPSTRUCT structure, 57
writing functions to enable use, 61

file objects
attributes, 67
definition, 18, 67
files, 18

file system
coincides with shell, 18

file types
junction points, 564
registered, 72
shortcuts, 140

file viewers
COM interfaces, 528
contrasted to shell extensions, 528
definition, 527
registering, 532
writing, 532

files
copying, 41
deleting

SHFileOperation(), 50
moving, 41
renaming

SHFileOperation(), 44
replacing

SHFileOperation(), 44
FindCloseChangeNotification() function

notification objects, 167
FindExecutable() function

default browser, 236
flaws and bugs, 233
long file names

problems with, 234, 308
prototype, 233
ShellExecute(), 236

FindFirstChangeNotification() function
compared to ReadDirectoryChangesW(), 171
notification objects, 164
prototype, 165

FindNextChangeNotification() function
notification objects, 164

FindWindow() function
FindWindowEx() preferred, 191
taskbar, 282

FindWindowEx() function
preferred to FindWindow(), 191

FlashWindow() function
Active Setup, 276

FlashWindowEx() function
FLASHWININFO structure, 277
requires Windows 98, 277

FLASHWININFO structure
FlashWindowEx(), 277

FMExtensionProc() function
prototype, 465

folder functions, 26
folder icons, 81

function for handling, 83
Folder Manager, 542, 578, 579
folder objects

definition, 67
NameSpace(), 366

FolderItem object, 365, 366, 367, 369
NameSpace(), 362

FolderItems object, 366
FolderItemVerb object, 370
folders

attributes, 560
creating, 178
customizing, 34, 611, 616

HTML files, 612, 613
icons, 451
namespace extensions, 612, 619

definition, 16
file objects, 18
implementation, 17
namespace extensions, 558
shell objects, 16
sub-folders, 16
Web view, 606

Index B

 662

fully qualified file name, 19
avoids problems with long file names, 57

FVSHOWINFO structure
Show(), 530

G
get_Document() function

IWebBrowser2, 610
GetAttributesOf() function

compared to SHGetFileInfo(), 80
IShellFolder, 560
PIDL, 581

GetClassID() function
IPersistFolder, 543

GetCommandString() function
Explorer, 466
IContextMenu, 485
prototype, 485
use can be avoided, 558

GetCurFolder() function
IPersistFolder2, 609
prototype, 609

GetCurrentDirectory() function
SHFileOperation(), 40

GetDetailsOf() function
prototype, 368

GetDisplayNameOf() function
prototype, 119

GetHotKey() function
resolving shortcuts, 151

GetIconInfo() function
ICONINFO structure, 257
IShellIcon, 598

GetIconLocation() function
Explorer, 504
IExtractIcon, 505

GetOpenFileName() function
hooks, 459
selecting shortcuts, 148

GetOpenFileNameEx() function
OPENFILENAME structure, 459

GetPinnedWindow() function
IFileViewerSite, 531
prototype, 531

GetSite() function
compared to QueryInterface(), 211

GetUIObjectOf() function
IShellFolder, 557
PIDL, 558

GetViewStateStream() function
IShellBrowser, 549

H
HandleMenuMsg() function

IContextMenu2, 501
prototype, 501

HandleMenuMsg2() function
IContextMenu3, 501
prototype, 501

helper libraries, 305
hook interfaces, 29

IShellExecuteHook, 246, 411
hooks

GetOpenFileName(), 459
global, 22
keyboard hook, 21
shell, 21, 176

effect on performance, 176
SHFormatDrive(), 312, 314

hotkey common control
creating shortcuts, 151
key rules, 152

HTML files
creating, 428
folders

customizing, 612, 613
Web view, 606, 611
WebBrowser, 610

I
icon functions, 27
ICONINFO structure

GetIconInfo(), 257
icons, 255

animated
DrawIconEx(), 258

bitmask, 256
browsing for, 262

functions, 262
Windows Scripting Host, 405

CLSIDs, 509
compared to bitmaps, 257
creating, 256
customizing, 456
dialog boxes, 261
drawing, 258
extracting from files, 258
extracting icons, 259
folders

customizing, 451
functions

CreateIcon(), 256
CreateIconFromResource(), 256

Index B

 663

CreateIconIndirect(), 257
DrawIcon(), 258
DrawIconEx(), 258
ExtractAssociatedIcon(), 258
ExtractIcon(), 258
ExtractIconEx(), 258
ImageList_Draw(), 258
LoadIcon(), 258, 259
LoadImage(), 258
SHGetFileInfo(), 255, 258

hotspots, 257
IExtractIcon, 558, 598
numeric ID, 259
returning icons, 259
shell extensions, 503

registering, 509
IContextMenu

COM interfaces, 488
context menu, 558, 595
Explorer, 557
GetCommandString(), 485
InvokeCommand(), 485, 558
namespace extensions, 556
QueryContextMenu(), 485, 558, 597
shell, 595

IContextMenu2
HandleMenuMsg(), 501

IContextMenu3
HandleMenuMsg2(), 501

ICopyHook, 511
CopyCallBack(), 512
IID, 513
implementing, 511
notification objects, 510
shell extensions

registering, 514
shortcomings, 511

IEnumIDList
COM interfaces, 541
namespace extensions, 542
Next(), 546, 559
Skip(), 546

IExtractIcon
COM interfaces, 120, 256
compared to IShellIcon, 599
GetIconLocation(), 505
icons, 558, 598
namespace extensions, 542

IFileViewer
PrintTo(), 529
Show(), 529
ShowInitialize(), 529

IFileViewerSite

GetPinnedWindow(), 531
SetPinnedWindow(), 531

ImageList_Draw() function
selected icons, 258

ImageList_GetIconSize() function
compared to SHGetFileInfo()

SHGFI_SHELLICONSIZE, 79
infotips

namespace extensions, 602
tooltips, 602

InitCommonControls() function
compared to InitCommonControlsEx(), 96

InitCommonControlsEx() function
compared to InitCommonControls(), 96

Initialize() function
IPersistFolder, 543, 609
IShellExtInit, 469, 502

InsertMenuItem() function
preferred to older menu functions, 552

InstallShield, 420
Internet Client SDK, 13, 365, 501, 515

RegView, 173
shell

restarting, 274
SHLoadInProc(), 183

Internet Explorer
Explorer, 331

Internet Explorer_Server
Shell Embedding, 32
WebBrowser, 32, 607

InternetAutoDial() function
Dial-Up Networking, 338

InternetGoOnLine() function
offline browsing, 339

InternetQueryOption() function
offline browsing, 339

InvokeCommand() function
CMINVOKECOMMANDINFO structure, 486
Explorer, 466
IContextMenu, 485, 558
prototype, 486

InvokeVerb() function
localization, 370
prototype, 369

IPersist
IPersistFolder, 542

IPersistFile
Load(), 504, 505, 529

IPersistFolder
COM interfaces, 541
GetClassID(), 543
Initialize(), 543, 609
IPersist, 542

Index B

 664

IShellFolder, 542
IPersistFolder2

GetCurFolder(), 609
IShellBrowser

Explorer, 550
GetViewStateStream(), 549
namespace extensions, 542
RemoveMenusSB(), 554
SendControlMsg(), 556

IShellExecuteHook
ATL, 248
COM interfaces, 246, 247, 248
Execute(), 247
hook interfaces, 246, 411
registry script, 250
ShellExecute(), 246, 411
ShellExecuteEx(), 246, 411

IShellExtInit
Initialize(), 469, 502
shell extensions, 502

IShellfolder
BindToObject(), 578
BrowseObject(), 590

IShellFolder
COM interfaces, 540, 541
CompareIDs(), 579, 588, 589
EnumObjects(), 547, 559, 575
GetAttributesOf(), 560
GetUIObjectOf(), 557
IPersistFolder, 542
namespace extensions, 542
PIDL, 559

IShellIcon
compared to IExtractIcon, 599
GetIconOf(), 598

IShellPropSheetExt
AddPages(), 472
ReplacePage(), 472

IShellView
COM interfaces, 541
CreateViewWindow(), 609
namespace extensions, 542
shell view object, 548
UIActivate(), 591

IShellView2
CreateViewWindow2(), 607, 609

ITaskbarList
AddTab(), 286
APP_DlgProc(), 284
COM interfaces, 282
documentation poor, 283
taskbar, 283

Items() function

NameSpace(), 377
prototype, 368

IWebBrowser2
get_Document(), 610

J
junction points

definition, 563
file types, 564
namespace extensions, 563

K
keyboard hook, 21, 177
keys

Run, 432
RunOnce, 431
RunServices, 432, 434
RunServicesOnce, 432
ShellNew, 427
Winlogon, 433

L
late binding

Visual Basic, 360, 361
list boxes

owner-drawn, 266
list view, 585

advantages, 539
extended styles, 585
PIDL, 587
Recycle Bin, 539

ListView_SetExtendedListViewStyle() macro,
130

Load() function
IPersistFile, 504, 505, 529
prototype, 504

LoadIcon() function
prototype, 260
usually preferred to LoadImage(), 261

LoadImage() function
LoadIcon() usually preferred, 261
prototype, 260

LoadLibrary() function
DLLs, 489
rundll32.exe, 327

long file names
problems with, 56

FindExecutable(), 234, 308

Index B

 665

M
MAKE_HRESULT() macro, 488
MAKEINTRESOURCE() macro, 260
manipulating path strings, 308

macros, 308
PathCompactPathEx(), 308
PathQuoteSpaces(), 308
PathSetDlgItemtPath(), 308
PathUnquoteSpaces(), 308

manipulating strings, 307
StrFormatByteSize(), 307
StrTimeFromInterval(), 307

MDI
compared to SDI, 426

memory allocator
SHGetMalloc(), 22, 110

menus
context menu, 271

bugs, 272
modifying, 592
owner-drawn, 198, 276
pop-up, 287

metafile viewer, 435
metafiles

converting, 439
definition, 435
printing, 438
shell

integrated applications, 443
types, 436

Microsoft documentation
shell versions, 13

Microsoft Scripting Runtime, 399
missing directories, 43

creating, 43
MonitorFromPoint() function

multi-monitor support, 245
mouse events

tray notification area, 269
MoveHere() function

prototype, 368
similar to CopyHere(), 368

moving files, 41
multi-monitor support

MonitorFromPoint(), 245
My Briefcase, 332, 340

Explorer, 331
My Computer, 332

Control Panel, 332
Dial-Up Networking, 338
Explorer, 331
namespace extensions, 565

Printers, 337
Scheduled Tasks, 339

N
namespace

definition, 537
shell, 16, 331

namespace extensions, 537
applications, 566, 619
browsing, 604
CLSIDs, 542, 600
COM interfaces, 541, 556, 569
COM objects, 539
compared to shell extensions, 541, 563
definition, 538
deleting, 603

CLSIDs, 603
desktop, 601
directories, 564
Explorer, 556, 581
folders, 558

customizing, 612, 619
IContextMenu, 556
IEnumIDList, 542
IExtractIcon, 542
implementing, 568, 599
infotips, 602
IShellBrowser, 542
IShellFolder, 542
IShellView, 542
junction points, 563
My Computer, 565
namespace interfaces, 591
Network Neighborhood, 565
non-rooted extensions, 561

compared to rooted extensions, 562
PIDL, 541, 542, 558, 567
QueryContextMenu(), 597
rooted extensions, 561

compared to non-rooted extensions, 562
shell, 563
Web view, 606, 607
writing, 539

namespace interfaces, 28
namespace extensions, 591

NameSpace() function
C++, 365
folder objects, 366
Items(), 377
prototype, 359

Network Neighborhood
Explorer, 331

Index B

 666

infotips, 602
namespace extensions, 565

NewFolder() function
prototype, 368

Next() function
IEnumIDList, 546, 559
prototype, 546

notification objects, 164, 515
creating, 165
deleting, 167
do not require CloseHandle(), 164
Explorer, 167, 170
FindCloseChangeNotification(), 167
FindFirstChangeNotification(), 164
FindNextChangeNotification(), 164
ICopyHook, 510
limitations, 171
synchronization objects, 165, 167

NOTIFYICONDATA structure
Shell_NotifyIcon(), 267

O
Object Browser

shell
object model, 355

object model
shell, 16

accessory objects, 371
Active Desktop, 11
Object Browser, 355

Windows Scripting Host, 387, 401, 522
helper objects, 391

offline browsing
InternetGoOnLine(), 339
InternetQueryOption(), 339

OLE2T() macro, 403
OleCreateMenuDescriptor() function

prototype, 553
OnBrowse() function

SHGetFileInfo(), 75
OnDialog() function

SetNumberOfSteps(), 632
OnDll() function

SetNumberOfSteps(), 632
OnOK() function

PIDL, 110
SHFileOperation(), 46
SHGetFileInfo(), 73, 84

OnShellExecuteEx() function
SHELLEXECUTEINFO structure, 244

Open() function
prototype, 359

similar to Explore(), 359
OPENFILENAME structure

GetOpenFileNameEx(), 459
OpenScrap_RunDLL() function

scrap objects, 341

P
ParseDisplayName() function

PIDL, 545
prototype, 105

ParseName() function
prototype, 368

path name
relationship to PIDL, 19

conversion by shell functions, 105, 115
PathCompactPathEx() function

manipulating path strings, 308
PathQuoteSpaces() function

manipulating path strings, 308
PathSetDlgItemPath() function

manipulating path strings, 308
PathUnquoteSpaces() function

manipulating path strings, 308
PIDL

COM interfaces, 541
CompareIDs(), 580
creating, 571
definition, 19, 91
extracting information, 572
GetAttributesOf(), 581
GetUIObjectOf(), 558
IShellFolder, 559
list view, 587
namespace extensions, 541, 542, 558, 567
obtaining, 590
OnOK(), 110
ParseDisplayName(), 545
PIDL manager class, 570, 573, 579, 582
relationship to display name, 118

wrapper functions, 118
relationship to path name, 19

conversion by shell functions, 105, 115
searching by PIDLs, 124
SHBrowseForFolder(), 95
shell extensions, 502
ShellExecuteEx(), 242
SHEnumFolderContent(), 113, 121, 125
SHGetFileInfo(), 69

SHGFI_PIDL, 79
SHGetMalloc(), 571
SHGetSpecialFolderLocation(), 79, 104, 125
SHITEMID structure, 19, 110, 547, 571

Index B

 667

using PIDLs, 111
pointer to an identifier list

see PIDL
policies

Shell Restrictions, 238
registry key, 239

PostMessage() function
Check() macro, 317

preferences
setting, 132

Printers
My Computer, 337
virtual folder, 337

PrintHood directory
SHGetSpecialFolderPath(), 337

PrintTo() function
IFileViewer, 529

Process Viewer, 275
Program Manager

shell, 7
property pages

shell extensions, 468, 473, 481

Q
QueryContextMenu() function

Explorer, 466
IContextMenu, 485, 558, 597
namespace extensions, 597
prototype, 487

QueryInterface() function
compared to GetSite(), 211

R
ReadDirectoryChangesW() function

compared to FindFirstChangeNotification(),
171

requires Windows NT 4.0, 171, 510
Recent folder

SHAddToRecentDocs(), 160
shortcuts, 160

Recycle Bin, 302, 332
deleting files, 51
Explorer, 331
list view, 539
SHEmptyRecycleBin(), 304
SHFileOperation(), 302
SHQueryRecycleBin(), 304
structure, 302

RegDeleteKey() function
differs in Windows 9x and Windows NT, 395

registry

deleting entries, 394
editing, 348
modify at your own risk, 132
script

writing, 449
Windows Scripting Host, 394, 398

registry shell, 306
RegView

Internet Client SDK, 173
RemoveMenusSB() function

IShellBrowser, 554
renaming files

SHFileOperation(), 44
wildcards do not work, 52

ReplacePage() function
IShellPropSheetExt, 472
prototype, 472

replacing files
SHFileOperation(), 44

RnaDial() function
Dial-Up Networking, 338

RnaWizard() function
Dial-Up Networking, 338

root nodes, 325
SHBrowseForFolder(), 103
special folders, 325

Run() function
prototype, 389
ShellExecuteEx(), 390
WshShell object, 411

rundll32.exe, 326, 338
Control_RunDLL(), 335
DLLs, 326, 327, 347
LoadLibrary(), 327
protection faults, 329

S
Scheduled Tasks

My Computer, 339
requires Windows 98 or Active Desktop Update,

339
scheduling agent, 339
triggers, 340

scheduling agent
Scheduled Tasks, 339

scrap objects, 341
OpenScrap_RunDLL(), 341

SDI
compared to MDI, 426

SearchText() function
callback functions, 122
SHEnumFolderContent(), 113, 117

Index B

 668

selected icons
ImageList_Draw(), 258

SendControlMsg() function
IShellBrowser, 556

SendTo folder
shortcuts, 159

separators
owner drawn, 201

Service Control Manager, 433
SetMenu() function

prototype, 553
similar to SetMenuSB(), 553

SetMenuSB() function
similar to SetMenu(), 553

SetNumberOfSteps() function
OnDialog(), 632
OnDll(), 632

SetPinnedWindow() function
IFileViewerSite, 531
prototype, 531

SetStatusTextSB() function
less flexible than SendControlMsg() function,

595
setting preferences, 132
SHAddToRecentDocs() function

Recent folder, 160
SHAppBarMessage() function

APPBARDATA structure, 278
taskbar, 277

SHBrowseForFolder() function
BROWSEINFO structure, 93, 96
callback function, 96
compared to SHGetFileInfo(), 94
design flaw, 103
dialog box, 97
PIDL, 95
prototype, 93
root nodes, 103

SHChangeNotify() function
Explorer, 171
prototype, 171

shell
Active Desktop, 30
address space, 22

accessing, 175
DllGetClassObject(), 184
injecting code, 182
SHLoadInProc(), 183

coincides with file system, 18
COM interfaces, 358
definition, 7
desktop, 8
documents, 421

functions, 421
registered types, 423

drag-and-drop functions, 149, 155, 452, 501
registering, 502

Explorer, 7, 164, 323
File Manager, 7
folders, 16

implementation, 17
hooks, 21, 176

effect on performance, 176
global, 22

IContextMenu, 595
integrated applications, 419, 420, 453

command lines, 443
design, 434
DLLs, 429
metafiles, 443
summary, 460

namespace, 16, 331
namespace extensions, 563
object model, 16

accessory objects, 371
Active Desktop, 11
Object Browser, 355

objects, 16, 354
C++, 356
Visual Basic, 355

Program Manager, 7
programming, 10

API functions, 11, 15, 23, 30
COM interfaces, 11, 15, 27, 30

restarting, 273, 274
Internet Client SDK, 274
manual restarting, 275
tray notification area, 273

shortcuts, 139, 140, 341
taskbar, 9, 22
versioning, 293
Windows Scripting Host, 384
WshShell object, 389

Shell Embedding
Internet Explorer_Server, 32

shell extensions, 451, 463
Active Desktop, 463
bitmaps, 463
CLSIDs, 502
COM interfaces, 464

types, 467, 476
compared to namespace extensions, 541, 563
context menu, 485, 489, 498
contrasted to file viewers, 528
DataHandler extensions, 525
definition, 464

Index B

 669

DLLs, 479
documents, 425
Explorer, 464, 466
File Manager, 465
icons, 503

registering, 509
ICopyHook

registering, 514
IShellExtInit, 502
PIDL, 502
property pages, 468, 473, 481
registering, 476, 497
testing, 478

Explorer, 478
Windows NT, 480

unloading, 480
writing, 467

ATL recommended, 468
shell interfaces, 27

documents, 424
shell internals, 25
Shell Lightweight API, 24

Active Desktop, 305
Shell Restrictions

policies, 238
registry key, 239

shell scriptable objects, 143, 354
shell versions

Microsoft documentation, 13
table, 12

shell view ID
shell view object, 607

shell view object, 21, 548
Active Desktop, 31
icon, 21
IShellView, 548
shell view ID, 607

Shell_NotifyIcon() function
NOTIFYICONDATA structure, 267
prototype, 267

ShellExecute() function
CreateProcess(), 224, 238
default browser, 237
documentation error, 229
Explorer, 252
extended by ShellExecuteEx(), 240
FindExecutable(), 236
IShellExecuteHook, 246, 411
multi-monitor support, 245
operations

explore, 226
find, 228, 238

undocumented, 228

open, 225
print, 227, 237
printto, 227

preferred to CreateProcess(), 238
prototype, 224
see also ShellExecuteEx() function
WinExec(), 224

ShellExecuteEx() function
extends ShellExecute(), 240
IShellExecuteHook, 246, 411
multi-monitor support, 245
PIDLs, 242
return values, 243
Run(), 390
see alsoShellExecute() function
SHELLEXECUTEINFO structure, 240

SHELLEXECUTEINFO structure
Execute(), 247
OnShellExecuteEx(), 244
ShellExecuteEx(), 240

SHELLFLAGSTATE structure
SHGetSettings(), 128

ShellUIHelper object, 371
SHEmptyRecycleBin() function

Recycle Bin, 304
SHEnumFolderContent() function

callback functions, 122
PIDL, 113, 121, 125
prototype, 121
SearchText(), 113, 117
ShowFolderContent(), 117

SHFileOperation() function
compared to CopyCallBack(), 512
CopyHere(), 367
deleting files, 50
error code, 54
GetCurrentDirectory(), 40
OnOK(), 46
operations, 39
Recycle Bin, 302
renaming files, 44

wildcards do not work, 52
replacing files, 44
return values, 53

problems, 56
SHFILEOPSTRUCT structure, 38, 39

SHFILEOPSTRUCT structure, 43
file name mapping objects, 57
SHFileOperation(), 38, 39, 40

SHFormatDrive() function
disk labels, 315
extending, 312
hooks, 312, 314

Index B

 670

limitations, 310
prototype, 310
Windows 9x, 312
Windows 9x behavior

compared with Windows NT, 311
Windows NT, 313

problems with, 316
Windows NT behavior

compared with Windows 9x, 311
SHGetFileInfo() function

arguments, 68
uFlags, 76

binary format of .exe files, 85
return fails for DLLs and VxDs, 87

compared to ExtractAssociatedIcon(), 259
compared to GetAttributesOf(), 80
compared to SHBrowseForFolder(), 94
icons, 255
OnBrowse(), 75
OnOK(), 73, 84
PIDL, 69

SHGFI_PIDL, 79
prototype, 68
return values, 87
SHGFI_SHELLICONSIZE, 78

compared to ImageList_GetIconSize(), 79
SHGFI_USEFILEATTRIBUTES, 77
versatility, 68
wildcards, 70

SHGetMalloc() function
memory allocator, 22, 110
PIDL, 571

SHGetSettings() function
SHELLFLAGSTATE structure, 128

SHGetSpecialFolderLocation() function
compared to SHGetSpecialFolderPath(), 127
PIDL, 79, 104, 125

SHGetSpecialFolderPath() function
compared to SHGetSpecialFolderLocation(),

127
PrintHood directory, 337
requires Windows NT

for COMMON folders, 127
special folders, 127
WshSpecialFolders object, 393

SHGFI_SHELLICONSIZE flag
SHGetFileInfo(), 78

SHGFI_USEFILEATTRIBUTES flag
SHGetFileInfo(), 77

SHInvokePrinterCommand() function
requires shell version 4.71, 337

SHITEMID structure
PIDL, 19, 110, 547, 571

SHLoadInProc() function
COM objects, 183, 209, 210
compared to browser helper objects, 209
Internet Client SDK, 183
poor documentation, 183
shell

address space, 183
shortcuts

Active Desktop, 140
creating, 140

CLSID_ShellLink, 141
COM interfaces, 140, 159
global functions, 142
hotkey common control, 151
system folders, 158
Wrox AppWizard, 342

definition, 140
deleting, 144
desktop, 9
file types, 140
Recent folder, 160
resolving, 145

Explorer, 145
GetHotkey(), 151
global functions, 145

selecting
GetOpenFileName(), 148

SendTo folder, 159
shell, 139, 140, 341
special folders, 147, 158

Show() function
FVSHOWINFO structure, 530
IFileViewer, 529

ShowFolderContent() function
callback functions, 122
icons, 122
SHEnumFolderContent(), 117

ShowInitialize() function
IFileViewer, 529

SHQUERYBININFO structure
SHQueryRecycleBin(), 305

SHQueryRecycleBin() function
prototype, 305
Recycle Bin, 304
SHQUERYBININFO structure, 305

Skip() function
IEnumIDList, 546
prototype, 546

small icons
extracting

ExtractIconEx(), 261
special folders, 17

CLSIDs, 325

Index B

 671

COMMON folders, 126
SHGetSpecialFolderPath() requires Windows

NT, 127
custom folders, 125
file folders, 125
most need directory, 18
root nodes, 325
SHGetSpecialFolderPath() function, 127
shortcuts, 147, 158
virtual folders

lack directory, 125
standard dialog

adding custom options, 133
StrFormatByteSize() function

manipulating strings, 307
StrTimeFromInterval() function

manipulating strings, 307
synchronization objects

notification objects, 165, 167
system DLLs, 294

version numbers, 295
system folders

creating shortcuts, 158

T
T2BSTR() macro, 404
TabCtrl_GetItemRect() function

requires buffer, 290
taskbar, 255, 277

Active Desktop, 34
FindWindow(), 282
hiding, 282
ITaskbarList, 283
layout, 275
SHAppBarMessage(), 277
shell, 9, 22
tab control, 23, 275
tray notification area, 267
Wrox AppWizard, 279

taskbar functions, 25
TOOLINFO structure

tooltips, 196
tooltips

customizing, 195, 456
infotips, 602
TOOLINFO structure, 196
tray notification area, 269

tray notification area, 180
bugs, 273
contents, 273
mouse events, 269
shell

restarting, 273
Shell_NotifyIcon(), 267
taskbar, 267
tooltips, 269

U
uFlags argument

SHGetFileInfo(), 76
UIActivate() function

IShellView, 591
unified operating system, 67
Universal Serial Bus, 255

V
Verbs() function

prototype, 370
version information

functions to read, 298
versioning

shell, 293
virtual folders

special folders
lack directory, 125

Visual Basic
advantages over C++, 365
early binding, 360
late binding, 360, 361
shell

objects, 355
Visual C++ 5 syntax

compared to VC++ 6, 638

W
WDM, 255
Web view

CLSIDs, 610
documentation, 607
folders, 606
HTML files, 606, 610, 611
namespace extensions, 606, 607
structure, 609
template, 611
WebBrowser, 610

WebBrowser
Active Desktop, 33
HTML files, 610
Internet Explorer_Server, 32, 607

Window view, 583
Windows general functions, 24

Index B

 672

Windows Scripting Host, 11, 143, 188, 230, 382
ATL

Automation server, 402
batch files, 382
browsing for icons

functions, 405
COM interfaces, 383, 400
command line arguments, 387
event handling, 400
improving, 412
object model, 387, 401, 522

helper objects, 391
registry, 394, 398
reusability, 414

XML Scriptlets, 414
shell, 384
shell extensions, 414
Windows 98, 383
WScript object, 387
WScript.CreateObject(), 401
WshNetwork object, 387
WshShell object, 387

Windows() function
prototype, 360

WinExec() function
CreateProcess(), 222
prototype, 222

compared to CreateProcess(), 222
ShellExecute(), 224

WISE, 420
Wrox AppWizard, 45, 47, 55, 58, 148, 167, 178,

180, 262, 296, 318, 338, 342, 373, 628
creating shortcuts, 342
generic DLL, 643
taskbar, 279

WroxWiz.rc, 639
WroxWiz.h file, 630
WroxWiz.rc file, 639
WScript object

Windows Scripting Host, 387
WScript.CreateObject() function

prototype, 388
Windows Scripting Host, 401

WScript.GetObject() function
prototype, 389

WshArguments object, 392
WshCollection object, 392
WshEnvironment object, 392
WshNetwork object, 390

Windows Scripting Host, 387
WshShell object

Run(), 411
shell, 389
supported data types, 394
Windows Scripting Host, 387

WshShell.CreateShortcut() function
WshShortcut object, 392

WshShortcut object
WshShell.CreateShortcut(), 392

WshSpecialFolders object
SHGetSpecialFolderPath(), 393

WshUrlShortcut object, 393

X
XML Scriptlets

Windows Scripting Host
reusability, 414

	Table of Contents
	Introduction
	Everything Changes
	What Does this Book Cover?
	What You Need to Use this Book
	Conventions Used
	Tell Us What You Think
	Source Code
	Support

	What is the Windows Shell?
	The Components of the Shell
	The Program Manager
	The Taskbar
	The Desktop

	The Structure of Explorer
	Injection Points for Extensions
	Extensions to Explorer
	Why Program the Shell?

	Where This Book Will Take You
	The Plethora of Shell Versions
	Where is the Official Documentation?
	Summary

	The Structure of the Shell
	The Pieces of the Shell
	The Shell's Namespace
	The Shell's View
	The Shell's Address Space
	The Shell's Memory Allocator
	The Shell's Taskbar

	The Shell API Functions
	General Windows Functions
	Shell Internals
	Taskbar Functions
	File Functions
	Folder Functions
	Icon Functions

	The COM Interfaces
	Shell Interfaces
	Namespace Interfaces
	Hook Interfaces
	Miscellaneous Interfaces

	Why the API? Why COM?
	What Changed with Active Desktop
	The New Shell View Object
	The New Taskbar Layout

	Summary

	Working with Files
	What Can SHFileOperation() do for You?
	How SHFileOperation() Works
	Available Operations
	SHFileOperation() Return Values

	Long File Names
	File Name Mapping Objects
	Demonstrating File Mapping
	Using the Object

	Summary
	Further Reading

	Investigating the Nature of Files
	What SHGetFileInfo() Can Do for You
	How SHGetFileInfo() Works
	Specifying the Input File

	The Sample Program
	The Flags of the Function
	Getting Attributes for a File
	Binary Format of Executables
	SHGetFileInfo() Return Values

	Summary
	Further Reading

	Browsing for Folders
	Choosing a Folder
	A More Modern Approach

	The Prototype of SHBrowseForFolder()
	Using SHBrowseForFolder()
	What the Function Returns
	Using a Callback Function
	Customizing the User Interface
	Specifying the Initial Folder
	Specifying the Root Node
	Putting it all Together

	That Crazy Little Thing Called PIDL
	Freeing PIDLs
	How to Use PIDLs
	The Sample Program

	Special Folders
	System Support for Special Folders
	Functions

	Folder Settings
	SHGetSettings()
	The Sample Program
	Setting Preferences

	Summary
	Further Reading

	The Shortest Path to Shortcuts
	What are Shortcuts?
	The Shortcut File Type

	Creating Shortcuts
	Using the IShellLink Interface
	Giving Shortcuts the Right Name
	Deleting Shortcuts

	Resolving Shortcuts
	How Explorer Resolves Shortcuts
	Shortcuts and Special Folders

	The Sample Program: Shortcut Manager
	Selecting a Shortcut
	Shell Drag-and-Drop
	Displaying the Results
	Collecting Arguments for Creation
	The Source Code
	Creating Shortcuts in System Folders

	Summary
	Further Reading

	Shell Invaders
	Notifying the Shell of Events
	Notification Objects
	SHChangeNotify()

	Invading the Shell's Memory Space
	The Brute Force Approach

	Invited into the Shell's Memory Space
	SHLoadInProc()
	A Minimal COM Object
	Registering the COM Object
	A Brand New Start Button
	Creating Owner- Drawn Menus

	Browser Helper Objects
	Backward Compatibility
	Activation Mechanism
	Registration
	Structure of the COM Object
	Communication with the Host
	Usage
	Registering Helper Objects
	The IObjectWithSite Interface
	Writing a Helper Object

	Glossary of Techniques for Entering the Shell
	Summary
	Further Reading

	Program Executors
	From WinExec() to CreateProcess()
	A Comparison of WinExec() with CreateProcess()
	Is CreateProcess() Manna from Heaven?

	ShellExecute()
	The Open Operation
	The Explore Operation
	The Print Operation
	The Find Operation
	A Frustrating Documentation Error
	More Details of the Verbs
	Getting the Executable Name for a File
	ShellExecute() Tips and Tricks
	ShellExecute() vs. CreateProcess()

	Extending ShellExecute()
	ShellExecuteEx()
	Example: Program Executors

	Multi-Monitor Support
	Hooking on ShellExecute()
	Registering an IShellExecuteHook Handler
	The IShellExecuteHook Interface
	Writing an IShellExecuteHook Handler

	Summary
	Further Reading

	Icons and the Windows Taskbar
	What You Should Know About Icons
	Creating Icons
	Drawing Icons
	Extracting Icons from Files
	Assigning Icons to Dialog Boxes
	Browsing for Icons

	The Tray Notification Area
	Putting Icons in the Tray Notification Area
	How Many Icons are in the Tray Notification Area?
	Detecting When the Shell Restarts

	The Layout of the Taskbar
	When a Window Goes in the Taskbar

	The Windows Taskbar
	Getting the Taskbar's State Programmatically
	Hiding the Taskbar

	The ITaskbarList Interface
	What ITaskbarList Promises to Do
	An IDL Definition for the Interface
	ITaskbarList Sample Program

	Summary
	Further Reading

	Windows Helper Libraries
	The Versioning Epidemic
	DLL Version Information
	A More General Function

	The Recycle Bin API
	Structure of the Recycle Bin
	Renaming Convention
	The Recycle Bin View
	Functions for Interacting with the Recycle Bin

	Helper Libraries
	The Registry Shell API
	Manipulating Strings
	Manipulating Path Strings

	The Case for SHFormatDrive()
	What the Function Does
	A General Approach to Improving System Dialogs
	Extending the Syntax of SHFormatDrive()
	An Automatic Function for Formatting Drives
	The Sample Program

	Summary
	Further Reading

	Exploring the Shell
	Explorer's Command Line
	The /root Switch
	Using Special Folders as the Root

	What is rundll32.exe?
	Functions Callable By rundll32.exe
	What you can do with rundll32.exe

	The Explorer's Objects
	The Control Panel
	The Printers Folder
	Dial-Up Networking
	Scheduled Tasks
	My Briefcase

	Scrap Objects
	A New Shortcut Handler
	The User Interface
	How to Replace the Windows Wizard

	Summary
	Further Reading

	Scriptable Shell Objects
	The Best Language to Program the Shell
	Undocumented Shell Features

	The Shell Object Model
	Methods of the Shell Object
	Attributes of the Shell Object

	Invoking the Shell Object
	Using Visual Basic
	Using C++

	The Folder Object
	More on Folder Object Methods

	The FolderItem Object
	Invoking an Item's Verbs

	Accessory Objects
	The ShellUIHelper Object

	Putting it all Together
	Summary
	Further Reading

	The Windows Scripting Host
	Windows Batch Files — At Last
	What Can the WSH do for You?
	Running Scripts at Startup

	Structure of the WSH Environment
	How to Get the Windows Scripting Host
	What is the Host?
	Shell Support for Script Files
	The Scripting Engine

	The WSH Object Model
	The WScript Object
	The WshShell Object
	The WshNetwork Object
	Helper Objects
	Accessing the Registry
	Scripting the Local File System
	Accessing Existing Objects
	Handling Events with the WSH

	Adding New Objects to the WSH
	Arranging an ATL Automation Server
	Defining the Programming Interface
	Clipboard Support
	Drive Formatting
	Browsing for Icons
	Registry Key Enumeration
	Hooking a Program's Execution

	Hints for Improving the WSH
	Adding User Interface Support
	Reusability within the WSH

	Summary
	Further Reading

	Designing a Shell-Integrated Application
	Shell-Integrated Applications
	Documents and the Shell
	Basic Document Functions
	Registered Document Types
	How Programs are Affected

	Creating New Documents
	The New Menu

	Other Features
	Application Paths
	Automatic Startup of Applications

	Designing a Shell-Integrated Application
	A Metafile Viewer
	Adapting the Application
	Adding Shell Support

	Drag-and-Drop Support
	Customized Open Dialogs
	Defining a New Template
	New Dialog Features

	What is a Shell-integrated Application?
	Summary
	Further Reading

	Shell Extensions
	Shell Extensions: Types and Tips
	What are Shell Extensions?
	Calling Shell Extensions
	How Explorer Calls Into Shell Extensions
	Types of Shell Extensions

	Writing Shell Extensions
	Using ATL
	Our First Shell Extension

	Adding Property Pages
	Which Interfaces to Implement
	Initialization of Shell Extensions
	The IShellExtInit Interface
	The IShellPropSheetExt Interface
	Adding a New Property Page
	Registering Shell Extensions
	Testing Shell Extensions
	More on Property Page Shell Extensions

	Context Menu
	Implementing IContextMenu
	A Dependency List for Executables
	Adding a New Find Menu
	IContextMenu2 and IContextMenu3

	Right-hand Drag & Drop
	Registering Drag & Drop Handlers

	Assigning Dynamic Icons
	Different Icons for Different Color Depths

	Monitoring Folders through ICopyHook
	Implementing ICopyHook
	Monitorable Objects

	Dropping Data over a File
	The DropHandler Extension

	Adding Shell Support to Script Files
	The Project and the Registration Script
	Dropping Parameters over Script Files

	DataHandler Shell Extensions
	The COM Interfaces Involved

	A Shell Extension Developer's Handbook
	File Viewers
	Starting a Quick View
	Writing a Quick Viewer

	Summary
	Further Reading

	Namespace Extensions
	An Overview of Namespace Extensions
	What Does Writing a Namespace Extension Mean?
	The Inner Structure of Explorer
	Primary Interfaces
	Additional Interfaces
	The Concept of Folders

	Flavors of Namespace Extensions
	Rooted Extensions
	Non-rooted Extensions
	Rooted vs. Non-rooted
	Junction Points

	What you can do with a Namespace Extension
	Designing Our Namespace Extension
	What's a Folder Here?
	Designing a Custom PIDL
	How to Build a Window Enumerator
	Designing the View

	Implementing Our Namespace Extension
	Common Features of Registry View and Windows View
	The Windows View Project
	The PIDL Manager Class
	The Windows Enumerator
	The Folder Manager
	The Window View

	Giving it a User Interface
	Menu Modifications
	Associating a Context Menu with Items
	Associating an Icon with Items

	Installing a Namespace Extension
	A Node on the Desktop
	Adding an InfoTip
	Adding a Removal Message
	Additional Attributes for a Folder
	Browsing a Custom Folder
	Putting this Example to Work

	Summarizing Namespace Extensions
	What's a Web View?
	The Shell View ID
	New Functions in IShellView2
	What's New in IPersistFolder2

	How a Web View is Structured
	Getting in Touch with the Classic View Object
	The Template of a Web View
	From Custom to Customized Folders

	Folder Customization
	The Default Template
	The Desktop.ini File
	Creating a New Template

	Hosting Applications through Namespace Extensions
	The URL Folder Example

	Summary
	Further Reading
	Final Thoughts

	A Programmer's Toolkit
	The Custom AppWizard
	Why Can't an AppWizard Stand Alone?
	A Quick Tour of a Custom AppWizard

	The Wrox AppWizard
	System Macros
	Finalizing the Process
	A Minimal Dialog-based Application
	A Generic DLL
	The Rest of the Code

	Further Reading

	Index A
	Index B

